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The main directions of studies of materials with negative index of refraction, also called left-handed

or metamaterials, are reviewed. First, the physics of the phenomenon of negative refraction and the

history of this scientific branch are outlined. Then recent results of studies of photonic crystals that

exhibit negative refraction are discussed. In the third part numerical methods for the simulation of

negative index material configurations and of metamaterials that exhibit negative index properties

are presented. The advantages and the shortages of existing computer packages are analyzed.

Finally, details of the fabrication of different kinds of metamaterials are given. This includes compos-

ite metamaterials, photonic crystals, and transmission line metamaterials for different wavelengths

namely radio frequencies, microwaves, terahertz, infrared, and visible light. Furthermore, some

examples of practical applications of metamaterials are presented.
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1. INTRODUCTION

Artificial media, i.e., metamaterials may exhibit properties
that are much more pronounced than those found in natu-
ral materials or they may even exhibit properties that were

∗Author to whom correspondence should be addressed.

not observed before in natural media. The most prominent
example of not previously observed properties are meta-
materials with a negative index of refraction, i.e., Nega-
tive Index Metamaterials (NIMs) that are also called Left
Handed Materials (LHMs). After first experiments, these
metamaterials attracted much interest and were intensively
analyzed. Despite of their conceptional simplicity, NIMs
provide rich and surprising phenomena and are still not
well understood in detail. In the following we present vari-
ous theoretical aspects together with fabrication issues and
focus on the main trends in experimental studies, band-
structure calculations, and numerical simulations, that all
are necessary for the practical implementation of NIM
materials.

2. THEORY OF NEGATIVE INDEX
REFRACTION PHENOMENA

In 2000 Smith, Schultz and coworkers1 demonstrated in
their pioneering work that it is possible to fabricate an
artificial material with electrodynamic characteristics that
can be described by a negative index of refraction n, i.e., a
Negative Index Metamaterial (NIM). At that time, the con-
cept of negative index of refraction itself seemed to be new
and unusual, although it had been introduced already in
19682 by the general consideration of the electrodynamics
properties of the materials with simultaneously negative
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values of the dielectric permittivity � and magnetic per-
meability �.

The choice of a negative sign for both � and � does not
cause mathematical contradictions; in particular this does
not change the classical expression for n:

� =√
�� (1)

The main question now is how the electrodynamics of
the materials with negative � and � differ from the elec-
trodynamics of materials with positive � and �. There are
three possible answers to this “rhetoric” question:

(1) There are no differences, i.e., electrodynamics is
invariant with regard to the simultaneous change the signs
of � and �.

(2) Simultaneously negative values of � and � are in prin-
ciple impossible because this conflicts with some basic
principles.

(3) Simultaneously negative values of � and � are possi-
ble, but the electrodynamics of such materials differs from
electrodynamics for the case of positive � and �.

It is easy to show that the answer 3 is correct. Let us
consider the Maxwell curl equations

rot �E =−1

c

� �B
�t

rot �H = 1

c

� �D
�t

(2)

For uniform plane waves we obtain

�k �E�= ��
c

�H

�k �H�=−��
c
�E

(3)

One can immediately see from Eq. (2) that the vectors
�E, �H , and �k form a right-handed triple of vectors for pos-
itive � and �, but a left-handed one for negative � and �.
For this reason, NIMs are frequently called Left-Handed
Materials (LHMs).

Remember that the Pointing vector

�S = �E× �H (4)

always forms a right-handed triple of vectors together with

the vectors �E� �H . The direction of the phase velocity ��ph
of the wave coincides with the direction of the wave vector
�k, whereas the direction of the group velocity ��gr complies

with the direction of the vector �S. Thus, it is obvious that
the phase and the group velocities are antiparallel when
� and � are simultaneously negative. The inverse state-
ment holds: When the phase and the group velocities of
an isotropic medium are antiparallel, the medium is char-
acterized by negative values of � and �.

It is important to notice that the antiparallelity of the
vectors ��ph and ��gr for negative values of � and � was
already described by Sivukhin3 and in more detail in the

Fig. 1. Snellius law for positive � and � (path 1–4) and for negative �

and � (path 1–3).

work of Pafomov.4 More on the history of anti-parallel

velocity vectors may be found on the internet.5 Anti-

parallel phase and group velocities immediately affect

Snellius’ law as illustrated in Figure 1. For positive � and

� the ray propagates along the way 1–4 through the inter-

face between two media. If one of the media has negative �

and �, the ray propagates along the way 1–3. This unusual

propagation of the ray is a consequence of the opposite

direction of the vectors ��ph and ��gr and of the continuity

of the tangential components of the wave vector on the

interface between the two media. Such unusual refraction

of waves was discussed probably for the first time by

Schuster.6 Later on, this question was considered more in

detail by Mandelstam.7

If we want to keep the usual notation of Snellius’ law

sin�

sin�
= n (5)

also for negative � and �, we must accept that the index

of refraction is negative when � and � are simultane-

ously negative or when the vectors of the phase and group

velocities are anti-parallel. Exactly in this way, the nega-

tive index of refraction was introduced in 19682 and even

earlier.8 The appearance of a negative factor of refraction

requires rewriting of (1) in more general way

n=±√
�� (6)

Here, the positive sign is used for the usual case,

whereas the negative sign is used when � and � are both

negative.

All the previous considerations imply that the index of

refraction n is a scalar, not depending on coordinates and

time. It is necessary take into account that n depends on

the frequency. Indeed, if the dependency on the frequency

(frequency dispersion) would be absent, the energy of the

J. Comput. Theor. Nanosci. 3, 1–30, 2006 3
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field W = �E2 +�H 2 would be negative, when � and �
are negative. When frequency dispersion exists, the energy
W must be written in a different manner:

W = �����

��
E2 + �����

��
H 2 (7)

This expression is positive for a very broad class of
dispersion equations for ���� and ����. For example,
W becomes positive when

�=1− A
2
�

�2

�=1−
A2
�

�2

(8)

holds. For the special case A2
� =A2

�, (8) easily leads to the
interesting correlation

c

�ph
+ c

�gr
= 2 (9)

For the waves in media with negative index, the wave
vector obtains a negative sign. However, in lossy media,
the wave vector becomes complex. Its imaginary part is a
result of presence of the imaginary parts in the expressions
for � and �. So, the question arises if the sign of the
imaginary part of the wave vector changes, when the sign
of its real part changes? To clarify this, we write

�= �′+ j�′′� �= �′+ j�′′ (10)

One can easily see that the wave number k is

k = k′+ jk′′ = �

c

√

��′+ j�′′���′+ j�′′�

= �

c

√

�′�′
[

1+ j
2

(

�′′

�′
+ �

′′

�′

)]

(11)

when the dissipation is small. From this it follows that the
change of the sign of the real part k′ does not automati-
cally change the sign of the imaginary part k′′. In order to
change the sign of the imaginary part of the wave vector,
it is necessary to change the sign at the imaginary parts of
� and �. This corresponds to a transition from a material
with positive absorption to a material with the negative
absorption as in the case of quantum amplifiers. This tran-
sition is not connected to the possible transition from usual
materials to the materials with negative refraction.

Table I. Change of some physical laws from �= 1 to � 
= 1.

Physical law Equation for nonmagnetic approach Correct equation

Snellius, Doppler, Cherenkov n=√
�→ n=√

�� if sin�/ sin� = n21 =
√

�2/�1 sin�/ sin� = n21 =
√

�2�2/�1/�1

��� < 0� than n < 0

Fresnel n=√
�→ 1/z=√

�/� r⊥ = n1 cos�−n2 cos�

n1 cos�+n2 cos�
r⊥ = z2 cos�− z1 cos�

z2 cos�+ z1 cos�

Reflection coefficient for normal fall of light r = �n1 −n2�/�n1 +n2� r = �z2 − z1�/�z2 + z1�

on the border between two media

Brewster angle tg� = n tg� =
√

�2

�1

�2�1 −�1�2

�2�2 −�1�1

The fabrication of the composite metamaterials1�9 that
could be characterized by negative values of � and � pro-
vided a breakthrough for NIM research. The first meta-
materials consisted of copper rings and straight wires,
disposed in a strict geometric order (see Chapter 5). The
straight wires, in essence, are the antennas that interact
with the electric field, and rings are the antennas interact-
ing with the magnetic field. The size of these elements
and the distances between them are smaller than the wave-
length and the whole system may be characterized by a
macroscopic model with negative effective values of � and
�. A direct measurement9 of the angle of refraction for a
prism made of such a metamaterial verified the validity of
the Eq. (5) with negative n. The experiment was repeated
by several independent groups10–12 with the same positive
result.

The discovery of NIMs poses very important questions:
To what extent are all the laws and formulas of electrody-
namics, optics, and related technical sciences valid, when
n is negative? Can we always simply change the sign
n→ −n as, for example, in the case of Snellius’ law?
In general, the answer to this question is negative. Many
laws and equations of electrodynamics and optics corre-
spond to the case nonmagnetic materials with permeability
� = 1. The nonmagnetic approach leads to many formu-
las that drastically change for � 
= 1. Table I outlines the
situation.

As one can see from Table I, there are three groups of
physical laws that change when turning from the nonmag-

netic approach equations to the exact expressions. Snel-
lius’ law, Doppler and Cherenkov effects are in the first
group. In their formulas, the expression n = √

� must be
replaced by n=√

��. When � and � are both negative, a
negative sign is also obtained for n.

The laws of reflection and refraction of light and, in
particular, Fresnel’s formulas, belong to the second group.
In these formulas, the value n=√

� should be changed not
to n =√

�� but to
√
�/� = 1/z, where z =√

�/� is the
wave impedance. The wave impedance is a unique feature
of each medium, as the speed of light in it. It is important
to recognize that it remains positive for negative values
of � and �. As a consequence, the nonmagnetic approach

may lead to incorrect equations, for example, when the
condition for the absence of reflection of light on a flat
border between two media is considered (see Table I).

4 J. Comput. Theor. Nanosci. 3, 1–30, 2006
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Finally, there is a third group of equations that strongly
depend on n and considerably change when turning from
nonmagnetic approach to exact formulas, for example, the
formula for the Brewster angle. It is important to note that
the expression under the square root in the exact formula
for the Brewster angle does not change when the signs
of � and � change simultaneously. Note that the formula
for the Brewster angle in Table I corresponds to parallel
polarization of the light. For perpendicular polarization,
the formula can be obtained from that given in Table I by
changing �→ � and �→ � in the expression under the
square root.

Concerning Table I, we would like to add a considera-
tion of a very important part of geometric optics, known
as the Fermat principle. This principle is described in two
different versions in the literature:

1. The light spreads from one point of space to another
one along the shortest path. Here, term “shortest” implies
the minimum of time for passing this way. For example, in
the “Physical encyclopedic dictionary,” M., Soviet Ency-
clopedia, 1983 one finds: The ray of light always spreads
in space between two points along that way, along which
the time of its passing is less than along any other way
that connect these points.

2. The light spreads from one point of space to another
one on a path that corresponds to the minimum length of
the optical way (minimum optical length). For example,
in the British encyclopedia (http://www.britannica.com/
search?query=Fermat%60s%20principle&ct=&fuzzy=N)
one finds: Light traveling between two points seeks a path
such that the number of waves (the optical length between
the points) is equal, in the first approximation, to that in
neighboring paths.

Note that the term “minimum” (of way or time) should
be replaced in some cases by the term “maximum” and
sometimes by “extremum.” To clarify this, we now pay
attention to the two formulations of Fermat’s principle.
Obviously, that both formulations are correct when light
passes through usual, Right-Handed Material (RHM), but
they both are not correct, when the light partly passes
through a RHM and partly through a LHM.

This is confirmed by Figure 2 that illustrates the possible
ways of a ray crossing a flat surface between two media
with the indices of refraction n1 and n2 respectively. If n1

and n2 are both positive, the ray travels along AO1B, and
angles � and � satisfy Snellius’ law n1 sin� = n2 sin�.
The optical length of this way L is

L= n1�AO1�+n2�O1B� (12)

It is not difficult to show that Snellius’ law (5) is valid
if and only if the variation of the optical length $L is zero:

$L= $%n1�AO1�+n2�O1B�&= 0 (13)

Here, the length L for AO1B is minimum and positive.

Fig. 2. Light propagation from point A to point B through a flat inter-

face between two media with refraction indices n1 and n2. Case n =
n1/n2 > 0: The light travels along AO1B. Case n = n1/n2: Light travels

along AO3B. The ways AO2B and AO4B are virtual ways illustrating

Fermat’s principle.

In the case, when both n1 and n2 are negative, the prop-
agation of the ray will be the same as in the previous
case, but with one important difference. In the first case,
the wave vector in both media is directed along the rays,
i.e., from A to B, but in the second case the wave vector
is directed against the direction of the rays, i.e., from B
to A. Thus, the optical length L turns out to be negative,
and for AO1B it will be a maximum. Note that both cases
correspond to n= n2/n1 > 0.

The situation greatly changes if n = n2/n1 is negative.
A RHM is then on one side and a LHM on the other side.
Light will then propagate along the way AO3B and one
obtains

$L= $%n1�AO3�+n2�O3B�&= 0 (14)

This expression changes when a negative n is introduced
for the LHM. Therefore, the condition “extremum of the
optical length” is valid. However, in this case it is impos-
sible to confirm a priori that the real way of light corre-
sponds exactly to the maximum or exactly to the minimum
of the optical way. The type of the extremum depends on
the geometry and on the values n1 and n2. Furthermore,
the real way from A to B is not the shortest in terms of
spreading time, i.e., the formulation of Fermat’s principle
by the time of spreading is not correct in general. The
correct formulation is based on the extremum of the opti-
cal length: “The real way of spreading light corresponds
to the local extremum of the optical length.” Using the
term “local” takes into account that there can be several
possible optical ways that fulfill the equations (2) and (3).

The optical length L between the points A and B in most
common case—when the index of refraction is changed
from point to point—is equal to the integral

L=
∫ B

A
ndl (15)

Since the value n in Eq. (4) can be negative, it is clear
that the optical length L (this value is really an eiconal)

J. Comput. Theor. Nanosci. 3, 1–30, 2006 5
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Fig. 3. Early studies of the negative refraction phenomenon.

can have any sign and any value. So, this length will be

negative if the light passes through LHM only. In special

cases, the optical length is equal to zero. Exactly such

a zero optical length between an object and its image is

observed for a flat LHM lens, i.e., the NIM slab that is

considered in more detail in Chapter 4.

The concept of the optical length is connected with the

total phase wind of the wave that depends on the index

of refraction n, which defines the phase velocity of light,

rather then the group velocity. As it is well known, group

and phase velocities are different in dispersive media.

The antiparallel orientation of the vectors of the phase

and group velocities is an essential condition for negative

refraction. Such antiparallel orientation corresponds to so-

called “backward waves,” or negative group velocity. In

our opinion, the term “negative phase velocity” would be

more appropriate, bearing in mind that the group velocity,

directed from the source to the receiver, is always positive.

The logical scheme linking the notions “simultaneously

negative values of � and �,” “negative factor of refraction,”

“backward waves” and “negative refraction” is outlined in

Figure 3. The authors and the dates of the first publications

of the scheme elements are also specified. The scheme

in Figure 2 presupposes that negative refraction appears

when we have backward waves in an isotropic material

that is characterized by negative values of �, �, and n.

However, the use of materials with negative values of �,

�, and n is not the only way to obtain backward waves

and hereby negative refraction. Moreover, backward waves

exist in many systems that cannot be described by neg-

ative permeability and negative index of refraction. The

well known backward waves in vacuum electronic devices

are a typical example. In such devices the phenomena of

negative refraction can be not obtained. A long time ago,

backward waves in transmission lines were also studied.1

Negative refraction can not be obtained in these uniaxial

structures, but the main phenomena that are typical for

LHMs are present in recently proposed 2D and 3D trans-

mission line structures obtained from LC circuits.1�2

Figure 3 illustrates the history of backward waves and of

negative refraction. The relation between backward waves

Fig. 4. Light propagation in a YVO4 bicrystal. Normal (positive) and

abnormal (negative) refraction. Reprinted with permission from [19],

Y. Zhang et al., Phys. Rev. Lett. 91, 157404 (2003). © 2003.

and negative refraction was shown for the first time by
Shuster6 in 1904, and then in more detail by Mandelstam7

in 1944. Both Shuster and Mandelstam referred to earlier
work by Lamb.16 Mandelstam and Lamb considered linear
mechanical structures—equivalent to photonic crystals—
rather then two- or three-dimensional media with negative
�, �, and n. Also Poklington17 studied a linear mechanical
model that provided backward waves.

Concerning the realization of negative refraction, it
is important to mention a very widespread and well-
explored class of materials that provide negative refraction:
Anisotropic crystals. It is well known that the directions of
refracted rays, phases, and group velocities do not coincide
both in anisotropic crystals and in materials with negative
refraction, as shown in Figure 4. The observed ray propa-
gation in the crystal corresponds to the ray propagation in
the case of negative refraction, but the material properties
cannot be described by a scalar refraction index n because
the permittivity �—that defines n- is a tensor. Thus, neg-
ative refraction may occur without a negative index of
refraction! Following Zhen Ye,19 this case may be called
“quasi-negative refraction.”

The term “backward wave” should also be handled with
care. We use the term “backward wave” when the vectors
�S and �k (and, accordingly, the phase and group velocity)
are antiparallel, as it is shown on Figure 5. However, the
following broader definition of direct and backward waves
is also used:20 When the scalar product of the phase and
group velocities is positive

��ph · ��gr > 0 (16)

the corresponding wave is defined as forward wave and
when

��ph · ��gr < 0 (17)

hold one has a backward wave. It is obvious that one has
an intermediate case when the vectors ��ph and ��gr are

6 J. Comput. Theor. Nanosci. 3, 1–30, 2006
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Fig. 5. Schematic of direct and backward waves.

oblique rather than parallel (RHM) or anti-parallel (LHM),

as illustrated in Figure 5.

The diagram in Figure 6 shows all possible combina-

tions of signs of � and �. The first quadrant corresponds to

the materials with positive refraction, third quadrant cor-

responds to the materials with negative refraction, but the

second and fourth quadrant corresponds to materials that

do not permit electromagnetic wave propagation, i.e., that

will simply electromagnetic waves without energy dissipa-

tion. A typical example is plasma in the ionosphere with

�= 1, but negative � in accordance with Eq. (8).

Now, the question is: in what kind of materials can we

observe negative refraction? This question was answered

by Smith, Schultz, and co-authors1—based on some theo-

retical work of Pendry21�22—who fabricated a metama-

terial, i.e., an artificial structure consisting of straight

metallic wires—responsible for the negative permittivity—

and metallic split rings resonators—responsible for the

negative permeability. Furthermore, it was experimentally

demonstrated that one may obtain artificial dielectrics and

magnetics based on an ensemble of metallic parts, forming

some sort of ideal gas of conducting particles. This idea

was probably published first by Gorkov and Eliashberg.23

However, the studies of Gorkov and Eliashberg, and recent

work of Pendry, Smith, and Schultz do not imply that

materials with negative refraction can only be produced as

artificial dielectrics and magnetics. One of us (VV) spent

significant efforts for obtaining materials with negative

refraction based on magnetic CdCr2Se4 semiconductors.

Fig. 6. All possible combinations of � and �.

Up to now, these efforts failed because of technological

difficulties.

The discovery of NIMs with their surprising electrody-

namic properties attracted much interest and also provoked

statements of questionable value. For example, Valanju

et al.25 say that negative refraction exists only for the phase

velocity, whereas the usual law of refraction holds for the

group velocity. The authors do not realize that the differ-

ence in the directions of phase and group velocities is a

typical for the optics of anisotropic media that can not

be characterized by a scalar refraction index. This mistake

originates from the muddle of the direction of the group

velocity and the direction of the normal to the surface of

constant amplitudes of modulated waves.26

The problem of overcoming the diffraction limit or, in

other words, the problem of amplification of so-called

evanescent modes is also closely related to NIMs since

Pendry27 stated that one may have waves in such a med-

ium with

kz =
√

�2

c2
−k2

x (18)

purely imaginary, where z is the direction of the propaga-

tion. This holds for sufficiently large kx only. In material

with positive n the amplitude of such waves (the evanes-

cent modes) exponentially decay along the z axis, and this

finally explains why the resolution of optical systems is

limited and cannot be much smaller than the wavelength.

Pendry27 (and many others after him) pointed out that the

amplitude of evanescent waves with imaginary kz increases

in NIMs or in LHMs. He considered the simple device,

consisting on a NIM slab as shown in Figure 8 and con-

firmed that the classical diffraction limit is not valid for

such a “super lens.” He and many others did not consider

that overcoming the diffraction limit automatically means

breaking the uncertainty principle. For our case the uncer-

tainty equation can be written as follows

kxd ≥ 2+ (19)

Here kx is the component of the wave vector orthogonal

to z axis (direction of the propagation) and d is the trans-

verse size of a focused spot of light. The kx value can not

be larger than the wave vector k0 in the free space:

kx < k0 =
�

c
= 2+

,
(20)

From Eqs. (19) and (20) immediately follows:

d > , (21)

Admitting the possibility of breaking the diffraction

limit is equivalent to discarding Eq. (21), i.e., not accept-

ing the uncertainty principle. This would be an extremely

far reaching statement of much higher importance than all

other statements about the characteristics of materials with

negative refraction index. This statement originates from

J. Comput. Theor. Nanosci. 3, 1–30, 2006 7
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Fig. 7. Flat lens produced by a material with refraction index n = −1

(NIM slab).

a not very precise use of some terms, namely “lens” and

“resolution.” Usually, “optical lens” characterizes an opti-

cal instrument that is essentially explained by the laws of

geometric optics. Pendry’s “perfect lens,” i.e., a flat NIM

slab as is shown in Figure 7 can be considered as an “opti-

cal lens,” only when

a > , > $ (22)

holds, where a is the slab width, , the wavelength, and $
the period of the internal metamaterial structure. Besides,

for a NIM slab with n=−1 in free space �n= 1� one has

a= b+ c (23)

The NIM slab may be considered as an “optical lens”

only when (22) holds and this was originally Veselago’s2

assumption although this was not explicitly indicated.

However, Pendry27 and others considered cases where (22)

does not hold. Such a system is rather some matching

device than an “optical lens.” For matching devices, it is

well known that the flow of energy can be focused on a

spot that is undoubtedly smaller than the wavelength.

To clarify the situation, let us consider electromagnetic

waves in an usual metallic waveguide of rectangular cross

section. It is well known, that electromagnetic wave prop-

agates when

, < 2a (24)

where a is the longer side the waveguide. When this con-

dition is satisfied, the output of such a waveguide can be

considered as some rectangle image formed by the cross-

section of the waveguide. The size of this rectangle is of

order a. For measuring the fields in the waveguide one

must use detectors that must are smaller than the size of

the waveguide. If such a detector is located near the out-

put end of the waveguide, it will register only a small

part of radiation. If we want to enlarge the power imping-

ing on the detector, we can use matching devices—usually

screw and slots—in the vicinity of the detector as out-

lined in Figure 8. The increase of the detected power could

be considered as focusing radiation to the spot where the

Fig. 8. Simple matching device for a detector in a waveguide.

detector is and this spot may easily be much smaller than

the wavelength. However, such a set of screws would never

be called “lens.”

3. NEGATIVE REFRACTION IN
PHOTONIC CRYSTALS

The lattice constants of common materials are 0.2–1 nm,

i.e., much below the wavelength of visible light (a few

100 nm). This is the reason why the response of such mate-

rials on the electrical and magnetic fields of light wave

can be described by the macroscopic parameters � and �.

The sizes of “atoms,” i.e., wires or split ring resonators, in

the NIMs mentioned above are comparable with the dis-

tances between them. A similar relation between the size

of “atoms” and the lattice constant holds for so-called

Photonic Crystals (PhCs), proposed by Jablonovich29 in

1987. PhCs are the metamaterials composed of dielectric

or metallic parts (“atoms”) arranged on 2D or 3D period-

ical lattices.

Light propagation in the PhCs cannot be considered

as an average effect of the “atoms” as in common crys-

tals. In contrary, light propagation in PhCs is the result

of Bragg diffraction at each “atom.” Hence the periodical

structure of the PhCs is very important. The macroscopic

constants � and � cannot describe the light propagation

in PhC and the light refraction at the PhC boundary.

More precisely, light waves in PhCs should be consid-

ered as the Bloch waves, but in the so-called envelope

function approximation they may be considered as plane

waves.30–34 Furthermore, the commonly used boundary

conditions (continuality of the tangential components of

the electric and magnetic fields) must be generalized.35�36

As a result, Snellius’ law for PhC obtains the form

sin�

sin�
= n��� (25)

Note that n is now a function of the incidence angle.

Negative refraction in PhCs is due to the peculiarities

of their photonic band spectra. At first sight, the effect

arises because of the negative slope of the upper band,

and the existence of the photonic band gap seems to be

8 J. Comput. Theor. Nanosci. 3, 1–30, 2006
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Fig. 9. Modulus of the light field of a polarized Gaussian beam inci-

dent on a crystal consisting of 69 × 7 rods in vacuum. The station-

ary waves above the crystal are due to interference of incident and

reflected waves. Straight lines show the maximum incident (black), trans-

mitted, and reflected (white) fields. Reprinted with permission from [37],

B. Gralak et al., J. Opt. Soc. Am. A 17, 1012 (2000). © 2000.

not important. However, this is not correct. Indeed, the

negative slope of the upper photonic band is the result of

the reduction to the first Brillouin band. The phase of the

Bloch wave �En�k��r�ei
�k�r consists not only of the exponen-

tial factor ei
�k�r , but also of the phase of the Bloch ampli-

tude �En�k��r�. In particular, in the model of an empty lattice

the total phase factor is ei�k−2+/dsgnk�r , i.e., the sign of the

wave vector coincides with the slope of the band. Nega-

tive refraction can be expected only in the vicinity of the

photonic band gap, where the arguments above fail.

Negative refraction in systems with photonic band gaps

was explored by Gralak and co-workers37 in a numerical

study of light propagation through a two-dimensional PhC

slab. This simulation provided an explicitly perceptible

negative refraction (Fig. 9). Light refraction in PhCs was

further numerically investigated for 2D38 and for the 3D

PhCs.39 More details on numerical simulations are given in

the following section. The interpretation of the mechanism

becomes more clear when the photonic band structure

(Fig. 10) is analyzed. The second photonic band (band 1

in the Fig. 10) behaves like a hole band in semiconductors.

The group velocity of the photons in this band is negative,

i.e., ��/�k < 0. Therefore, negative refraction has to be

expected for light impinging on the PhC from a homo-

geneous material. Apparently, the effect should not be a

simple consequence of the band folding. In any case it

should not take place in an empty-lattice PhC.34 Negative

refraction in the PhC is a result of the band gap and has to

be observed in the vicinity of the band gap, at the 1 point.

The theory of the negative refraction in PhC40 is out-

lined in the following. A simple 2D photonic crystal

consisting of cylindrical holes arranged on a square lattice

Fig. 10. Band structure of the 2D photonic crystal shown in the left

bottom inset. Points M and X corresponds to the directions [11] and [10],

respectively. Dashed line indicates the working frequency. Central insets

show parity of the electric field in a unit cell for bands 2, 3 at k = 0.

Reprinted with permission from [40], A. L. Efros and A. L. Pokrovsky,

Sol. St. Comm. 129, 643 (2004). © 2004. A. L. Pokrovsky and A. L.

Efros, Sol. St. Comm. 124, 283 (2002). © 2002.

in a homogeneous medium with �m = 12, and �m = 1
(see left inset in Fig. 10). Cartesian coordinates with z-
axis along the cylinder axis are used. The electromagnetic
energy density of s-waves (the electric field E is polarized
in z direction) is:42

W = 1

16+�⊥�

���2n2�

��
� �E�2 (26)

where �⊥ = �xx = �yy and n2 = �zz�⊥. When W > 0, one

obtains �� ��gr · �k� > 0, where ��gr = 2c2�k/����2n2�/��� is

the group velocity. Thus, �> 0, if ��gr · �k > 0, and �< 0, if

��gr · �k < 0. Similarly, for the density of the electromagnetic
energy of the p-waves (the magnetic field is polarized in

z direction), we find � > 0, if ��gr · �k > 0 and � < 0, if

��gr · �k < 0. In other words, in order to obtain propagating
electromagnetic waves, both � and � should have the same
sign that is in fact negative at the 1 point of the first band.

The band spectrum at the 1 point of band 1 can be
written as �2 = �2

1 −4c2k2, where 4 is a parameter close
to 1. Numerical calculations40 provide 4 = 0594 for the
lattice of Figure 10. It follows from the wave equation,
that if ���2 = c2k2, then

��= 1

4

(

�2
1

�2
−1

)

(27)

i.e., �� > 0 for �<�1. From the band calculations40 one
may determine the effective constants:

�=−152

�= 0589

(

1− �
2
1

�2

) (28)

It should be noted that the simple consideration lead-
ing to Eq. (28) is the result of band repulsion at the 1
point. It fulfills at the band maximum where the simple
relation �2 =�2

1−4c2k2 holds, i.e., for �1−�≤6, where
6 is the gap between the bands 1 and 2. Thus one has
��� ≤ 6/�1.

J. Comput. Theor. Nanosci. 3, 1–30, 2006 9
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The frequency dependence in Eq. (28) corresponds to

the dispersion Eq. (8) presented by Veselago.43 More gen-

eral expressions for � and � were proposed by Pendry,22

Shelby and co-workers:44

�= 1−
�2
ep−�2

e0

�2 −�2
e0 + i7�

�= 1−
�2
mp−�2

m0

�2 −�2
m0 + i7�

(29)

where �ep and �mp are the electric and magnetic plasma

frequencies, �e0 and �m0 are the low-frequency edges of

the appropriate bands, and 7 is the damping factor.

3.1. Self-Collimating in Photonic Crystals

The phenomenon of self collimation is due to a peculiarity

of the band spectra of some PhCs. Figure 11a from the

paper45 represents photonic bands of the first two bands

of a Si slab patterned with cylindrical holes arranged on

a square lattice. The Figure 11b and 11c represent the

equifrequency contours of the first (b) and second (c)

bands. As one can see, both contours can be approxi-

mated by squares. What follows from such an approxi-

mation? Let us consider a light beam incident on a PhC

slab. The tangential field components should be continuous

at a plane PhC boundary. However, if this component is

directed along the side of the square in the equifrequency

Fig. 11. (a) The dispersion, ��k�, for the first two bands of the square

PhC. The light cone is represented as unshaded mesh. (b,c) The equifre-

quency contours for the first (b) and second (c) bands. The vectors repre-

sent the group velocity. Reprinted with permission from [45], J. Witzens

et al., IEEE J. Sel. Top. Quant. Electron. 8, 1246 (2002). © 2002.

Fig. 12. Field modulus of a point source and its image across the (a) 8-,

(b) 16-, (c) 32-, and (d) 48-layer photonic crystal slabs. Reprinted with

permission from [46], Z.-Y. Li and L.-L. Lin, Phys. Rev. B 68, 245110

(2003). © 2003.

contour [(111) for the band I or (100) for the band II],

the direction of the group velocity �gr = ���k�/�k (it is

depicted by arrows in Fig. 11) does not depend on the

angle of incidence. This means that the light beam being

non-collimated outside the slab becomes collimated inside.

Figure 12 illustrates this for point source illuminating the

PhC slab. We see that the spherical wave outside the slab

becomes nearly flat inside the slab. Self-collimation is not

favorable for the “superresolution lens,” but the effect can

be used for the construction of small optical devices like

waveguides, splitters etc.47

A rigorous theory of dipole imaging in PhCs has been

developed.48 This shows that the principal contribution to

the far field of the dipole radiating in a PhC comes from

the narrow regions of the equifrequency surface deter-

mined by the observation direction.

In the study47 a PhC structure based on silver nano

wires was used to avoid self-collimation. Far field imag-

ing with the diffraction-limited resolution was achieved.

However, sub-diffraction resolution is possible only in the

10 J. Comput. Theor. Nanosci. 3, 1–30, 2006
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Fig. 13. Basic nanoscale circuits in the optical regime. Left: A non-

plasmonic sphere with � > 0 (nanocapacitor); right: A plasmonic sphere

with � < 0 (nanoresistor). Solid black arrows show the incident electric

field. The thinner field lines together with the gray arrows represent the

fringe dipolar electric field from the nanosphere. Reprinted with permis-

sion from [50], N. Engheta et al., Phys. Rev. Lett. 95, 095504 (2005).

© 2005.

near-field region. Self-collimation of light in a 3D PhC

has been considered.49 In particular, woodpile and inverse

opal PhCs were studied. FDTD calculations show that self-

collimation occurs not only in high-index �n≫ 1�, but in

low-index materials as well.

3.2. Inclusions of Plasmonic Nanospheres;

NIMs for Visible Light

The idea of using of nano size inclusions to change optical

properties of common materials is rather new.50 It is well

known that dielectric permittivity of noble metals at optical

frequencies is negative. This means that plasma frequency

Fig. 14. Parallel and series nanoelements. Top: Two fused semicylin-

ders illuminated by an optical field; middle: Potential distributions around

and within the structure (solid lines show equipotential surfaces); bottom:

Equivalent circuits showing parallel and series elements representing the

fused structure as seen from the outside. Reprinted with permission from

[50], N. Engheta et al., Phys. Rev. Lett. 95, 095504 (2005). © 2005.

Fig. 15. Optical implementation of right-handed and left-handed nano-

transmission lines. Top: Conventional RH and LH lines using the inductor

and capacitor elements; middle: Plasmonic and nonplasmonic nanostruc-

tures playing the role of nanoinductors and nanocapacitors; bottom: Plas-

monic and nonplasmonic layers may be envisioned to constitute layered

transmission lines with forward and backward operation. Reprinted with

permission from [50], N. Engheta et al., Phys. Rev. Lett. 95, 095504

(2005). © 2005.

�p of these metals exceeds the optical frequency � as one

may see from a simple, loss-free Drude model:

�= 1−
�2
p

�2
(30)

The dielectric permittivity of dielectric materials is pos-

itive. Apparently, ordered structures composed of nano

spheres with different permittivity � could essentially

change the properties of the metamaterial. Engheta and

co-workers50 have shown that a nano sphere of a material

with positive � illuminated by a light wave (,≫R, where

, is the wavelength and R is radius of the sphere) behaves

like a capacitor, whereas a nano sphere of a material with

negative � behaves like an inductor (Fig. 13). The com-

posite particles then behave like the parallel or series cir-

cuits of these nano elements (Fig. 14). This finally allows

one to compose compound circuits of such elements. The

structures presented in Figure 15 are right-handed and left-

handed metamaterials, i.e., RHMs and LHMs or NIMs.

4. NUMERICAL MODELING
AND SIMULATIONS

For the design and analysis of NIMs, numerical Maxwell

solvers are highly valuable for two kinds of tasks, (1) the

detailed analysis of various configurations containing

NIMs and (2) the design of metamaterials exhibiting a

negative index of refraction in a certain frequency range.

These two tasks have special challenges. First of all, it is

known from theory that the material properties of NIMs

are dispersive, i.e., frequency dependent. Therefore, task

1 can only be handled with codes that can be applied to

dispersive materials. Secondly, metamaterials with nega-

tive index of refraction that are currently fabricated exhibit

periodic symmetries like crystals. In most cases, the cells

of these metamaterials are arranged on a simple cubic

lattice. Therefore, efficient simulations for task 2 require

J. Comput. Theor. Nanosci. 3, 1–30, 2006 11
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codes that can handle structures with periodic symmetries.

In the following, we review the most prominent Maxwell

solvers with a special focus on how they handle dispersive

materials and periodic symmetries.

4.1. Available Maxwell Solvers

In electrical engineering, many different Maxwell solvers

were developed in the early times of computers, i.e.,

before personal computers became a common tool for all

scientists. Based on the most prominent methods, various

commercial software packages were implemented. Such

software packages are currently widely used in electri-

cal engineering and in physics. Some of them were also

used for the design and analysis of NIMs. Commercial

software packages usually are black boxes tuned towards

user-friendliness and efficiency for common engineering

applications. Therefore, the estimation of the accuracy of

the results is often cumbersome and the solution of special

tasks may be tricky or even impossible. Namely periodic

symmetries may not be handled efficiently by most of the

commercial Maxwell solvers.

The standard formulation of Maxwell’s equations in

engineering separates time and space. Therefore, it is natu-

ral to distinguish Maxwell solvers depending on how they

handle time and space. All early Maxwell solvers assumed

harmonic time dependence, i.e., they worked in the fre-

quency domain. Such frequency domain solvers work with

a complex notation of the electromagnetic field and typ-

ically lead to complex matrix equations obtained either

from a discretization of the entire space (domain meth-

ods) or from a discretization of the boundaries between

domains with homogeneous material properties (boundary

methods). Handling dispersive, i.e., a frequency dependent

material is trivial for such methods and periodic symme-

tries provide no essential problems because the Bloch and

Floquet modes of periodic structures are also defined in

the frequency domain.

In 1966 Yee51 proposed the first time domain code

based on a finite difference scheme. At this time, com-

puter resources (memory and speed) were not sufficient for

solving even relatively simple problems with Yee’s Finite

Difference Time Domain (FDTD) method. With growing

computer power, FDTD became—because of its simple

concept and implementation—the most prominent tech-

nique. Furthermore, time domain variants of techniques

other than finite differences were developed.

4.1.1. Time Domain Solvers

Maxwell’s equations in the original form contain sim-

ple, first order time derivatives. From an approximation

of the time derivatives by finite differences one immedi-

ately obtains a method to compute the field at a certain

time t from the field at previous times, for example, t−
dt, t−2dt, etc., where dt is the finite time increment.

Depending on the order of this finite difference approxi-

mation of the time dependence, one (first order), two (sec-

ond order), or more previous time steps are required. Yee’s

FDTD scheme uses the so-called leap-frog algorithm that

has second order with the same computational costs as a

much more inefficient first order scheme. This makes the

Yee scheme very powerful. Prominent FDTD packages are

XFDTD,52 OptiFDTD,53 Fullwave,54 and Empire.55

Later, the Finite Integral Time Domain (FITD)56 was

developed based on the integral form of Maxwell’s

equations. Prominent FITD packages are MAFIA57 and

Microwave Studio.58 The advantage of FITD is a simpler

derivation of schemes for irregular space discretizations,

but these are rarely used in practice because these schemes

either destroy the second order accuracy of Yee’s leap

frog scheme or cause much higher computational costs.

However, there is no essential difference between standard

FITD and FDTD codes.

The Finite Elements Method (FEM)59 is an old tech-

nique based on space discretization with unstructured

meshes. It was first used for other disciplines of physics

and closely related to variational integral formulations. In

electrodynamics it became highly attractive when vector

elements were introduced. It is important to note that time

domain versions of FEM use a finite difference approx-

imation of the time derivatives, i.e., the handling of the

time is essentially the same as for FDTD. Frequently used

FEM implementations are HFSS,60 Maxwell3D,61 and

FEMLAB.62

Finite Volume Time Domain (FVTD) is a relatively

new time domain technique that was originally intro-

duced in fluid dynamics.63 This method is based on the

volume integral formulation of the curl and div operators

in the Maxwell equations and works on unstructured grids.

It is therefore very close to certain FEM implementations.

To our knowledge FVTD was not yet applied to NIM

problems.

The Transmission Line Matrix (TLM)64 method is a

prominent technique in computational electromagnetics

that essentially replaces field domains by networks of

transmission lines. This has advantages when microwave

circuits with lumped elements are simulated. For NIMs,

special transmission lines were designed and implemented

in the commercial code MEFiSTo-3D.65

Finally, the Method of Moments (MoM)66�67 is based

on well-known Green’s function techniques. Its advantage

compared with the previously outlined methods is that

only the domains that contain field sources (namely cur-

rents and charges) need to be discretized, which removes

problems caused by the discretization or truncation of

infinite space. Therefore, no Absorbing Boundary Condi-

tions (ABCs) are required in MoM implementations. As a

consequence, the MoM system matrices become smaller,

denser, but not very well conditioned. The bad matrix con-

dition causes severe stability problems for time domain

12 J. Comput. Theor. Nanosci. 3, 1–30, 2006
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versions. For this reason, currently no commercial time
domain version of MoM is available.

All time domain solvers exhibit considerable problems
with frequency dependent, dispersive materials. Taking
these into account by using convolution integrals causes
heavy and inefficient codes. Furthermore, the stability of
iterations in time strongly depends on the material prop-
erties. For example, simple lossy material models with
constant negative permittivity and permeability lead to
instability. Therefore, all prominent time domain codes
either do not handle dispersive materials or contain sim-
plified material models such as the Drude67 and Lorentz
model that only provide a reasonable approximation within
a sufficiently narrow frequency band. It is important to
note that—depending on the model parameters—also such
material models may cause instability. Thus, finding appro-
priate model parameters for a NIM is not trivial.

Since NIMs became very fashionable, Drude and
Lorentz models were also implemented in some commer-
cial codes, namely, XFDTD52 and Empire,55 whereas
others (MAFIA57 and Microwave Studio58) only contain
dispersive material models for the permittivity but not
for the permeability. As mentioned above, the TLM code
MEFiSTo-3D65 uses a different approach for modeling
NIMs. In this approach, no explicit dispersive model for
the permittivity and permeability is used. Instead, the
material is approximated by lumped element circuits.

Not only dispersive material properties but although
periodic symmetries of crystal-like structures consider-
ably increase the complexity of time domain implementa-
tions. Since periodic symmetries are not present in most
of the engineering applications, proper implementations of
such symmetry conditions are often missing in commercial
codes. If so, only special cases may be handled with Per-
fect Electric Conductor (PEC) or Perfect Magnetic Con-
ductor (PMC) walls. Therefore, brute-force solutions are
often considered when periodic symmetries are present,
i.e., only a finite block of a metamaterial with a relatively
small number of cells in each direction is modeled. This
leads to time-consuming simulations of limited accuracy.

4.1.2. Frequency Domain Solvers

Theoretically, frequency domain methods have no prob-
lems with dispersive materials and periodic symmetries,
but the latter are often not implemented in commercial
codes because the interest in such structures is not high
enough in standard electrical engineering. Furthermore,
admitting negative values of the permittivity and perme-
ability that is essential for the NIM analysis requires a
careful implementation of numeric details. As a conse-
quence, some codes do not accept negative values for the
permittivity and permeability. For these reasons, frequency
domain solvers are currently much less frequently used
for NIM simulations although they should be much better
suited than time domain codes.

Frequency domain solvers may be based on the same
concepts as time domain codes, namely finite differences,
finite elements, TLM, and MoM. Commercial frequency
domain MoM codes are NEC,69 MiniNEC,70 FEKO,71 and
EMCoS.72 To our knowledge, these codes were not used
for NIM simulations up to now. Finite volume frequency
domain codes are currently not available. Finite differences
and TLM is much less often used in the frequency domain
than in the time domain. Therefore, no important NIM
simulations were carried out with such codes.

It has been mentioned, that MoM has considerably more
dense system matrices than the other methods outlined
above. As a consequence MoM is almost always used in
the frequency domain. A further densification of the sys-
tem matrix is obtained from boundary methods, namely
the Boundary Element Method (BEM)62�73 and General-
ized Multipole Techniques (GMT).74 The former is closely
related to FEM, whereas the latter contains several “semi-
analytical” techniques that will be outlined below. Bound-
ary methods are exclusively used in the frequency domain
and exhibit no problems with dispersive materials and peri-
odic symmetries.

4.1.3. Domain Methods

Domain methods discretize the entire space. Because of
limited memory, the open space must be truncated. This is
done trough Absorbing Boundary Conditions (ABCs)75–78

and similar techniques. Although the ABCs usually take
only a small fraction of the computation time, they are
essential for the quality of the results. For domain meth-
ods with unstructured meshes (FEM and FVTD), the mesh
can often be truncated in such a way that the field prop-
agates nearly perpendicular to the (truncation) boundary.
In this case, even relatively simple ABCs perform well.
For FDTD and FITD with structured meshes a break-
through came with Berenger’s Perfectly Matched Layer
(PML)79 technique.

For crystal-like metamaterials with periodic symmetries,
a single crystal cell may be separated from its neigh-
bor cells by means of fictitious boundaries with periodic
boundary conditions.76�81 As a consequence, the computa-
tional domain becomes finite and no ABCs are required.

The domain discretization leads to grid cells or elements
with an electromagnetic field that is only coupled with a
few neighbor cells or elements. Consequently the system
matrix becomes sparse but relatively big. Big sparse matri-
ces are best solved iteratively—provided that their condi-
tion number is low enough. Since the time discretization
provides implicitly an iterative scheme, the time domain
solution of domain methods becomes very powerful. It
should be mentioned that the sparsity becomes more pro-
nounced for large 3D problems than for smaller 2D prob-
lems (i.e., 3D with cylindrical symmetry). For this reason,
time domain implementations of domain methods are the
first choice for solving large 3D problems.

J. Comput. Theor. Nanosci. 3, 1–30, 2006 13
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The MoM was originally designed as a pure domain

method, but many MoM implementations are dedicated to

idealized, loss-free problems composed of perfect conduc-

tors and dielectrics. As a consequence, the field sources

(currents and charges) are located only on the borders

of the field domains and only these borders need to be

discretized. For periodic structures appropriate periodic

Green’s functions81 may be introduced which allows one

to only model a single, finite cell of the entire structure.

Such MoM codes then behave very much like boundary

methods. They would be well suited for the analysis of ide-

alized metamaterials such as split-ring resonators arranged

on a cubic lattice but surprisingly, MoM codes are cur-

rently rarely used for the simulation of metamaterials.

4.1.4. Boundary Methods

Boundary methods discretize only the boundaries between

domains with homogeneous material properties. Therefore,

these methods are restricted to problems with piecewise

homogeneous material properties. They are characterized

by relatively small, dense matrices that tend to high con-

dition numbers. Such matrices are best handled by direct

matrix solvers. Consequently, boundary methods are most

powerful for not too complicated geometries and espe-

cially for 2D problems. To our knowledge, all boundary

methods implementations work in the frequency domain.

Boundary methods may be subdivided in different types

depending on how the continuity conditions on the bound-

aries are fulfilled. Boundary Element Methods (BEMs)

approximate the given boundaries by polygons (in 2D), by

triangular patches (in 3D), or by more complicated bound-

ary elements. This automatically introduces some errors

in the model. Other methods minimize the integrals over

the weighted residual along the boundaries. Depending on

how they evaluate these integrals, they can be considerably

more accurate.

In boundary methods, the field in each homogeneous

domain is approximated by a series of field (basis) func-

tions that are analytic solutions of the Maxwell equations.

Thus, boundary methods are close to analytic solutions

and can provide highly accurate results when the bound-

aries are not discretized too roughly. For a proper selec-

tion of the basis functions in combination with the method

of weighted residuals, the convergence essentially depends

on the geometric properties of the boundaries: The higher

the order of continuous derivatives of the boundaries,

the faster the convergence. For infinitely many times dif-

ferentiable boundaries, exponential convergence can be

obtained. Such boundary methods may be called “semi-

analytic.” Especially for studying critical new concepts,

such methods are of high value when no analytic solutions

are available.

Many different boundary methods were developed by

the scientific community: BEM,59 the Multiple Multipole

Program (MMP),74�81�82 the Method of Auxiliary Sources

(MAS),83 the Method of Fictitious Sources (MFS),84 The
Discrete Source Method (DSM),85 SPerical Expansions
(SPEX),86 T-matrix,87 etc. Although these methods exhibit
no severe problems with dispersive materials—as all fre-
quency domain codes—and are often used for grating and
photonic crystal problems with periodic symmetries, they
are currently not often used for the design and analysis of
NIMs. This may have several reasons. (1) The implemen-
tation of efficient boundary methods is rather demanding.
(2) Flexible implementations (for example, MaX-188�89)
provide many features that require a profound analytical
knowledge of the user and therefore are much less “user-
friendly” than FDTD and FEM codes. (3) No prominent
commercial codes are currently available.

4.1.5. Special and Auxiliary Methods

Periodic metamaterial structures for photons—including
photonic crystals—are closely related to natural elec-
tronic crystals that were intensively studied in physics.
Methods that were originally designed for solving the
Schrödinger equation for periodic structures can also
be applied for solving the Maxwell equations for peri-
odic structures. Typical examples are Slater’s Augmented
Plane Wave (APW) method90 and the Korringa Kohn and
Rostoker (KKR) technique.91 Note that these techniques
are closely related.92 Using plane waves for describing
periodic problem is very natural. The Plane Wave Expan-
sion (PWE) approach93 essentially takes advantage of the
special Fourier transform and is very useful for the compu-
tation of band diagrams94 but limited to periodic structures.
A PWE band diagram solver complements, for example,
the commercial OptiFDTD53 code.

4.2. Time-Domain Solutions of

Configurations with NIMs

As soon as a metamaterial with negative permittivity and
negative permeability, i.e., a NIM or a LHM exists for
some frequency we can use it in combination with any
natural material or with any other metamaterial. Codes
that can handle NIMs can always also handle ordinary
materials. Thus, the numerical analysis of arbitrary config-
urations causes no essential problem. However, currently
almost all publications still focus on the simplest configu-
rations of NIM prisms95�96 and NIM slabs95–102 because the
details of these structures are still not well understood. The
NIM prisms are mainly used in experiments for the ver-
ification of all-angle negative refraction. The correspond-
ing simulations clearly demonstrate this and provide not
much surprise. NIM slabs provide not only an exception-
ally simple geometry but although very attractive physical
properties, including super resolution. First, it was even
assumed that NIM slabs may be considered as perfect opti-
cal lenses27 which is in fact wrong. Since the debate on
the resolution of NIM slabs is still ongoing and may be
clarified by extensive numerical calculations, we focus on

14 J. Comput. Theor. Nanosci. 3, 1–30, 2006



R
E

V
IE

W

Veselago et al. Negative Refractive Index Materials

the simulation of a NIM slab embedded in free space in

the following.

Any NIM slab model is characterized by only a few

parameters: Its thickness, its material properties, and the

excitation. Therefore, it seems to be easy to provide an

extensive analysis of the NIM slab. In fact, according to

the NIM theory, any NIM must be dispersive. Thus, the

description of the material properties and its handling in

time domain codes become more difficult. Furthermore,

since the slab extends to infinity, one must either truncate it

or implement ABCs that can handle this special case. Since

the latter is rather tricky, truncated 2D slab models of rect-

angular shape are considered in most publications. Thus,

the width of the NIM slab is introduced as an additional

parameter. Since a practical realization of the NIM slab also

requires some truncation, this approach is also natural.

As mentioned before, the handling of dispersive mate-

rial models through convolution integrals is cumbersome

and numerically inefficient, except in very special cases

that are usually implemented in such codes. Therefore,

only Debye, Drude,97 and Lorentz98�99 models are consi-

dered in FDTD simulations of NIM slabs. These models

contain only a few model parameters. For example, the

Drude model is characterized by the plasma frequency

and the collision frequency. Thus, one has 2 real param-

eters for describing the permittivity and 2 real param-

eters for describing the permeability in addition to the two

geometric parameters (thickness and width). Additional

parameters are then required for describing the excitation

(plane wave, Gaussian beam, dipole, etc.). Note that even

more parameters are required for realistic 3D models, for

example, NIM disks of finite size.103 Since the extensive

study of problems with 6 or more parameters is extremely

tedious, most publications consider 2D NIM slab mod-

els with identical Drude or Lorentz models for both the

permittivity and the permeability, illuminated by a single

source. Note that such models are not sufficient for obtain-

ing reliable information on the optical resolution of the

NIM slab.

Commercial codes often do not contain point sources

that would be most reasonable for the study of the super

resolution effect of NIM slabs. Therefore, point sources are

usually approximated by small sources of small but finite

extent. Incidentally, this also holds for domain discretiza-

tion methods operating in the frequency domain. However,

model truncation, approximation of the dispersive material

model, and approximation of the excitation cause inaccu-

racies of numerical simulations.

The most attractive super resolution effect of the NIM

slab is only observed well when the losses of the slab are

sufficiently small and when the slab is impedance matched

to the surrounding medium, i.e., free space. This means

the relative permittivity and permeability of the slab must

be close to −1. Usually, the Drude and Lorentz model

parameters are tuned in such a way, that −1 is achieved for

some frequency. The frequency range where the relative
permittivity and permeability are sufficiently close to −1
is then very narrow. Thus, the time dependence of the exci-
tation must be specified in such a way that its spectrum is
very narrow. Therefore, smoothly ramped sinusoidal sig-
nals are usually considered. For obtaining steady state,
usually extremely many iterations are required because
slow convergence is observed, which is another source of
inaccuracy and of long computation time.

Although time domain simulations are much less appro-
priate than frequency domain simulations, they provide
interesting insight namely in the time evolution of the elec-
tromagnetic field. In the following a few essential time-
domain results are outlined.

4.2.1. Finite Difference Time Domain (FDTD)

Figure 16 shows the electric field intensity at different
time steps obtained from a FDTD simulation performed
with the commercial XFDTD software package. A rectan-
gular NIM area with height (thickness) h= 1, and width
w = 5, is illuminated by a point source at a distance
d = 055, from the upper boundary of the NIM rectan-
gle. The location of the source is marked with O. The
material is approximated by a Drude model in such a
way that the relative permittivity and permeability are very

Fig. 16. Electric field intensity plot of an XFDTD simulation of a rect-

angular 2D NIM illuminated by a point source after 210 iterations (top),

310 iterations (center), and 930 iterations (bottom). The electric field is

polarized perpendicular to the plane shown.
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close to −1 for the main frequency of the signal (ramped
sinusoidal time dependence). One can observe an almost
circular wave front in the upper half space as expected
because the NIM is impedance-matched to the surrounding
free space and therefore no reflections are obtained. Inside
the NIM one can observe a wave with negative propaga-
tion. It seems that the wave front here is much closer to
the source. This impression is wrong. In fact, first much
energy is pumped into the NIM and mainly in the area
around its surface. As a consequence the field near the
wave front inside the NIM (and in the lower half space)
becomes relatively weak and therefore invisible in these
automatically scaled plots. Therefore, it takes quite a wile
until the focusing, i.e., the illumination of the area around
the expected focus points X inside the NIM and F in the
lower half space becomes visible. One can also observe that
the illumination of the focus point F is first relatively broad
and becomes more and narrower as time goes on. After
930 iterations, steady state is still not reached, but with
more iterations one does not obtain essential new effects.

For finding out if this structure provides super resolu-
tion, the following must be done:

(1) steady state must be reached,

(2) the time average of the Poynting vector field must be
evaluated,

(3) the illumination of the focus line (horizontal line
through the point F) must be computed (The illumination
is the component of the time average of the Poynting vec-
tor field perpendicular to the focus line.),

(4) the maximum illumination (in the point F) and the first
local minima of illumination (corresponding to the first
Airy rings) must be detected.

From this one obtains the distance d between the maxi-
mum of illumination and the nearest local minimum. Note
that this is often considered as the resolution of the NIM
slab. For the resolution defined by the Rayleigh criterion
one then should consider a new model with two identical
point sources at identical distance from the NIM surface
and distance d between the two source points. Reaching
steady state and the post-processing mentioned above is
rather tedious for FDTD; therefore we omit this and post-
pone it to our frequency domain solutions.

4.2.2. Transmission Line Matrix (TLM)

Time domain TLM codes work with networks of trans-
mission lines. Standard transmission lines may be approx-
imated by lumped elements, namely inductors (along the
line) and capacitors (parallel to the line). When capacitors
along and inductors parallel to the transmission line are
added, one obtains a TLM model for NIMs.104–106 Such
NIMs could in fact be fabricated in the microwave regime.
It is important to note that the TLM model of NIMs is
based on a possible realization rather than on a more
or less ambiguous material model (Drude or Lorentz).

Fig. 17. Electric field intensity plot of an MEFiSTo-3D simulation of a

2D NIM slab illuminated by a point source to the left side, after 1 ns (top,

left), 2 ns iterations (top, right), 5 ns (bottom, left), and 5 ns (bottom,

right). The electric field is polarized perpendicular to the plane shown.

The NIM transmission line model consists of resonant

circuits. The capacitors and inductors of this model are

evaluated in such a way that the relative permittivity and

permeability become equal to −1 for a certain design

frequency. Because of the resonance characteristics, this

model is very narrow banded and implicitly dispersive.

Therefore, time domain TLM simulations need smoothly

ramped sinusoidal input signals exactly as FDTD sim-

ulations. Losses my introduced in the TLM approach

by adding resistors. For the following simulations with

MEFiSTo-3D, no resistors are introduced, i.e., the mod-

els are loss free. Since MEFiSTo-3D contains absorbing

boundary conditions that work well when the NIM surface

is cut by the absorbing boundary, the slab needs not to be

truncated. Figure 17 shows the corresponding results for

four different time steps for a design frequency of 5 GHz.

Also some differences to the FDTD results are caused by

the different truncation of the model and by the differ-

ent material models, the main effects remain the same,

i.e., much energy is pumped into the NIM until focus-

ing becomes visible and many iterations are required for

reaching steady state. The latter may more easily be seen

from time-averaged field plots as in Figure 18. The fact

that the NIM model is very narrow banded may be seen

from Figure 19 there the design frequency is different from

the center frequency of the input signal. When the relative

difference of the frequency is only 1%, one may observe

substantial differences in the field plot.

4.3. Frequency-Domain Solutions of

Configurations with NIMs

Because of the difficulties with material dispersion, sta-

bility of the time iteration schemes, slow convergence,

and problems of post processing, time-domain codes are
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Fig. 18. Time average of the electric field intensity plot of an MEFiSTo-

3D simulation of a 2D NIM slab illuminated by a point source to the left

side, after 1 ns (top, left), 2 ns iterations (top, right). The electric field is

polarized perpendicular to the plane shown.

not the best choice for the NIM analysis, except when

one is interested in how the electromagnetic field in a

NIM evolves in time after a light source has been turned

on. Theoretically, all frequency domain codes can handle

NIMs with negative permittivity and permeability, but in

practice, there are several reasons why such codes might

fail. This has to do with details of the implementations.

Some implementations assume that the relative permeabil-

ity of all materials is equal to 1, which causes consider-

ably simplifications and faster performance of the code.

Of course, such codes are useless for NIM simulations.

Some implementations assume that all materials are loss

free, which also causes considerably simplifications and

faster performance. Unfortunately, heavy numerical prob-

lems may be observed in NIM simulations when the losses

are set equal to 0. Therefore, such codes should also not

be used.

4.3.1. Domain Methods

As mentioned before, all methods based on a domain

discretization may be implemented either as frequency

domain or as time domain methods. Since Finite Differ-

ences (FD) is most prominent in time domain (FDTD),

one might expect that it is also most prominent in fre-

quency domain (FDTD). In fact the success of FDTD is

mainly due to Yee’s leap frog scheme and its simplic-

ity of implementation. In the frequency domain, FD is

much less advantageous and therefore it is much less often

used than its concurrent Finite Elements (FE). Promi-

nent frequency domain codes that are often used for NIM

simulations therefore are based on FE, namely HFSS,53

Fig. 19. Same as in Figure 18 for a design frequency that is reduced

(left) or increased (right) by 1%.

Maxwell3D,61 and FEMLAB.62 The main reason for using
FEMLAB96�101 is that it may be linked with MATLAB107

codes for easily post processing the results. As mentioned
above, this is important for studying the resolution of NIM
slabs. It should be mentioned that FEMLAB, HFSS108 and
other FE codes may work in both time and frequency
domain, but NIMs can only be handled in the frequency
domain by these codes. Thus, the FEMLAB results pre-
sented by Lih et al.101 are obtained from a frequency
domain calculation although the authors claim that they
used a FE time domain solver.

An important problem of all domain methods is the trun-
cation of space. All commercial codes contain reasonable
implementations of ABCs. Beside this, the main problem
for FE and similar methods with structured grids is the
generation of appropriate grids, i.e., meshes. All modern
FE codes contain some automatic or even adaptive mesh
generators. The quality of the results is heavily affected
by the mesh generators. Figure 20 shows three different
meshes obtained from FEMLAB the initial mesh is not
sufficiently fine for obtaining accurate results, after 3 auto-
matic mesh refinement steps, the mesh is fine enough but it
huge, which affects memory requirement and computation
time. As one can see, the mesh is more or less uniformly
refined and not mainly in those areas where the field is
strong, i.e., along the NIM boundaries and near the focus
points X and F. FEMLAB allows the user to influence the
mesh generation as also shown in Figure 20, but this is
tedious work and requires some experience.

In addition to the mesh generator, the order of the ele-
ments and the matrix solver may heavily affect the accu-
racy of the results. Figure 21 shows that even advanced
iterative matrix solvers (GMRES) may produce obviously
wrong results. This considerably depends on the loss of
the NIM: The smaller the losses, the more problems are
encountered. When the loss tangent for the complex per-
mittivity and permeability is below 0.01 inaccurate results
are also obtained with the direct matrix solvers that are
much more robust. Then, very fine meshes are required
and the computation time becomes extremely long since it
grows with the cube of the nodes of the mesh for direct
matrix solvers. Furthermore, one can see that inaccurate
results are also obtained for first order elements. Note
that the sparsity of the FE matrix decays and the condi-
tion number increases with increasing order. Thus, iterative
matrix solvers would work best for first order elements,
but in this case the number of elements turns out to be too
high for a computation on a personal computer.

Since post-processing is relatively easy with FEMLAB,
we can also compute the illumination along the focus line
(see Fig. 22). From this plot, one then can obtain the
distance d from the maximum peak to the nearest local
minima. As one can see from Figure 22, there is some
noise due to the inaccuracy of the computation and this
noise increases when the loss tangent decreases. Further-
more, the curves shown are not symmetric although the
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Fig. 20. Meshes for a rectangular NIM illuminated by a point source

(below the rectangle) generated by the FEMLAM mesh generator. Top:

Initial mesh, center: After 3 automatic mesh refinements, bottom with

user-guided mesh refinement.

configuration is symmetric. This is also an effect of the
inaccuracy of the results. Both effects cause difficulties
when one wants to automatically extract d by some numer-
ical procedure. When the noise is too strong, such auto-
matic procedures detect local minims at completely wrong
positions. For extensive studies of the resolution of a NIM
slab depending on its size, shape, loss, etc., one therefore
needs either extremely time-consuming FE models or one
must invent and implement sophisticated post-processing
procedures.

4.3.2. Boundary Methods

When one increases the order of finite elements, one can
reduce the number of elements. As a result, the FE matrix
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Fig. 21. Magnetic field intensity plot of an FEMLAB simulation of

a 2D rectangular NIM illuminated by a point source near the bottom

side. The magnetic field is polarized perpendicular to the plane shown.

Top: Second order (quadratic) elements with direct matrix solver, center:

Second order (quadratic) elements with iterative GMRES matrix solver,

standard preconditioner, bottom: First order (linear) elements with direct

matrix solver.

becomes less sparse and its condition number increases,

but at the same time, the accuracy of the result is increased

when the matrix size is kept constant. Finally, one may

obtain a single, high order element for each natural

domain, e.g., one for the NIM and one for the space out-

side. This is nothing else than a boundary method. Bound-

ary methods lead to very small, dense matrices that tend

to be ill-conditioned. When the problem of the condition

number is correctly solved,81 these methods are superior to
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Fig. 22. Illumination (arbitrary units) along the focus line obtained for

the NIM configuration shown in Figure 21. FEMLAB simulation for

different loss tangents ranging from 0.1 to 0.0001.

domain methods as long as models with not very compli-
cated geometry and linear material properties are consid-
ered and especially when high accuracy is desired. For the
following results the MMP solver contained in the MaX-1
code88�89 is applied. This code also provides features for
advanced post processing.

Figure 23 shows the time average of the Poynting vector
field for a NIM slab with rectangular shape and with cir-
cular endings. Since the field along the NIM boundaries is
strong even far away from the source, it is not trivial that
the shape of the ending and the width of the NIM do not
strongly affect its resolution. As one can see, the field near
the endings strongly depends on the shape, but at some
distance it is almost not affected. One also can see that
the field intensity along the NIM boundary becomes very
strong when the loss tangent of the NIM is small. Then,
the field near the boundary may even be much stronger
than near the focus point. This gives a hint to the problems
encountered in the FEMLAB simulation.

For more extensive studies on the NIM slab resolution
one best analyzes the illumination along the focus line, i.e.,
the time average of the Poynting vector component perpen-
dicular to a line parallel to the NIM slab trough the focus
point. Figure 24 shows the illumination for different cases
with a single point source and with two symmetric point
sources, for the electric field perpendicular to the cross
section plane (shown in Fig. 23). For the other polariza-
tion (magnetic field perpendicular), one obtains identical
curves because the relative permittivity is equal to the rel-
ative permeability for both the NIM and the surrounding
free space. As one can see, the shape of the endings play
almost no role (the corresponding curves overlap almost
entirely) and the width of the NIM may be reduced to one
half without a significant change of the illumination near
the focus. Obviously, the NIM loss drastically affects the
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Fig. 23. Time average of the Poynting vector field of a MaX-1 simu-

lation of a truncated 2D NIM slab illuminated by a point source to the

tom side. The electric field is polarized perpendicular to the plane shown.

Only the left half of the (symmetric) structure is shown. Top: Rectangular

shape, loss tangent 0.01 (complex relative permittivity and permeability

equal to −1 ∗ 0501∗ i). Center: Circular endings, loss tangent 0.01. Bot-

tom: Circular endings, loss tangent 0.0001. Arbitrary units are used for

these plots. The wavelength is 1 (arbitrary unit).

absolute value of the intensity. From this, one can see that

a strong absorption is obtained even for rather small loss

tangents of only 0.01. Since the distance of the first local

minimum to the center peak is also much affected by the

loss tangent, it is obvious that the resolution of the NIM

slab decays with increasing loss tangent.

It is remarkable that negative illumination is observed

for some intervals. In these intervals, the focus line is illu-

minated from the wrong side, which indicates that energy

flow from the lateral sides of the slab through the focus

line and then turns back towards the slab in such a way that

it again crosses the focus line, this time from the wrong

side. The question now is whether the “first local mini-

mum” of the illumination near the main peak is the local

maximum of the negative illumination or the location of

the zero illumination, when the resolution is defined using
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Fig. 24. Illumination (arbitrary units) along the focus line for the NIM

structure shown in Figure 23. Black: Rectangular shape, single source,

loss tangent 0.01. Red: Same as black with circular ending. Dark green:

Same as red but width reduced to one half. Light blue: Same as red but

loss tangent reduced to 0.0001. Green, magenta, blue: Same as red but 2

symmetric source points with different locations x = ±a. Note that the

distances between the symmetric sources are d = 2a.

the distance from the main peak to the nearest local mini-
mum. The location of the zero illumination obviously leads
to a smaller distance and therefore to a better value for the
resolution. When we take the bigger value, i.e., d= 053635
for the NIM with loss tangent 0.01 and put two symmet-
ric point sources at x =±xsource =±a=±d/2, we obtain
an illumination along the focus line that clearly exhibits a
single global maximum at the center point x= 0, i.e., from
the illumination of the focus line one obtains the impres-
sion that there is a single points source only. When xsource

is increased, the illumination peak becomes weaker and
broader. For xsource = 0528 �d = 0556� one obtains a very
broad peak. When a is further increased, two equal max-
ima are observed at x = ±xmax. This then indicates that
there are two sources imaged by the NIM, but the distance
between the image points �dimage = 2xmax� is not equal to
the distance between the source points �dsource = 2xsource�.
Instead of a linear dependence xmax = xsource (the magnifi-
cation of the NIM slab is 1)—that would be expected for
a “perfect lens”—one has a nonlinear function xmax�xsource)
that is shown in Figure 25. It can be seen that xmax�xsource)
approaches the line of perfect imaging �xmax = xsource� with
increasing xsource. The curves shown in Figure 25 offer
different ways for definitions of the NIM slab resolution
that are much more reasonable than the distance between
the maximum of illumination and the first local mini-
mum for a single point source. Note that also the distance
between observed maxims of illumination102 for extended
objects or many point sources is misleading because of the

Fig. 25. Location xmax (left) and amplitude amax (right) of the images

(illumination peaks on the focus line) for the NIM slab shown in

Figure 23, illuminated by two symmetric monopoles placed at x =
±xsource. The Location and amplitude are given as functions of xsource for

different wavelengths ranging from 0.5 (darkest curve) to 2.5 (brightest

curve). As in Figure 23, arbitrary units are used.

nonlinear imaging properties (illustrated in Fig. 25 for 2

source points) caused by interactions between the sources

and the NIM.

4.4. Design of Metamaterials with Negative

Index of Refraction

In general, there are many ways to assemble metamateri-

als from “artificial atoms” that play the role of atoms in

natural materials. For obtaining both negative permeability

and permittivity, some resonance effect must be present.

20 J. Comput. Theor. Nanosci. 3, 1–30, 2006



R
E

V
IE

W

Veselago et al. Negative Refractive Index Materials

Resonances are typically observed for “artificial atoms”

that are not small compared with the wavelength. For

shrinking the size of the “artificial atoms” one may take

advantage of techniques used in electrical engineering for

obtaining small lumped elements such as capacitors and

inductors. For example, one can roll in a capacitor con-

sisting of two thin metallic foils. This essentially leads to

so-called Swiss rolls.22 Such structures are only used at rel-

atively low frequencies. At microwave frequencies, capac-

itors and inductors usually are fabricated with micro strip

technology, i.e., as metallic structures on printed circuit

boards. A famous microwave structure for obtaining NIMs

is the split-ring resonator.22 For obtaining a NIM one may

assemble many Swiss rolls, split-ring resonators or more

general micro strip structures that play the role of “artifi-

cial atoms.” Theoretically, this should be in such a way that

the orientations and locations of the atoms are somehow

randomized when one wants to obtain an isotropic NIM

that may be easily be described by a scalar permittivity and

a scalar permeability. This is done, for example, when chi-

ral metamaterials are fabricated by suspending arbitrarily

oriented spiral antennas in some dielectric. The numeri-

cal analysis of such isotropic metamaterials is extremely

demanding. Fortunately, NIM metamaterials usually con-

sist of “artificial atoms” located on a regular (usually

cubic) lattice like crystals. This drastically reduces the

numerical analysis because only one lattice cell (primi-

tive cell) needs to be modeled—provided that the numer-

ical code can handle periodic structures using periodic

Green’s functions81 or periodic boundary conditions.80 In

order to obtain isotropic metamaterial properties on needs

at least three “artificial atoms” oriented in three perpen-

dicular directions for each lattice cell.

Since NIMs at microwaves have periodic, i.e., crystal-

like structure, it is natural to explore Photonic Crystals

(PhCs) with respect to negative index properties. Here, it is

important to note that the cell size of a PhC usually is not

very small compared with the wavelength. Thus, near field

effects occur in the vicinity of a PhC surface. These effects

are not obtained from a simplified model that describes

the NIM by macroscopic material properties like ordinary

materials. This is very important for the analysis of thin

NIM structures. For example, the resolution of a NIM slab

is the better that thinner the slab is and the shorter the

distances of the sources and of the focus line from the

slab are.

Since the NIM slab performs the better the thinner it

is, one finally can consider a slab that is thin compared

with the wavelength. In this case, a quasi-static near field

solution is sufficient. In quasi-static solutions, the electric

and magnetic field components decouple. Therefore, it is

sufficient for the electrostatic solution to have a negative

permittivity only. It is well known that ordinary metals are

described by a negative permittivity at optical frequencies,

near plasmon resonance. It has been shown,97�98 that super

resolution might be obtained with a thin silver film, but

in this case, the slab is no longer a metamaterial, it does

not exhibit a negative index of refraction (therefore polar-

ization plays an important role), and the configuration is

closer to contact lithography than to optical imaging with

a lens.

4.4.1. Split Ring Resonators and Swiss Rolls

The accurate numerical analysis of Swiss rolls with any

Maxwell solver would be extremely difficult because it

requires extremely fine discretization. Fortunately, approx-

imate solutions may be derived.22 However, since Swiss

rolls may be used in practice only at relatively low

frequencies—which leads to a large size of the experi-

mental setup—split ring resonators and similar printed cir-

cuit structures operating at microwaves are much more

attractive.

Split ring resonators consist of two metallic micro strip

rings with a slit. They may have very different shape. Cir-

cular and square rings are most simple. Even these simple

configurations have several parameters (width and height

of the micro strips, distance between the rings, size of the

slit, material properties of the rings, substrate, and sur-

rounding medium) that need to be tuned in such a way

that the desired NIM property is observed at some fre-

quency. The split ring resonator may be considered as a

small antenna that is responsible for the negative permit-

tivity. A second (wire) antenna must be combined with for

also obtaining negative permittivity. This contributes sev-

eral additional model parameters. Because both antennas

are resonant, the NIM becomes very narrow banded and

the design and fabrication need to be highly accurate.

For the analysis of a single split ring resonator, first

the FITD code MAFIA57 was applied.1 Later, a FDTD

code was applied to the simulation of planar stacks of

square split rings with wires.111 Then, the FDTD code

Fullwave55 was used in conjunction with the Transfer

Matrix Method (TMM) for a similar analysis with both cir-

cular and square split rings.112 From the theoretical point

of view, existing FITD and FDTD codes that do not con-

tain implementations of periodic boundary conditions and

cannot accurately handle thin metal strips, are certainly not

the first choice. Brute-force computations with standard

FDTD codes provide very limited accuracy that is not suf-

ficient for the accurate analysis and optimization of NIMs

based on arrays of split ring resonators and wire antenna.

Currently, one therefore can still hope that much better

NIMs may be designed by proper numerical optimizations,

although these are expected to be extremely demanding.

4.4.2. Transmission Line Networks

NIMs made of split ring resonators and wire antennas may

be considered as arrays of resonating antenna structures.

An alternative is to fabricate arrays of resonating circuits
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in a network of transmission lines.102�105 This does not

only allow one to simulate NIMs using the TLM method

but also to fabricate the corresponding transmission line

networks using essentially the same technology of printed

microwave circuits as for split ring resonators. Of course,

it is most natural to simulate such circuits using TLM

codes106 such as MEFiSTo-3D.65 Beside this the problems

of structure optimization are the same as for split ring

resonators.

4.4.3. Photonic Crystals

In 2000, anomalous refraction properties of Photonic Crys-

tals (PhCs) were reported based on a numerical analysis

with a transfer matrix method.37 Later, 2D and 3D FDTD

simulations were performed to analyze a PhC slab with all-

angle negative refraction.113�114 In these simulations, the

source was at a distance from the PhC slab that was shorter

than the lattice constant. Therefore, channeling rather than

isotropic wave propagation is observed in the PhC.46 In a

more careful study115 superlensing of a PhC without the

restriction of a short distance between source and PhC sur-

face was demonstrated from numerical simulation. In this

publication, the PWE approach93 was usually used for the

analysis of the band diagrams of the PhCs involved, but

the finite PhC slab was then simulated using FDTD.

Since standard PhCs consist of two simple dielectrics

with low loss, such configurations can be simulated with

any numerical method for solving Maxwell’s equations116

and any commercial software described in this section.

The main problem of PhCs for superlensing is the lat-

tice constant that is not much smaller than the wavelength,

which certainly limits the resolution. By considering a PhC

slab illuminated by two symmetric point sources, spatial

resolution 0.4, was reported.115 Although this is encour-

aging, it is not really far away from the optical limit 0.5,.

Currently, it is not known how much the resolution of

a PhC slab may be improved. This would require exten-

sive simulations and optimizations. Since metals provide

negative permittivity at optical frequencies “for free,” also

metallic and metallic-dielectric PhCs should be analyzed

carefully as NIM candidates. For such investigations, fre-

quency domain methods are favorable because they exhibit

fewer problems with the dispersion of metals.

4.5. State of the Art

Currently, many different numerical methods and commer-

cial codes may be used to analyze NIM structures and to

design metamaterials with both negative permittivity and

permeability. Despite of this, mainly simplified 2D models

of a few NIM structures (namely, prisms, slabs, and simple

lenses108) with a few specific parameters were published

and extensive studies of 2D or even 3D NIM structures are

still missing. Thus, only a few elementary effects are well

known, but the potential of NIMs for practical applications

with more complex geometry has not been explored at all.
The main reasons for this are the high computational effort
for complicated structures, the requirement of advanced
post processing routines for extensive studies, and maybe
also the lack of experience with commercial software of
scientists. For the design of metamaterial structures with
NIM properties, the situation is even worse. Here, opti-
mizations based 3D models would be required for obtain-
ing high quality metamaterials. Numerical optimizations
may require the numerical analysis of thousands of dif-
ferent structures. Furthermore, optimization procedures are
heavily disturbed by inaccuracies of the field solver. Thus,
field solvers that are fast and accurate at the same time are
required.

5. FABRICATION OF NIMS

The experimental concept to fabricate materials with neg-
ative permittivity at microwave frequencies from metallic
wires was proposed by Pendry and coworkers in 1998.21

In 1999, the same group22 proposed to take advantage of
the inductive response of collective motion (resonance) of
electrons in non-magnetic conductive elements, so-called
Split-Ring Resonators (SRRs), to also obtain negative per-
meability. This opened the way to NIMs.

Currently, we can distinguish two kinds of materials
exhibiting a negative refraction: Composite MetaMateri-
als (CMMs) and Photonic Crystals (PhCs). CMMs exhibit
simultaneously negative permittivity ��′ < 0� and permea-
bility ��′ < 0� within a certain frequency range. This
immediately leads to a negative index of refraction �n′ <
0�. Dielectric PhCs are composed of materials with pos-
itive �′ and �′, but exhibit negative refraction because
of peculiarities of dispersion characteristics at some
frequencies.

5.1. Composite Metamaterials

CMMs consisting of artificially designed arrays of LC
oscillators, mounted on electronic circuit plates, capable
to interact with external electromagnetic fields, were first
realized for frequencies around 10 GHz (,≈ 3 cm).117

Two fabrication methods are used for the most of the
CMMs exhibiting NIM properties: (a) combinations of
conductive elements on a substrate and (b) Transmission
Line (TL) configurations. The fabrication of CMMs with
a negative index of refraction for 1D1 and 2D9�44 propa-
gation has been reported. First, the SRRs combined with
straight wires were fabricated using printed copper cir-
cuits. The very specific geometry of the SRRs is shown in
Figure 26. The splits in the rings provide resonance at a
wavelength much larger than ring diameter and the smaller
oppositely oriented ring inside the bigger one provides a
large capacitance. When many SRRs oriented in three dif-
ferent directions in space and positioned on a cubic lattice,
a metamaterial with effective permeability �eff is obtained.

22 J. Comput. Theor. Nanosci. 3, 1–30, 2006
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Fig. 26. Design and resonance curve of individual cupper split-ring res-

onator (SRR) for construction of 1D CMM. Resonance at ≈4.845 GHz

was observed. Dimensions: c = 058 mm, d = 052 mm, r = 155 mm.

Reprinted with permission from [1], D. R. Smith et al., Phys. Rev. Lett.

84, 4184 (2000). © 2000, American Physical Society.

For �eff one obtains approximately:22

�eff = 1− F�2

�2 −�2
0 + iw1

(31)

where F is the fractional area of the unit cell occupied
by the SRR, 1 is the dissipation factor. For obtaining a
NIM the SRRs are combined with a thin wire medium that
provides negative permittivity.

Microwave scattering measurements were performed
with a 2D square array of SRRs combined with wire ele-
ments fabricated with a period of 5.0 mm using commer-
cially available materials. The 2D isotropy of this NIM was
achieved by placing the SRR elements along two mutu-
ally perpendicular directions as illustrated in Figure 27.9�44

Fig. 27. Design of the unit cell of SRR used for construction of 2D

CMM. Resonance at GHz was observed. Dimensions: c = 0525 mm, d=
0530 mm, g = 0546 mm, w= 2562 mm. Unit cell forms lattice constant of

5.0 mm and consists of 6 copper SRR and 2 copper wire strips (0.25 mm

thick) mounted on 0.25 thick fiberglass G10 substrate. Wires are 1 cm

long and located on the other side of substrate. Substrate plates make an

angle of 90�. Reprinted with permission from [44], R. A. Shelby et al.,

Appl. Phys. Lett. 78, 489 (2001). © 2001, American Institute of Physics.

Fig. 28. Prototype of large periodically loaded TL CMM, containing

two regions with negative index of refraction (21 × 40 cells, 105 ×
200 mm) and PRI properties (21×21 cells, 105×105 mm). The square

inset shows scheme of the unit cell of the size d for the 2D transmission

line NIM material. The real unit cell structure is shown on the round

insets. The near-field detection probe is also shown. This media may be

considered as homogeneous if the unit cell constant d is much smaller

than an external wavelength. Reprinted with permission from [119], A. K.

Iyer et al., Optic Express 11, 696 (2003). © 2003, Optical Society of

America.

Other modifications compared to the first study1 comprise
the reduction of SRR dimensions for X-band microwave
frequencies, the placement of wire strips behind substrate
of the SRR, increase of the density of the thin wires to
2 per unit cell. Photolithography technique was used for
printing the SRRs and the wire elements on the two sides
of the substrate plates. It is important to note that the SRRs
and the wire elements must provide negative permeability
and negative permittivity at overlapping frequencies.44

The alternative principle of the Transmission Line (TL)
approach and the corresponding equivalent material
parameters ���� and ���� are discussed in the paper.118

The large periodic array119 shown in Figure 28 is an exam-
ple of this approach. The equivalent material parameters
can be obtained from Eqs. (32):

�N ���= �P −
1/g

�2C0d
� �N ���= �P −

g

�2L0d
(32)

where �P and �P are the intrinsic material parameters of
the host transmission line medium (that contributes to pos-
itive parameters of the NIM material). The reactive inclu-
sions C0 and L0 describe negative frequency dependent
contributions. The NIM unit cell consists of a microstrip
grid loaded with surface-mounted capacitors and inductors
embedded in the substrate. The whole device was mounted
on a ceramic substrate ��r = 2594� of height h= 15524 mm
and consists of regions with negative and positive index
of refraction. Both media are built on a square grid of
w= 400 �m wide microstrip lines with separations of d=
5 mm. The media may be considered as homogeneous if
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the unit cell constant d is much smaller than an exter-
nal wavelength. The measured dispersion characteristics
revealed a well-defined region of backward-wave prop-
agation in the range from Bragg frequency (960 MHz)
to approximately 2.5 GHz, exhibiting NIM properties, in
good agreement with the predicted properties for the cor-
responding infinite structure, as shown in the inset of
Figure 28.

An interesting approach for the verification of the
regions of negative permeability and negative permittiv-
ity by a comparison study of the transmission spectra of
CMMs fabricated using SRRs and CSRRs (closed split-
ring resonators) was suggested.120 SRR units made of thin
copper layers on a circuit board with �= 454 and thickness
d = 1566 mm were arranged in the following way to pro-
vide a rectangular lattice with lattice constants ax = ay =
858 mm, az = 655 mm: 5, 15, and 18 units along x, y, and
z directions respectively.

Using a photo-proliferated process, the planar SRR
microstructures on a 400 �m thick substrate were fab-
ricated with LC resonance at , ≈ 1 THz (≈300 �m
wavelength).121 The 3 �m thick Cu SRR elements formed
a periodic structure with a lattice constant in the sub-
wavelength range (,/7, , is the wavelength of external
field at resonance frequency) to enable active properties.

Equation (31) provides the effective permeability for
SRRs. Thin wire structures—with constrained electron
transport along the 3D lattice—are characterized approxi-
mately by the effective permittivity

�eff = 1−
�2
p

�2
(33)

where the plasma frequency �p can be reduced to the
infrared and microwave region by varying the concentra-
tion and thickness of the wires that form the lattice.21�122

In practice, the metallic SRR element structures on a
dielectric support may probably not be scaled down to
achieve the NIM at infrared or even visible optical fre-
quency. A new CMM design was successfully applied
for the fabrication of a nanostructured array demonstrat-
ing strong magnetic activity and negative permeability in
mid-IR.123 This new CMM consists of arrays of nano-
sized gold staples on a ZnS dielectric layer above a gold
layer on a substrate. The unit cell size a = 600 nm is
much smaller than experimentally observed resonance in
the range of �= 4–7 �m. Interferometric lithography was
applied for the growth of Au staples with a pitch grating
of 600 nm. The ZnS was chosen due to its transparency
for wave lengths between 2 and 10 �m. Modifications of
the designed structure were studied: The reduction of the
pitch to 180 nm, accompanied by a resonance shift to ,=
1530 �m, and the change of the dielectric material (SiO2)
to further increase the capacitance.

Nanofabrication was used in order to fabricate metama-
terials with LC resonance at ≈100 THz (≈3 �m).117 Gold
single split-ring resonators with size s = 320 nm and

thickness d = 20 nm were arranged on periodic square
arrays with lattice constants a = 450–900 nm (56× 56 =
3136 SRR elements). All elements were smaller than the
resonance wavelength of ,= 3 �m. Coupling of the elec-
trical component of the external field with the capaci-
tor leads to an excitation of the LC resonance at normal
incidence. Comparisons of the transmission spectra with
simulations indicate the frequency range where the mag-
netic field coupling with the LC resonance causes negative
permittivity.

The realization of Pendry’s idea22 at visible light fre-
quencies requires scaling the size of the unit cell down to
100 nm and the size of critical features down to approx-
imately 10 nm, which is technologically extremely
demanding, leaving questions on the interaction of visi-
ble light with material aside, which could result namely in
too big losses. Nevertheless, Grigorenko and co-workers
have succeeded to make an important step towards NIMs
at visible frequencies.124 Using high-resolution electron-
beam lithography, they fabricated media on a surface area
S ≈ 0.1 mm2 with negative permeability in visible using
intrinsically non-magnetic material. The asymmetric plas-
mon resonance was created by a pairs of short Au pillars
(Fig. 29) used as basic resonators, which is an essential
simplification of the double split-ring geometry used at
microwaves. Such simple resonator geometry may not only
lead to loss reduction (due to a smaller number of reso-
nant modes), but also opens the way to current lithography
methods for the fabrication of NIMs in the visible range.
After the optimization of the microfabrication process and
preliminary numerical calculations, a non-cylindrical pil-
lar shape leads to more efficient incident light coupling.
At a lattice constant of a = 400 nm, Au pillars of height
h = 80–90 nm and diameter of d ≈ 100 nm were cho-
sen. This cell geometry provides plasmon resonance at red
light (, ≈ 670 nm). Furthermore, NIMs with other pil-
lar geometries were also fabricated. The geometry was

Fig. 29. SEM pattern of medium (array of Au pillars) with magnetic

response at optical frequencies. Reprinted with permission from [124],

A. N. Grigorenko et al., J. Petrovic. Nature 438, 335 (2005). © 2005,

Nature Publishing Group.
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optimized to provide efficient electromagnetic interaction

within the pillar pair. The symmetric and anti-symmetric

resonances for individual pillars and pillar pairs could

be treated as plasmon resonances in nanoparticles. In the

reflection spectra at normal incidence for TM and TE

polarizations, “green” and “red” resonances are observed

during the rotation of the samples, dependent on the struc-

ture of the fabricated media. As the authors have pointed

out, though the fabricated structures exhibit both negative

�′ and negative �′ within the same , range (for exam-

ple �′ ≈ −057 and �′ ≈ −053 at the green resonance),

but � has a rather large imaginary component that pre-

vented the observation of negative refraction.124 Further-

more, a remarkable optical impedance matching effect was

observed, which is characterized by the total suppression

of the reflection from the interface between two media

with different refraction indices. This leads to total invis-

ibility of the structured films at green frequencies at TM

polarization of the incident light.

5.2. Photonic Crystals

The negative refraction can be realized also with pho-

tonic crystals (PhC) that—in contrast to the CMMs—are

inhomogeneous media with a lattice constants compara-

ble to the wavelength. Although both � and � are positive

in dielectric PhCs, typical NIM phenomena of negative

refraction and superresolution can be expected from pecu-

liarities of the dispersion characteristics of certain PhCs.

The main advantage of PhCs over CMMs currently is that

they can be more easily scaled to 3D and adapted to visible

frequencies.125

Negative refraction at microwave frequencies was

observed in both dielectric and metallic PhCs, for exam-

ple, using a square array of alumina rods in air.126 Trans-

mission measurements confirmed negative refraction using

the interfaces of the PhC in the 1–M direction and indi-

cated the maximum angular range of negative refraction at

13.7 GHz. 2D and 3D PhCs consisting of alumina rods

were used for the demonstration of NIM in the microwave

and millimeter wave ranges.127 Two techniques, manual

assembly of alumina rods and rapid phototyping, were

used in this study for fabricating low-loss PhCs, investi-

gated in the wave range from 26 GHz to 60 GHz. Nega-

tive refraction was shown both in FDTD calculations and

transmission mode experiments on a 2D lattice.

Negative refraction in a metallic PhC with hexagonal

lattice acting as a flat lens without optical axis (Pendry

lens) at microwave frequencies was reported at 10.4 GHz

for TM mode.125 This PhC crystal consists of cylindri-

cal Cu rods of the height h = 1526 cm and radius r =
0563 cm, with r/a= 052 (a is the lattice constant) forming

a triangular lattice. Furthermore, cylindrical Cu tubes of

the height h = 60 cm and outer radius r = 0563 cm were

arranged on a triangular lattice with the same r/a ratio

of 0.2. Negative refraction was found for both TM and TE

mode propagation, between 8.6 and 11 GHz (TM mode)

and between 6.4 and 9.8 GHz (TE mode). Extensive

experimental, band-structure, and simulations results were

achieved,125�128 which opens the way to a variety of well

tailored PhC structures. The advantages of metallic PhC

were reported to be highest dielectric constants, low atten-

uation, and the possibility of focusing.125

An interesting PhC consisting of Al2O3 rods (dielectric

constant �′ = 9, radius 0.316 mm, height 1.25 mm) on a

square lattice with r/a= 05175 and 0.35 was fabricated for

measurements of lowering group velocity.129 For the mea-

surements of the group velocity �g , the PhC was arranged

as parallel plate waveguide with TM mode and with elec-

tric field parallel to the Al2O3 rods. It was noted119 that the

negative refraction in this PhC proceeds in higher (valence)

bands and does not interfere with the Bragg reflection and

transmission efficiency.

The experimental demonstration of the light focusing

due to negative refraction at infrared frequency was done

using a PhC with air holes on a hexagonal lattice in a low-

index contrast InP/GaInAsP/InP slab (lattice constant a=
480 nm, hole radius r = 125 nm) at the telecommunication

wave length of ,= 1555 �m.130 The PhC pattern was fabri-

cated using electron-beam lithography and chemical etch-

ing. The thickness of the InP top layer and intermediate

layer is 200 nm and 420 nm respectively. Another example

is a PhC composed of metallic resonators structured on a

nanoscale.122 A 2D unit cell consists of resonant structure

with square Ag columns of side length a = 600 nm. An

important point is that the external free-space wavelength

at the resonance frequency is much larger than the length

scale of the unit-cell dimensions. This allows one to con-

sider the designed material as effectively homogeneous—

which is not the case for usual PhCs. The negative perme-

ability in these nanomaterials is confirmed by numerical

simulations.

5.3. Applications

Many NIM concepts were suggested but only a few were

realized up to now. One of the obvious reasons is the diffi-

culty of the fabrication of artificial materials with sufficient

homogeneity. Current NIMs rarely achieve a wavelength

to structure unit ratio better than 10:1.131

The concept of composite right/left-handed (CRLH)

metamaterials was suggested by Caloz and Itoh.132 The

transmission line theory (TL) approach for CRLH mate-

rials can be demonstrated by several already realized or

at least simulated microwave applications:132�133 (1) Dual-

band components capable to reduce the number of compo-

nents in wireless communication systems. By replacing the

,/4 RH TLs of Branch Line Couples (BLCs) and ring cou-

plers with CRLH TLs, the harmonic operational frequency

limitation can be overcome. (2) New antennas include zero

order resonance (ZOR) antennas of physical size less than

,/2 and 1D or 2D (depending on the unit cell structure)
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Fig. 30. Possible design for resonant chiral structure. Condition of

strong chiral effect tan�?�≈ +r/,0 at r ≪ ,0 leads to small values of ?.

Reprinted with permission from [131], J. B. Pendry, Science 306, 1353

(2004). © 2004, Science Permissions Department.

frequency scanned Leaky Wave Antennas (LWAs) capa-
ble of continuous backfire-to-endfire scanning. The CRHL
LWA radiates backward in the LH region and forward in
the RG region with broadside radiation because CRLH TL
supports an infinite wavelength with non-zero group veloc-
ity at the LH/RH transition point. (3) Both flat and curved
microwave lenses that exhibit a negative refractive index
at a certain frequency and that are not possible with RH
materials can be realized by placing 2D CRLH metamate-
rials between two parallel RH plates.

The introduction of chirality might result in negative
refraction of only one polarization. This could simplify the
NIM design and lead to the extension of negative refrac-
tion field.131 The example of practical realization of reso-
nant chiral structure is shown in Figure 30.

New ideas on NIMs that are still on the level of con-
cept formulation are worth mentioning because they may
lead to principally new electromagnetic devices,132 namely,
an effectively homogeneous medium for backward-wave
propagation, sub-wavelength diffraction, and enhancement
of evanescent waves. The backward wave propagation in
NIMs with opposite directions of the group and phase
velocities provides interesting new applications including
delay time filters and phase shifters from microwaves to
optical frequencies.129

The fabrication of metamaterials with magnetic
response at THz and optical frequencies can be used for
such applications as compact cavities, adaptive lenses, tun-
able mirrors, security imaging, biomolecular fingerprint-
ing, remote sensing.121 Different elements like metallic
wires and grids with the dimensions of order a wavelength
are already used in the THz optics.

Low group velocities of c/50 (in a CMM) and c/10
(in two different PhCs) were measured experimentally.129

The CMM, consisting of interleaved parallel arrays of
SRRs and wire strips (WSs) was similar to those reported
previously.9�44 The applied fabrication method of the Al2O3

PhC was described in Section 5.2. Earlier, slow �g of the
order of c/3 had been observed in Si/SiO2 and AlGaAs-
based photonic crystals.134�135 The measured low �g (in the
frequency window of 9.9–10.3 GHz for CCM, 7–8.5 GHz
and 7.7–8.5 GHz for PhCs with different r/a ratio) can be
explained by the character of the wave dispersion that can
be determined from the band structure.129 The key feature
of the PhC band structure is the flattering of the band at
the band edges, where �g is expected to be low. Strong
reduction of the �g is due to strong modulation of the
dielectric contrast (9:1 in fabricated PhC compared to 2.5:1
in colloidal polystyrene PhC). Even lower group velocities
are expected for CMMs and PhCs with low transmission
loss. The most important applications of low group veloc-
ity materials are delay line filters and phase shifters that
are not possible with conventional materials.

Before discussing the experimental results of the flat
NIM lens, illustrated in Figure 7, we come back to the
question if the term “super lens” is really appropriate. As
mentioned above and as pointed out earlier by one of the
authors of this paper129 the NIM slab does not correspond
to the definition of a lens as an instrument of geomet-
rical optics (a > , > $, a = b+ c). The “superlens” is
rather some optical matching device that can transfer the
image with size much smaller than , from one point of
space to another.136 In the following, we are using the term
“super lens,” keeping this in mind and remembering that
the “super lens” effect only is observed when the width of
the NIM slab is small enough.

The curved plano-concave lenses with negative index of
refraction in the microwave range were designed using both
types of NIM studied to date: CMM and PhC. The CMM
lens with curved geometry was operating at 14.7 GHz.
It consisted of metallic wires and SRRs assembled on
a periodic cell structure (Fig. 31).137 Good agreement
between the simulation and measurement was reported.

The second example of an experimental NIM lens
study is the imaging of far-field microwave radiation
using a dielectric photonic crystal (PhC, Fig. 32).138 A
frequency-dependent negative refraction index n��� < 0
was observed. Lenses with curvature radii of 13.5, 17.5,
and 22 cm were implemented. The corresponding PhC
consists of a periodic array of Al2O3 rods (�= 859) in air,
arranged on a square lattice with the ratio r/a = 05175.
Using equation n= 1−R/f (R is the radius of the curva-
ture and f is the focal length), n = −054 at 9.25 GHz is
obtained for this lens. Focusing by the a plano-convex lens
was achieved for n > 1, R < 0, and for a plano-concave
lens for n < 0, R > 0. NIM lenses have a larger radius of
curvature for any value of n < 0 (stronger focusing char-
acteristics) and correspondingly reduced aberration in the

26 J. Comput. Theor. Nanosci. 3, 1–30, 2006



R
E

V
IE

W

Veselago et al. Negative Refractive Index Materials

(b)

(a)

0.251 cm

Fig. 31. Composite metamaterial (CMM) lens operating as optical ele-

ment with negative index of refraction. Arrangement of 4 cells along x

and varied thickness along y. The lens was fabricated in a cylindrical

geometry. (a) Unit cell structure of lens based. (b) Plane-concave struc-

ture of the lens constructed from flat unit cells. Lens aperture is 20.3 cm,

radius of curvature is 12 cm. Reprinted with permission from [137], C. G.

Parazzoli et al., Appl. Phys. Lett. 84, 3232 (2003). © 2003, American

Institute of Physics.

image compared with positive index lenses. Besides, the

NIM lens has much lower weight than a conventional lens

of the same focal length what could be advantageous for

space applications. Notice that the refractive index achiev-

able in a PhC allows for further controlled change of the

focal length and could lead to further reduction of the

dimensions of the optical systems.138

It is important to note that the bandwidth of the PhC

lens (2 GHz, or 22.7% of the operation range) is much

larger than the bandwidth of the CMM lens, due to weaker

dispersion.138

Fig. 32. Scheme of microwave focusing device (plano-concave lens)

based on photonic crystal (PhC). An X-band waveguide, used as a

microwave source, was kept at a distance of 150 cm from the flat lens

surface. The sensor was mounted to a XY translation stage, scanning for

the electric-field component of the relevant microwave range. Reprinted

with permission from [138], P. Vodo et al., Appl. Phys. Lett. 86, 201108

(2005). © 2005, American Institute of Physics.

Progress in the design of graded negative index of

refraction (GRIN) lenses was reported.139 Cylindrical and

more complex spherical GRIN lenses were fabricated

using a NIM slab with graded index of refraction at

17 GHz. Ray tracing calculations and MicroWave Studio

simulations were used to determine the refraction gradient.

The difficulties in NIM design in infrared (IR) and

visible light essentially limit the NIM applications. The

limited success in the fabrication of optical LHMs was

stressed also in the press-release “List of recent research

results in the area of materials” by the EU network

of excellence METAMORPHOSE.140 The development of

these fabrication methods was called as fundamental pri-

ority for device-based research in the field of materials

organized for radio, millimeter wave and photonic super

lattice engineering. Only a few of successful experimen-

tal results could be mentioned. One example is a periodic

gold pattern with lattice constant 600 nm separated by

a ZnS dielectric layer, showing resonance at ∼55 THz

(mid-IR).123 In the second example,110 the sub-diffraction-

limited imaging with a silver super lens slab assisted by

surface plasmon excitation was reported. The superlensing

system in the second example has the following structure:

50 nm thick patterned Cr structure (illuminated by a plane

wave) over a 40 nm thick PMMA spacer on a 35 nm

thick Ag film (playing the role of the “super lens”) that

directly is placed on a 120 nm thick photoresist. Using UV

light of , = 365 nm, the image of 60 nm nanowires on

120 nm pitch was demonstrated, or ,0/6 or ,/4—because

the index of the PMMA, lens, and photoresist was close to

1.5. Note that a second PMMA spacer between lens and

photoresist was missing. The calculated transfer function

of this silver superlensing system allows to estimate, that

a range of evanescent component from 2 to 4 k0 can be

enhanced and recovered by plasmon excitations. The thick-

ness of silver layer d is of great importance: When d >

40 nm, the enhancement is damped by material absorption.

Although promising results were achieved, many questions

are open: How can the observed significant losses be elim-

inated? What is the dependence of the transfer function

on the thickness of the silver layer and on the PMMA

spacers?

The phenomenon of superlensing becomes very promis-

ing, when considering the needs of increased optical stor-

age density in digital recording and in the computer

storage. These trends are obvious in the recent develop-

ment from “red” (normal DVD, ,= 650 nm, NA = 0.6) to

“blue” optical discs (BD, ,= 405 nm, NA = 0.85).141 The

necessity to use shorter wavelengths to increase the storage

density can be illustrated by the diffraction limit problem:

$ ≈ ,/�n sinAmax�
2 = ,/(NA)

2
, where $ is the depth of

focus, n is refraction index of media, and NA is numerical

aperture. The $ value corresponds to the diameter of the

smallest resolvable mark. But the image resolution in con-

ventional optical storage is limited by the diffraction limit
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and search for new recording technologies is in progress.
The application of “super lens” effects for high-density
optical near-field recording with no diffraction limitation
was first considered in the paper142 where a periodic mul-
tilayer of alternating ZnS as high-refractive-index mate-
rial �n1 = 2535� and MgF2 as low-refractive-index material
�n2 = 1538� was used. A focus-like effect was observed.
The separation between the Ag pinhole and the slab was
150 nm, , was varied between 120 and 450 nm.

The fabrication of NIMs at optical frequencies encoun-
ters basic problems due to difficulties in the selection
of the resonator material. Several approaches to solve
this problem were suggested,143 among them: (a) Pho-
tonic NIMs composed of split-ring resonators with nano-
dimensions,144 (b) nanomaterials consisting of closely
packed particles containing an induced magnetic moment
and exhibiting high-order multipole resonance,145 (c) nano-
inclusions in resonating plasmonic nanospheres, (d) thin
nanocrystalline layers exhibiting surface plasmon reso-
nance. The last approach was realized experimentally145

using a thin nanocrystalline silver layer. It is important to
stress that surface plasmon effects in thin nanocrystalline
image-forming (aperture) AgOx layers (15 nm) were suc-
cessfully realized already in super-resolution near-field
structure (super-RENS) discs. SiC and related materials
can be considered as promising materials.146 SiC has �< 0
around 10 �m (surface polaritons) and could be used for
fabrication of NIM at 1 �m (the cell has to be of the size
of 100 nm in this case).

Materials for reversible optical storage recording are
also extensively studied.141 Several materials were sug-
gested, among them (a) GeSbTe phase change alloys
exhibiting reversible crystal-amorphous phase transforma-
tions, (b) nanocrystalline CdSe films showing tunable
reversible photoluminescence, (c) nanocrystalline FePtAg
alloys exhibiting transitions fcc → tetragonal (magnetic
recording), (d) BeFeO, showing melting and crystalliza-
tion without large deformation. Incidentally, there are sev-
eral equally important requirements for the material of
the recording layer, including: (a) solid state transitions
have to be reversible, (b) functionality of all three regimes:
Recording (900–1000 K), erasing (700–800 K), readout
(low-power laser beam), (c) recorded marks have to be
stable, but readily and quickly erasable, (d) Single-phase
character of the material.

6. CONCLUSION AND OUTLOOK

We have outlined the most important theoretical, histor-
ical, and experimental aspects of negative index materi-
als (NIMs), including a proper mathematical description
of fundamental physical laws and equations that may be
applied when NIMs are present. In addition to differ-
ent types of structures that provide NIM properties we
also considered structures of photonic crystals that are
not pure NIMs but exhibit negative refraction and similar

phenomena that are also observed in NIMs. Theoreti-

cal studies are currently often complemented by numer-

ical simulations for the detailed analysis of structures

with complicated geometry. The corresponding numerical

methods were compared and applied to various problems,

with a special focus on the NIM slab configuration that

promises to overcome the diffraction limit and therefore is

the most prominent NIM application. The Maxwell solvers

used for the numerical NIM analysis also play an impor-

tant role for the design of the structures that establish a

NIM, for example, wires and split ring resonators that were

used in the first NIMs. Linked with appropriate numeri-

cal optimizers, such Maxwell solvers are essential for the

design of improved NIM structures. Since the currently

available NIMs are still far away from desired NIMs for

practical use and because promising NIM structures may

be highly complex, computer-aided NIM design will play

an important role for the progress. Although commercial

packages may be applied, there is still a need for more

efficient and reliable software.

Currently, the NIM fabrication is much more demanding

than the NIM design and optimization, namely at optical

frequencies. We have outlined the techniques and struc-

tures that are currently most promising. Despite of the fast

progress of nanotechnology, we are still at the very begin-

ning of NIM manufacturing. Therefore, we can expect that

much better NIMs will become available in the future. This

is of high practical importance although Veselago’s initial

idea already found experimental confirmation by the fab-

rication and characterization of metamaterials with both

negative permittivity and negative permeability. First of all,

these experiments were carried out at microwave frequen-

cies where the metamaterial structures may be much larger.

Secondly, these metamaterials exhibit NIM properties only

for a narrow frequency band and third, these metamaterials

are very lossy. Therefore, it is important to reduce the size

of the structures, push the frequency range towards opti-

cal frequencies, widen the frequency band and reduce the

losses.147 Finally, it will be important to drastically reduce

the fabrication costs.

The range of available materials with desired electro-

magnetic properties may be widened by the design of new

artificial structures, i.e., metamaterials composed of differ-

ent natural materials (dielectrics, metals, semiconductors,

etc.) with different shape. This significantly improves the

chance of finding high quality NIMs. At the same time it

requires strong activities in material research with a focus

on electromagnetic properties of composite materials.

Although NIM slabs with a size bigger compared with

the wavelength cannot be considered as optical super-

lenses, thin NIM slabs could open up new opportunities

for overcoming the diffraction limit—which could lead to

high density optical data storage. Beside this, we expect

that the NIM research will intensify the research on more

general metamaterials which could lead to new promising

28 J. Comput. Theor. Nanosci. 3, 1–30, 2006
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materials with new properties and practical applications
such as ultra small optical devices that might be important
for optical computing.
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