N
N

N

HAL

open science

Negative Sampling Strategies for Contrastive
Self-Supervised Learning of Graph Representations
Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, Ananthram Swami

» To cite this version:

Hakim Hafidi, Mounir Ghogho, Philippe Ciblat, Ananthram Swami. Negative Sampling Strategies
for Contrastive Self-Supervised Learning of Graph Representations. Signal Processing, 2022, 190 (4).

hal-03575619

HAL Id: hal-03575619
https://telecom-paris.hal.science/hal-03575619
Submitted on 15 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://telecom-paris.hal.science/hal-03575619
https://hal.archives-ouvertes.fr

Manuscript Click here to view linked References =

O©CO~NOOOTA~AWNPE

Negative Sampling Strategies for Contrastive
Self-Supervised Learning of Graph Representations

13 Hakim Hafidi*", Mounir Ghogho?®, Philippe Ciblat?, Ananthram Swami®

15 ¢TICLab, College of Engineering and Architecture, Université Internationale de Rabat,
16 Morocco

17 bLTCI, Telecom Paris, Institut Polytechnique de Paris, France

¢United States Army Research Laboratory, Adelphi, Maryland, USA

Abstract

25 Contrastive learning has become a successful approach for learning powerful text
26 and image representations in a self-supervised manner. Contrastive frameworks
28 learn to distinguish between representations coming from augmentations of the
same data point (positive pairs) and those of other (negative) examples. Recent
31 studies aim at extending methods from contrastive learning to graph data. In
this work, we propose a general framework for learning node representations
34 in a self supervised manner called Graph Constrastive Learning (GraphCL). It
36 learns node embeddings by maximizing the similarity between the nodes repre-
37 sentations of two randomly perturbed versions of the same graph. We use graph
39 neural networks to produce two representations of the same node and leverage a
contrastive learning loss to maximize agreement between them. We investigate
42 different standard and new negative sampling strategies as well as a comparison
44 without negative sampling approach. We demonstrate that our approach signif-
45 icantly outperforms the state-of-the-art in unsupervised learning on a number
47 of node classification benchmarks in both transductive and inductive learning
setups.

50 Key words: Graph Neural Network, Contrastive Learning, Self-Supervised

52 Learning, Node Classification.

IThe main ideas of this paper have been posted in July 2020 on Arxiv with reference
56 arXiv:2007.08025

59 Preprint submitted to Journal of BTEX Templates May 9, 2021

https://www.editorialmanager.com/sigpro/viewRCResults.aspx?pdf=1&docID=39148&rev=1&fileID=933206&msid=187a8b92-2db0-4b2d-bdf9-4799d99347eb
https://www.editorialmanager.com/sigpro/viewRCResults.aspx?pdf=1&docID=39148&rev=1&fileID=933206&msid=187a8b92-2db0-4b2d-bdf9-4799d99347eb

O©CO~NOOOTA~AWNPE

20

25

30

1. Introduction

In many fields, the rapid increase in data volume and the complexity of its
structure/representation make it difficult to exploit it effectively. Graphs offer a
unified framework for aligning well-structured and unstructured data. However,
graphs have long been poorly leveraged because of their complexity, and limited
approaches relying on content associated with nodes and links. Recently, graph
representation learning has attracted the attention of the scientific community
as a way of analysing graphs and helping to exploit the richness of information
that resides in poor-structured data. Graphs are characterized by a set of nodes,
which represent the entities, and a set of links connecting them, representing
relationships between the nodes. Nodes may be of different types, and may
further be associated with several features. And links may represent different
relationships and may also be associated with different attributes or semantic
content. One of the major challenges facing graph representation learning is
learning node embeddings which capture both node features and graph structure.
These representations can then be fed into downstream machine learning models.

Most successful approaches for graph representation have been great efforts
to generalize neural networks to graph data and fall under the umbrella of Graph
Neural Networks (GNNs) or Deep Geometric Learning [[-4]. These approaches
have achieved remarkable results in a number of important tasks such as node
classification [5-17] and link prediction [, 9]. However, these methods are very
reliant on human annotation and suffer from the necessity of some form of
supervision. This requires high cost, expert knowledge in the domain and the
use of annotated data, which is not often available. Hence, it is of importance to
develop methods capable of learning representations in an unsupervised manner.

In order to compensate for the absence of labels or predefined tasks, some
unsupervised methods have adopted the homophily hypothesis, which states
that linked nodes should be nearby in the embedding space [(0]. Inspired by
the Skipgram algorithm for embedding words into a latent space, where adja-

cent vectors correspond to co-occurring words in a sentence [, a majority of

O©CO~NOOOTA~AWNPE

35

40

45

50

55

60

these methods use random walks to generate sentence-like sequences where co-
occurring nodes are close to one another in the embedding space [(2, 3] and
can also be adapted to heterogeneous graphs [[4-16]. Other methods, such as
autoencoders, also employ the homophily hypothesis by reconstructing either
the adjacency matrix or the neighborhood of a node [8, 7). Despite their suc-
cess in learning relatively powerful representations, relying on the homophily
hypothesis may bias these methods towards emphasizing the direct proximity
of nodes over topological information [I7]. More recently, [I¥] proposed Deep
Graph Infomax (DGI) that learns representations by training a discriminator
to distinguish between representations of nodes that belong to the graph from
nodes that belong to a corrupted graph. Leveraging recent advances in unsu-
pervised visual representations [19], the success of DGI has been attributed to
the maximization of mutual information between global and local parts of the
input. This requires learning global representations of the entire graph which
can be very costly and even intractable when dealing with large graphs.

To overcome the above-mentioned challenges, we here propose a contrastive
framework for self-supervised learning of nodes’ representations, called GraphCL.
We take inspiration from the success of contrastive losses in learning meaning-
ful representations of images [20, 21] and develop a model that learns node
embeddings by maximizing the similarity between the representations of two
randomly perturbed versions (views) of the intrinsic features and link structure
of the same node’s local subgraph. The perturbation consists of randomly drop-
ping from its L-hop subgraph, a subset of edges and nodes’ intrinsic features.
Other researchers have also used the contrastive loss to learn nodes or graph
representations using different augmentation (perturbation) strategies. In [22],
the authors used the diffusion matrix as a second view of the graph. In [23], the
authors used four different strategies consisting of dropping nodes, perturbing
edges, masking attributes or sampling subgraphs.

Contrastive learning is a special case of Siamese networks, which are weight-
sharing neural networks applied to two or multiple inputs. Recent approaches

use augmentations of the same data point as inputs and maximize the similarity

O©CO~NOOOTA~AWNPE

65

70

75

80

85

90

between the learned representations of the two inputs. Maximizing the similar-
ity between each pair of augmented data points in the dataset can lead to a
trivial solution. Since we want representations of all pairs of augmented views
to be equal, a possible solution is to map all nodes to a single point (represen-
tation). This is what we call a collapsing of representations to a single data
point (i.e. if all representations are the same, then so are those of each pair
of augmented views). Contrastive learning is one way of preventing this unde-
sirable solution. It does so by contrasting between positive (similar) examples
and negative (dissimilar) examples. The objective of the training phase is to
map positive examples to nearby locations in the destination (representation)
space while pushing away negative examples often by using noise-contrastive
estimation [24]. One key component of contrastive learning frameworks is the
choice of negative examples. The most common strategy is to uniformly sample
from the training dataset using examples either from the current batch or from a
memory bank. It has been shown that these approaches require large batches or
memory banks to perform well for visual representation [20, 21]. To improve the
performance and efficiency of contrastive frameworks, recent studies have pro-
posed novel sampling strategies. Most strategies are based on the assumption
that hard negative examples (i.e. examples that are hard to distinguish from a
positive pair) are beneficial in learning more powerful representations. In [25],
authors use hard negative mixing to synthesize new examples from the available
hard negatives. In [26], the authors sample negatives from a ring around each
positive (i.e. they sample negatives that are neither too close nor too far from
the positive example).

More recent Siamese network architectures preventing representation collaps-
ing still rely on the use of pairs of positive examples only. In [27], the authors
experimentally show that the learned representations of their proposed frame-
work do not collapse when using a momentum network even when not using
negative examples. In [28], the authors avoid the collapsing phenomenon by
simply using a stop-gradient strategy when directly maximizing the similarity

between two augmented views. The stop-gradient strategy consists of consid-

O©CO~NOOOTA~AWNPE

95

100

105

110

115

120

ering the representation of one of the augmented views as a constant when
updating the network parameters.

While these methods have shown surprisingly good results when applied
to image datasets, it is not clear whether they are easily generalizable to non-
FEuclidean data such as graphs. In this work, we introduce novel sampling
strategies of negative examples based on the graph structure and show that
our approach improves the performance of the learned representations on down-
stream classification tasks and outperforms existing methods. In addition, we
conduct extensive experiments to study the different components of our Siamese
network-based approach for learning nodes’ representations which enable us to

answer the following questions:

e Is a larger set of negative examples always useful in learning good repre-

sentations?

e Does sampling hard negative examples improve the quality of the repre-

sentation?

e Can we train a Siamese neural network to learn nodes’ representations

without using negative examples?

2. Background

2.1. Problem formulation.

Let G = (V, €) be an undirected graph where V is a set of nodes and £ C VxV
is a set of edges. Each node u € V is represented by a feature vector z, € RF.

An adjacency matrix 4 € RV*V

represents the topological structure of the
graph where N = |V| is the number of nodes in the graph. Without loss of
generality we assume the graphs to be unweighted i.e A, , = 1 if (u,v) € €
and A, , = 0 otherwise. We are also provided with a matrix X € RNVNXP that
summarizes the intrinsic feature vectors of all nodes.

Our objective is to learn an effective representation of nodes without human

annotation. This will be done through the learning of a graph neural network

O©CO~NOOOTA~AWNPE

125

130

encoder f that maps both node original feature and the graph structure to
a higher level representation i.e. f(X,A) = H®) e RN*P' where P’ is the
embedding size. The u—th row of H") corresponds to the embedding th) of
node u. In the remainder of the paper, h, refers to the output of the GNN’s

last layer, i.e. h, = hq(tL).

2.2. Graph Neural Networks (GNNs).

GNNs are a class of graph embedding architectures which use the graph
structure in addition to node and edge features to generate a representation
vector (i.e., embedding) for each node. Recent GNNs learn node representations
by aggregating the features of neighboring nodes and edges. The output of the
[-th layer of these GNNs is generally expressed as

) = COMBINE® b=V AGGREGATEW ({(h=Y, hll=1) s v e N(u)})),

(1)
where hq(f) is the feature vector of node u at the I-th layer initialized by hSLO) = Ty
and N (u) is the set of first-order neighbors of node u. According to Eq. (),
h,gL) corresponds to the output of the last layer of the GNN, which involves the
nodes of node u’s L-hop subgraph. Different GNNs use different formulations
of the COMBINE and AGGREGATE functions; the ones used in this work are
described in subsection E13.

2.8. Contrastive learning

In this work, we consider the dictionary look up formulation of contrastive
learning, which means that considering a query hg, a corresponding positive pair

h;r and a set of negative examples @, , a contrastive loss is a function which

¢
has a low value when hy is similar to h;r and dissimilar to all elements of Q.

A successful and widely used form of contrastive loss is defined as:
exp(th he/7)

L _ = —1)
hahd QT (g hg [7) + e exp(hy n/7)

(2)

where 7 is a temperature hyperparameter and A, h;}‘ and all h, in Q_ are

Lo normalized feature vectors. The final loss is summed accross all queries ¢

O©CO~NOOOTA~AWNPE

135

140

145

belonging to the dataset D and can be expressed as follows when scaled by the

temperature 7 [29]:

1 T+ 1 T+ T
L= —Wth h, —i—ﬁlogz exp(hq hy, /T)+ Z exp(hq ho/T) |,
qeD qeD hn€Qq
(3)

where |D| is the number of elements in D.
In Contrastive learning framework, different negative sampling strategies
(i.e., the way to build Q;) may be employed to avoid collapsing of the contrastive

loss optimization problem into a unique representation of all samples.

2.4. Simple Siamese neural networks for nodes representation

In [28], the authors argue that their approach can prevent collapsing when
maximizing the similarities between the representations of two views of the same
image without the use of negative examples. Their approach works by sampling
two views of 1 and x5 of the same image = which they process using an encoder
f and a multi-layer perceptron (MLP) prediction head g. Letting p; = g(f(z1)),
p2 = g(f(x2)), h1 = f(z1) and hy = f(x2) denote respectively the outputs of
the MLP prediction and the encoder, the objective is to minimize the symmetric

negative cosine similarity loss which is defined as:
1 1
L= §S(p1, stopgrad(hg)) + §S(p2, stopgrad(hy)), (4)

where S(p1, he) = _H%H'H%H and the stopgrad operation consists of treating

ho, respectively hi, as constant when updating the models’ parameters.

3. Methodology of the proposed approach

3.1. GraphCL

GraphCL’s objective is to learn node representations by maximizing the
similarity between two embeddings of the same node. The two embeddings are
obtained from applying a GNN encoder to two perturbed versions of the graph.

This framework has three main components: a stochastic perturbation, a GNN

O©CO~NOOOTA~AWNPE

150

155

160

165

170

175

based encoder and a contrastive loss function. We first introduce each of these

components, and then give a high-level overview of the proposed method.

¢ Stochastic perturbation. We apply two stochastic perturbations to the

graph which allow us to obtain two representations of the same node which
we consider as positive examples. In this work, we consider simultaneous
transformations of both node features and the connectivity of the graph.
The graph structure is transformed by randomly dropping edges using
samples from a Bernoulli distribution. For the node’s original features, we

apply a similar strategy by simply applying dropout to the input features;

Graph neural network encoder. We apply a GNN based encoder
that learns representations of all nodes in the graph. Our framework
supports several choices of GNN architectures. Details about the choices

of architectures are given in section B—13.

Contrastive loss function. We define a pretext prediction task that
aims at identifying the corresponding positive example h;r of a representa-
tion h, given a set of generated examples, with h, and hq+ being a positive
pair of examples (i.e. obtained from the GNN representations of two trans-
formations of the graph). As for the negative examples generation, details

are provided in subsection B=2.

3.2. Negative sampling strategies

Negative sampling has been shown to be a key ingredient for the success
of contrastive learning frameworks. Different strategies have been proposed to
build negatives examples for visual presentations [20, 21, 25, 26]. First, we inves-
tigate whether the conclusions that have been drawn from the most successful
approaches of visual representations are still valid when applied to graphs. We
hereafter introduce three negative sampling strategies: the two first are standard

while the third one is new and well adapted to graph.

¢ Random sampling. This approach consists of considering the samples of

the current (randomly generated) mini-batch as negatives. The problem

O©CO~NOOOTA~AWNPE

180

185

190

195

200

with this approach is the number of negative examples is limited by the
size of the mini-batch which is limited by the memory of the GPU. An
alternative would be to randomly sample negatives from a memory bank
that contains either representations of the whole training set or a queue

with representations of the last few batches.

Feature-based sampling. In [26], the authors propose to pick two per-
centiles wy, and w; € [0,100] and considering h,,_ as a negative example for
a representation of a query hg if and only if h;'—hnc is within the wg-th to
the w;-th percentile of all h,, € Q. This enables to build easily hard nega-
tive examples (i.e., negatives that are hard to distinguish from the current
sample) which are beneficial in learning powerful representations as men-
tioned in [30, B1]. To adapt this method to the graph setting, instead
of considering the similarities in the representation space, which requires
using the encoder to learn the representations of all nodes in the graph, we
simply consider the similarities of the nodes’ original features. For each
node u, we consider as negatives all nodes v whose original features are
neither too close nor too far from those of node u (i.e. x} z,/||z. |||z, || is

within the wg-th to the w;-th percentile of all nodes of the graph).

Graph-based sampling. Using original feature similarities as a negative
sampling strategy requires computing similarities between each pair of
nodes in the graph then sorting them and fine tuning the model to select
the best values for the percentiles wy and w;. To avoid this, we propose to
make use of the graph structure information to select negatives. Instead
of considering distances between the nodes’ original features, we use the
distance between the nodes on the graph. For each node u, we simply

sample negatives from its [-th order neighbors.

O©CO~NOOOTA~AWNPE

DO UIUIUTUUUICIVCIUURNDANRNRNDNARNDNWWWWWWWWWWOWNNNNNNNNNNRPPRPRRRRRRRR
ARANPRPOOOVNONROMNROOOVYOUNRWNROOONNONRONROOONNOUNRWNROOO~NOUNWNEO

Removed Edges

HAqwenmgs QZIWIXBIN |:|

Edges

6
>
<
)

Figure 1: A high-level overview of our method for a subgraph around node u. hy,1 and hy 2

form a positive pair with a query hq = hy,1 and its corresponding key h;’ = hy,2.

8.8. Overview of GraphCL
The training algorithm of GraphCL is summarized in the following steps:
1. Draw two stochastic perturbations t; and t5 as defined in section BXl and

205 illustrated in Figure M. Apply them to nodes’ original features and the

graph structure:
o (X1, A1) ~ti(X, A)
o (X2, Az) ~ ta(X, A)
2. Apply the encoder to both views of the graph:
« HL = f(X1,A)
o« Hf = f(Xy, Ay)
3. Select negative examples as suggested in subsection B=2.

4. Update parameters of the encoder f using the loss function defined in

Eq. (8).

as 3.4, Extension to inductive setup

Unlike the transductive setup where we have access to the whole graph and
features of all nodes of the graph during training time. In the inductive setup,
the objective is to generate representations of nodes that were not used when

training the model. These previously unseen nodes can be new nodes in an

10

O©CO~NOOOTA~AWNPE

220

225

230

235

240

245

evolving graph such as a social network, we refer to this by the single graph
inductive setup. These nodes can also come from previously unseen graphs
which helps generalization across graphs with the same form of features, we
refer to this by the multiple graph inductive setup.

GraphCL can be easily extended to both setups. The extension to the multi-
ple graph setup is straightforward, as it consists of training the encoder on each
of the available graphs for the training and using the learnt encoder to produce
representations of nodes of the new graphs. For inductive learning on large
graphs, we train the encoder by sampling minibatches of nodes. The training
algorithm of GraphCL for the inductive setup is summarized in the following

steps for each sampled minibatch B:

1. For each node « in the minibatch we define (X,,A,) as the subgraph
containing all nodes and edges that are at most L-hops from wu in the
graph and their corresponding features;

2. Draw two stochastic perturbations ¢; and t, as defined in section Bl and
apply them to u’s L-hop neighborhood subgraph:

o (Xut, Aui) ~t1(Xy, Ay)
o (Xuz, Auz) ~t2(Xy, Ay)
3. Apply the encoder to the two representations of node w:
o hy1= f()?u717ﬁu,1)
o huo = f(Xuz2, Aus)

4. Update parameters of the encoder.

4. Experiments

We evaluate the effectiveness of GraphCL representations on both tranduc-
tive and inductive learning setups. The transductive learning setup consists
of embedding nodes from a fixed graph (i.e. all node features and the entire
graph structure are known during training time). On the other hand, the induc-

tive learning setup consists of generating representation of unseen nodes or new

11

O©CO~NOOOTA~AWNPE

250

255

260

265

270

275

graphs. Following common practice, we opt for a linear evaluation of the learned
node representations. Specifically, we use these representations to train a logistic
regression model to solve multiclass node classification tasks on five well-know
benchmark datasets, three for the transductive learning setup and two for the
inductive setup. We summarize the datasets and the baselines respectively in
sections B and B2, provide model configuration and implementation details

in section B3, and discuss the results in section B=2.

4.1. Experimental setup

4.1.1. Datasets

For the transductive setting, we utilize Cora, Citeseer and Pubmed [32],
three citation networks where nodes are bag of words representations of docu-
ments and edges correspond to (undirected) citations. Each node belongs to one
class. We also use ogbn-arxiv, which is another citation network, where nodes
are computer science papers represented by a 128-dimensional feature vector
obtained by averaging the embeddings of words in its title and abstract. Each
node belongs to one of forty subject areas of arXiv CS papers [33].

On the other hand, a protein-protein interaction dataset (PPI) is used for
the inductive setting on multiple graphs [34]. It consists of multiple graphs
corresponding to different human tissues where node features are the positional
gene sets, motif gene sets and immunological signatures. Each node has several
labels among 121 labels from the gene ontology. For the inductive setting on
large graphs, we use a Reddit dataset [6]. It represents a large social network
where nodes correspond to Reddit posts (i.e. represented by their GloVe embed-
ding [35]) and edges connecting two posts mean that the same user commented
on them. Labels are the posts’ subreddit and the objective is to predict the
community structure of the social network.

Statistics of the datasets including data splits are given in table M. For ogbn-
arxiv dataset, we follow recommendations from the Open Graph Benchmark
initiative and adopt a data split that is based on the publication dates of the

papers [B8]. More precisely, we train on papers published until 2017, validate

12

O©CO~NOOOTA~AWNPE

280

285

290

Dataset Task Nodes Edges Features Classes Train/Val/Test Nodes
Cora Transductive 2,708 5,429 1,433 7 140/500/1,000
Citeseer Transductive 3,327 4,732 3,707 6 120/500/1,000
Pubmed Transductive 19,717 44,338 500 3 60,/500/1,000
ogbn-arxiv Transductive 169,343 1,166,243 128 40 Time
Reddit Inductive 231,443 11,606,919 602 41 151,708/23,699/55,334
56,944 121 44,906/6,154/5,524
PPI Inductive 818,716 50
(24 graphs) (multilabel) (20/2/2 graphs)

Table 1: Description of datasets

on those published in 2018, and test on those published since 2019.

4.1.2. Baselines

For the transductive learning tasks, we use four unsupervised methods for
comparison: Label Propagation (LP) [37], DeepWalk [12], Embedding Propa-
gation (EP-B) [B%], and Deep Graph Infomax (DGI) [i8]. We also report the
results of training logistic regression on the intrinsic input features only, and
also on the concatenation of DeepWalk embeddings and the nodes’ intrinsic
features. Aside from unsupervised methods, we also compare our approach to
strong supervised baselines, Graph Convolution Networks (GCN) [2].

For the inductive learning tasks, in addition to DeepWalk and DGI, we
compare GraphCL with the unsupervised GraphSAGE methods [6]. We also
provide results of two supervised approaches, FastGCN [39] and Gated Attention
Networks (GaAN) [d0].

4.1.8. Model configurations
Eq. (I0) provides a general formulation of graph neural networks. Several ar-
chitectures have been proposed for the choice of AGGREGATE and COMBINE.
In all our experiments the basic update rule is the mean pooling variant from
[5]. .
B (WOD) MEAN(RSDYU RS e N, (5)
where the M EAN operator is the element-wise mean of all vectors in ({hq(f 71)}U

{h,(f_l),VU e N(u)}), and WO e RP*P" and W=D e RP'*P' for [> 1, are

13

O©CO~NOOOTA~AWNPE

295

300

305

learnable linear transformations.
All GNN aggregation operations are computed in parallel resulting in a ma-

trix representation as follows:

HO = AgU-Dp -1 (6)
where H() = [hgl), hgl), e hg\l,)]—r is the matrix of nodes’ hidden feature vectors

at the [—th layer and A = D=4 is the normalized version of the adjacency
matrix with added self-loop A = A + Iy with D being its diagonal degree
matrix, i.e. D, = Zj flij. We also consider the symmetrically normalized
version of the adjacency matrix where A = D=2AD3. We refer to encoders

using this variant by GCN when needed.

Transductive learning. For Citeseer and Pubmed, we use a one layer GNN as

defined in Eq. (B), the encoder is then simply expressed as:
(X, A) = Axw© (7)
For Cora, our encoder is a two-layer GNN:
f(X,A) = Ac(AXWOYw® (8)

where o is an exponential linear unit [&1], and f(X, A) is the concatenation of
all nodes’ embeddings. In each layer, we compute P’ = 512 features resulting
in a node embedding size of 512. For the larger ogbn-arxiv dataset, we use
a three-layer GNN, and train the model by randomly sampling 1024 negative

examples for each node.

Inductive learning. For both inductive learning setups on large graphs and on

multiple graphs , we use a three-layer mean-pooling encoder with residual units

as follows:
HO = o(AxW + x W) (9)
H® = g(AHOWD + gOWwO) (10)
14

O©CO~NOOOTA~AWNPE

310

315

320

325

330

F(X, Ay = AHOW® 4+ FOw® (11)

We set the hidden layers and the embedding size to P’ = 512 and apply RELU
as an activation function.

For the multiple-graph setting, we sample one graph at a time from the
training set to train the contrastive loss function. For the single graph inductive
setup, the scale of the dataset makes it impossible to fit into GPU memory. We
therefore adopt the sub-sampling strategy of [G]. We first select a minibatch of
nodes and construct for each of them their L-hop neighborhood subgraph by
sampling a fixed size neighborhood. We sample 10 nodes in each of the three
levels resulting in 1 4+ 10 4 100 4 1000 = 1111 neighboring nodes .

We use Pytorch [42] and the Pytorch Geometric [#3] libraries to implement
all our experiments. We initialize all models using Glorot initialization [44] and
trained them to minimize the contrastive loss provided in Eq. (8) using the Adam
optimizer [45] with an initial learning rate of 0.001. We tune the weight decay
in {0.001,0.01,0.05,0.1,0.15}. We further tune the temperature 7 in the loss
function in {0.1,0.5,0.8,1.0} and the number of epochs in {20, 50, 100, 150, 200}.

To define the stochastic perturbation, we tune the probability of dropping
an edge in [0.05,0.75] and the probability of dropping node features in [0.2,0.8].
GraphCL is found to be robust to different choices of the perturbation parame-
ters. However, we found that applying high perturbations to node features (i.e.
randomly dropping 50% to 70% of input features) and small perturbations of
the graph structure (i.e. randomly dropping 10% to 20% of edges) results in

stronger representations.

4.2. Results

We present the results of evaluating node representations using downstream
multiclass node classification tasks in Table B. We report average results over
50 runs of training followed by a logistic regression. Specifically, we use the
mean classification accuracy on the test nodes for transductive tasks and the

micro-averaged F1 score on the (unseen) test nodes for the inductive setting.

15

O©CO~NOOOTA~AWNPE

335

Transductive
Method Cora Citeseer Pubmed ogbn-arxiv
Raw features 4794+ 04% 493+02% 69.1+0.3% 55.50 4+ 0.23%
DeepWalk [12] 67.2% 43.2% 65.3% 70.07 - 0.13%
DeepWalk + features 70.74+0.6% 51.4+0.5% 74.3+0.9% _
EP-B [B5] 78.1+1.5% 71.0+1.4% 79.6 £2.1% 68 + 0.00%
DGI [1¥] 82.3+0.6% 71.8+0.7% 76.8 £0.6% 70.18 = 0.12%
GraphCL 83.6 £0.5% 72.5+0.7% 79.8+0.5% 70.18+0.17%
GraphCL* 84.6 +0.4% 73.1 £0.6% 80.1+0.5% 71.38+0.13%
GCN(supervised)[2] 81.5% 70.3% 79.0% 71.74 £ 0.002%
Inductive
Method Reddit PPI
Unsupervised Raw features 0.585 0.422
GraphSage-GCN [5] 0.908 0.465
GraphSage-mean [5] 0.897 0.486
GraphSage-LSTM [g] 0.907 0.482
GraphSage-pool [5] 0.892 0.502
DGI [i3y] 0.940 £ 0.001 0.638 £ 0.002
GraphCL 0.951 £ 0.01 0.659 4+ 0.006
GraphCL* 0.960 £+ 0.01 0.841 + 0.004
Supervised FastGCN [3Y] 0.937 -
GaAN [40] 0.958 £ 0.001 0.969 £ 0.002

Table 2: Classification accuracy on transductive tasks and micro-averaged F1 score on induc-

tive tasks

We report the results of EP-B provided in [38] and [46], and also the results

provided in [i8]. To insure a fair comparison with the other methods, we report

16

O©CO~NOOOTA~AWNPE

340

345

350

355

360

the results of the standard implementation of GraphCL which was described in
the previous section. In particular we use a standard embedding size P’ = 512.
We refer to the results by GraphCL in table B. We also report GraphCL*
which refers to the results that were achieved using the best parameters including
the best negative sampling strategy, choice of encoders and embedding size. For
example, we notice a 1% gain on the classification accuracy of Cora when using
a GCN encoder and sampling negative from the second order neighbors of the
current example. Moreover, we notice a surprising 0.2 gain on the F1 score on
PPI when increasing the embedding size to P’ = 20483.

We see that the proposed GraphCL outperforms the previous state-of-the-art
by achieving the best classification accuracy over the three transductive tasks
and the best F1 score on inductive tasks. We note that, except for PPI dataset,
GraphCL achieves competitive performance with strong supervised baselines
without using label information. We assume that by maximizing agreement
between representations that share the same information but have independent
noise, GraphCL is able to learn representations that benefit from the richness
of information in the graph which compensate for the information provided by

the labels.

4.8. Ablation study

We report on a study to understand the effects of different parameters. All

experiments have been conducted using Cora dataset.

4.83.1. Effect of the number of negatives

Figure P& shows the effect of the number of negatives on the accuracy of
the downstream classification task. We find that training a contrastive loss
with a small number of negatives leads to poor representations. However, our
experiments show that at a certain threshold increasing the number of negatives
does not improve the quality of the representations. Beyond that threshold the
variations of the classification accuracy seem to be due to the randomness of

the training procedure only. Since using a large number of negatives slows down

17

O©CO~NOOOTA~AWNPE

365

370

375

380

85
LR A PR S
84.0 TN T U -,
v e 801 e \
!
__835 H ~ 7 N
® / X]
; ‘;70 s
0'83.0 / H]
o Ces
=2
2 o]
Y 60
& 825 " <
i 55
;
| \
82.0 4 50 .
.-
2 & 8 § 8 8 ® 8 8§ 8
= b
"8 R ® 8 8§ R § 8 = & & & & & & & & o 7
=] m o ﬂ — o~ m < [l = ~ @ g
Number of negative samples Percintiles range

(a) (b)

Figure 2: Classification accuracy on Cora dataset. (a) Effect of the number of negative
examples. (b) Effect of the similarity between the current example and its corresponding

negative samples.

the training and requires more computing power, our findings suggest that one
has to properly choose the number of negatives to optimize for both the quality

of the representations and the training efficiency.

4.3.2. Effect of feature similarity based negative sampling strategies

We next analyse the effect of hard negative samples on the quality of the
learned representations. We first implement the feature similarity based neg-
ative sampling strategy described in section B2. We select negatives from a
ring around the current example. This is done by varying the values of the per-
centiles w; and wy. Figure BH show the accuracy of a linear classifier trained on
the learned representation while varying the distance of the ring from the current
example. We select negatives from a ring of diameter 10% (i.e. w; —wg = 10%).
The results confirm our intuition that hard negatives improve the quality of the
representations. We notice that selecting only negatives that are too far from
the current example leads to poor representations. In fact, if all negatives are
easy to distinguish from the current example, there is no reason for the encoder
to learn higher level features that can help to distinguish between the corre-
sponding positive example and all the negatives. On the other hand, selecting

negatives from nodes that are very similar to the current example worsens the

18

O©CO~NOOOTA~AWNPE

385

390

395

400

I-th order neighbors Accuracy Encoder Accuracy
1 314+12% MLP 66.1 %
2 84.6 + 0.4% Mean Pooling 83.6 %
3 80.8 + 0.6 % GCN 84.2 %
Table 3: Classification accuracy on Cora dataset. Table 4: Classification accuracy on
Effect of the number of hops between the current Cora dataset. Effect of the choice of
example and its corresponding negative samples. the encoder

quality of the representations. This can be explained by the fact that negatives
that are close to the current example are likely to belong to the same class and
should rather be considered as positive examples. Training an encoder to push
these examples away from the current example unsurprisingly leads to lower

quality representations.

4.3.3. Effect of graph based negative sampling strategies

Graphs provide additional information about the examples. We aim at tak-
ing advantage of the graph structure to sample negative examples. Table B
shows the average accuracy of 50 runs of training to learn nodes’ embeddings
on top of which we apply a linear classifier. We sample negatives from the [-th
order neighbors of the current example. Similarly to the results of the feature
similarity based negative sampling strategy, we find that negatives that are at
the right distance from the current example improve the quality of the learned
representations. More specifically, we achieve the best performance when sam-

pling negatives from the second order neighbors.

4.3.4. Training without negative samples

In the previous section, we have discussed the effect of negative sampling
strategies on the quality of the learned representations by using them to lin-
early classify nodes on a multi-class classification downstream task. Here, we
would like to see whether it is possible to learn meaningful representations by

maximizing the similarities between the representations obtained from two views

19

O©CO~NOOOTA~AWNPE

405

410

415

420

0.0 801 . —— Siam
i P P 70 b Siam + SG
=027 [i PP vl e = -== Siam + SG+BN
L & 60
—0.4 —— Siam > o, S
§ Siam + SG g 50 T
= g6 == Siam + SG+BN § 10
Y 30
-0.8 <
20
AP R NN
-1.0 10
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200

Epochs Epochs

(a) (b)

Figure 3: A comparison of Siamese NN trained with vs without stop-gradient and batch
normalization. (a) Training loss across epochs. (b) Accuracy of a linear classifier trained on

top of the representation on Cora dataset

of the same graph without the use of any negative examples. To do so, we train
a Siamese neural network to minimize the negative cosine similarity loss in
Eq. (@). We implement the stop-gradient strategy described in section 24 and
apply batch normalization on the hidden layer of the prediction MLP head (see
section 24). Both stop-gradient and batch normalization have been reported
to prevent the collapsing to a single representation when applied to Siamese
neural networks for visual representations [27, 28]. Figures Ba and BH respec-
tively show the loss and accuracy of training a Siamese neural network without
neither batch normalization nor stop-gradient referred to as Siam, with stop-
gradient but without batch normalization referred to as Siam+SG, and with
both stop-gradient and batch normalization referred to as Siam+SG+BN.

We observe that when training without stop-gradient and batch normaliza-
tion, the loss function quickly converges to the minimum possible value —1. To
verify that the cause is the collapsing to the single representation solution, we
compute the standard deviation of all the representations which we found to be
equal to zero for all features. We also notice that although adding stop-gradient
and batch normalization prevent the collapsing to a single representation, the
learned representations are still of low quality and perform much worse than

the representations learned using negative samples.

20

O©CO~NOOOTA~AWNPE

425

430

435

440

5. Discussion

5.1. Connection to mutual information

The contrastive loss in Eq. (8) has been proposed as a lower bound estimator

of the mutual information. A formal proof given by [47] shows that:

I(hg, hF) > log(N) - L, (12)

9> "'%q

where N is the number of negative samples @, and (hq,h;) is the mutual

information between h, and h;r:

I(h%h;;): E 1Og|:

(hgh)~p, i ()

)
p(hq>p<hq+>} (13)

where p(hg, h;}) is the joint distribution of hg and A, and p(hy) and p(h]) are
the corresponding marginals.

Therefore, given any IV, minimizing the loss function £ also maximizes the
lower bound on the mutual information I(h,, h;r). We note however that it has
been shown that the bound in Eq. (I2) can be not tight . Our experiments
suggest that contrastive methods’ success highly depends on other parameter
designs, and so cannot be solely attributed to the properties of the mutual
information. This confirms the remark done in[d®] where the bound in Eq. (I2)
was seen not to be tight. More precisely, results in Table B emphasize the
impact of the choice of the encoder on the performance of the contrastive loss.
The ablation study that we conducted also highlights the effect of the negative

sampling strategy and the importance of hard negative examples for learning

powerful representations.

5.2. Understanding contrastive learning through alignment and uniformity on

the hypersphere

To better understand the behavior of GraphCL, we analyze it through the
perspective of uniformity and alignment that has been introduced in [249]. The

main idea behind the contrastive loss is to attracting positive pairs together in

21

O©CO~NOOOTA~AWNPE

GraphCL Siam+SG+BN Supervised GCN

1000 Mean 0.75 Mean 070

2000

750
1500
1500
1250

1000

Counts
g
s
Counts
Counts

70

500

g

50

o
-100 -075 -050 -025 000 025 050 075 100 -100 -075 050 -025 000 025 050 075 100 -100 -075 -050 -025 000 025 050 075 100
Cosine similarity Cosine similarity Cosine similarity

GraphcCL Siam+SG+BN Supervised GCN

10 10 .
. ”
05 . s .

’

1o -5 oo 05 10 To -85 o0 os 10 -lo -85 do o5 10
Feature 1 Feature 1 Feature 1

Feature 2
i & o
5 & 8
Feature 2
& =
Feature 2
bbb e
5 & 8

Figure 4: Representations of Cora dataset nodes on R? using encoders trained with a con-
trastive loss (Left plots), a negative cosine similarity loss (middle plots) and a supervised
cross entropy loss (right plots). Histograms of the cosine similarity between positive pairs

(Top). Feature distributions in R? using Gaussian kernel density estimation (Bottom).

the representation space while pushing away the corresponding negative exam-
ples from the current sample. Eq. (B) actually encourages the learned represen-

wus tations to obey the following properties:

e Alignment: Representations of augmented views should be consistent

and invariant to noise.

e Uniformity: The learned representations should match a prior distribu-
tion of high entropy (the uniform distribution over the hypersphere) to

450 preserve as much information of the data as possible.

We visualize the learned representations of Cora dataset nodes in R? (i.e P’ = 2)

to compare the behavior of the following methods:

¢ GraphCL: An encoder trained with the standard implementation of GraphCL

as described above.

22

O©CO~NOOOTA~AWNPE

455

460

465

470

475

480

¢ Siam+SG-+BN: A siamese neural network encoder trained with the neg-
ative cosine similarity loss using stop-gradient and batch normalization

techniques.

¢ Supervised GCN: An encoder and a linear classifier trained jointly with

a supervised cross entropy loss.

All encoders are 2-layers GCNs that map nodes to normalized feature vectors
of dimension two. Figure B summarizes the resulting distributions. GraphCL
embeddings clearly display both properties. Positive pairs are more aligned than
those learned using the negative cosine similarity and supervised loss with an
average cosine similarity of 0.9 for GraphCL and 0.75 and 0.7 respectively for
the other methods. Representations of GraphCL are also evenly distributed on
the hypersphere and exhibit the most uniform distribution.

It has been shown in [49] that both the alignment and uniformity proper-
ties are important in learning highly transferable features to downstream tasks.
This contributes to the the success of GraphCL and may explain its ability to
outperform strong supervised baselines on nodes classification, especially on the
transductive learning setup.

It is also worth noticing that although adding stop-gradient and batch nor-
malization techniques to the training procedure of the negative cosine similar-
ity loss (i.e. Siam+SG+BN in Figure @) prevent the collapsing to the single
representation solution, the encoder fails to uniformly map the nodes’ represen-
tations across the hypersphere. This explains its results on the classification

downstream task (see Figure BH).

5.8. Computational and model complexity

Last we discuss the computational and model complexity of GraphCL. Let
G=(V,€) be a graph and N = |V| the total number of nodes in the graph.
Moreover, let L be the number of layers, M the minibatch size and R the num-

ber of neighbors being sampled for each node in the inductive setting. We

23

O©CO~NOOOTA~AWNPE

485

490

495

500

505

510

assume for simplicity that the dimension of the nodes’ hidden features is con-
stant and denote it as P’. The computational complexity and space complexity
of GraphCL depend on the choice of the encoder. We use the same encoder
for the two branches (i.e. each of the subgraphs). For the transductive learn-
ing setup, the computational and space complexity are linear with respect to
the number of nodes and are respectively O(LNP'?) and O(LNP' + KP'"?) .
For the inductive learning, we use a sub-sampling strategy to load the graphs
into memory; the computational complexity is then O(RY N P’?) and the space
complexity is O(M RE P’ + LP'?). The computational complexity is linear with
respect to the number of nodes. Both the number of layers L and the number
of sampled neighbors R are fixed and user-specified. The space complexity is
linear with respect to the minibatch size M. The sampling strategy sacrifices

time efficiency to save memory which is necessary for very large graphs.

6. Conclusion

We introduced GraphCL, a general framework for self-supervised learning of
nodes’ representations. The key idea of our approach is to maximize agreement
between two representations of the same node. The representations are gener-
ated by injecting random perturbations to the graph structure and nodes’ intrin-
sic features. We have conducted a number of experiments on both transductive
and inductive learning tasks. Experimental results show that GraphCL outper-
forms state-of-the-art unsupervised baselines on nodes’ classification tasks and
is competitive with supervised baselines. We further investigated different neg-
ative sampling strategies including training with a similarity based loss without
contrasting with negative samples and propose a graph based negative sampling
strategy. In the future, we will investigate the potential of our approach in learn-
ing graphs’ representations that are robust to adversarial attacks on the graph
data and explore the reasons of the low quality of nodes’ representations when

training a siamese neural network without negative samples.

24

O©CO~NOOOTA~AWNPE

520

525

530

535

References

1]

[10]

J. Atwood, D. Towsley, Diffusion-convolutional neural networks, in: Ad-

vances in Neural Information Processing Systems, 2016, pp. 1993-2001.

T. N. Kipf, M. Welling, Semi-Supervised Classification with Graph Con-
volutional Networks, arXiv e-prints (2016) arXiv:1609.02907arX1iv 1609

02907.

M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, P. Vandergheynst, Geo-
metric deep learning: going beyond euclidean data, IEEE Signal Processing

Magazine 34 (4) (2017) 18-42.

K. Xu, W. Hu, J. Leskovec, S. Jegelka, How Powerful are Graph Neural

W. Hamilton, Z. Ying, J. Leskovec, Inductive representation learning on
large graphs, in: Advances in Neural Information Processing Systems, 2017,

pp. 1024-1034.

I. Chami, Z. Ying, C. Ré, J. Leskovec, Hyperbolic graph convolutional
neural networks, in: Advances in Neural Information Processing Systems,

2019, pp. 4869-4880.

S. Luan, M. Zhao, X.-W. Chang, D. Precup, Break the ceiling: Stronger
multi-scale deep graph convolutional networks, in: Advances in Neural In-

formation Processing Systems, 2019, pp. 10943-10953.

T. N. Kipf, M. Welling, Variational Graph Auto-Encoders, arXiv e-prints
(2016) arXiv:1611.07308arXav 1611 07308.

M. Zhang, Y. Chen, Link prediction based on graph neural networks, in:
Advances in Neural Information Processing Systems, 2018, pp. 5165-5175.

P. D. Hoff, A. E. Raftery, M. S. Handcock, Latent space approaches to
social network analysis, Journal of the American Statistical Association

97 (460) (2002) 1090-1098.

25

http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.00826
http://arxiv.org/abs/1611.07308

O©CO~NOOOTA~AWNPE

540

545

550

555

565

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

T. Mikolov, K. Chen, G. Corrado, J. Dean, Efficient Estimation
of Word Representations in Vector Space, arXiv e-prints (2013)
arXiv:1301.3781arXax=T301T 371,

B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social
representations, in: International Conference on Knowledge Discovery and

Data Mining, 2014, pp. 701-710.

A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks,
in: International Conference on Knowledge Discovery and Data Mining,

2016, pp. 855-864.

Y. Dong, N. V. Chawla, A. Swami, metapath2vec: Scalable representa-
tion learning for heterogeneous networks, in: international conference on

knowledge discovery and data mining, 2017, pp. 135-144.

C. Zhang, D. Song, C. Huang, A. Swami, N. V. Chawla, Heterogeneous
graph neural network, in: International Conference on Knowledge Discov-

ery & Data Mining, 2019, pp. 793-803.

C. Zhang, A. Swami, N. V. Chawla, Shne: Representation learning for
semantic-associated heterogeneous networks, in: International Conference

on Web Search and Data Mining, 2019, pp. 690-698.

D. Wang, P. Cui, W. Zhu, Structural deep network embedding, in: Inter-
national Conference on Knowledge Discovery and Data mining, 2016, pp.

1225-1234.

P. Velickovi¢, W. Fedus, W. L. Hamilton, P. Lio, Y. Bengio, R. Devon
Hjelm, Deep Graph Infomax, arXiv e-prints (2018) arXiv:1809.10341arXiv:
1809 . 10341,

R. Devon Hjelm, A. Fedorov, S. Lavoie-Marchildon, K. Grewal, P. Bach-
man, A. Trischler, Y. Bengio, Learning deep representations by mu-

tual information estimation and maximization, arXiv e-prints (2018)

arXiv:1808.06670arXiv 1808 06670,

26

http://arxiv.org/abs/1301.3781
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1809.10341
http://arxiv.org/abs/1808.06670

O©CO~NOOOTA~AWNPE

570

575

580

585

590

[20]

[23]

[25]

[26]

[27]

T. Chen, S. Kornblith, M. Norouzi, G. Hinton, A Simple Framework
for Contrastive Learning of Visual Representations, arXiv e-prints (2020)

arXiv:2002.05709arX3v 2002 05709,

K. He, H. Fan, Y. Wu, S. Xie, R. Girshick, Momentum contrast for un-
supervised visual representation learning, in: IEEE/CVF Conference on

Computer Vision and Pattern Recognition, 2020, pp. 9729-9738.

K. Hassani, A. Hosein Khasahmadi, Contrastive Multi-View Representa-
tion Learning on Graphs, arXiv e-prints (2020) arXiv:2006.05582arx1v:

2006055872,

Y. You, T. Chen, Y. Sui, T. Chen, Z. Wang, Y. Shen, Graph contrastive
learning with augmentations, in: Advances in Neural Information Process-

ing Systems, Vol. 33, 2020.

M. Gutmann, A. Hyvérinen, Noise-contrastive estimation: A new estima-
tion principle for unnormalized statistical models, in: Conference on Arti-

ficial Intelligence and Statistics, 2010, pp. 297-304.

Y. Kalantidis, M. B. Sariyildiz, N. Pion, P. Weinzaepfel, D. Larlus, Hard
negative mixing for contrastive learning, in: Advances in Neural Informa-

tion Processing Systems, Vol. 33, 2020.

M. Wu, M. Mosse, C. Zhuang, D. Yamins, N. Goodman, Conditional Neg-
ative Sampling for Contrastive Learning of Visual Representations, arXiv

e-prints (2020) arXiv:2010.02037arX3 w2010 02037.

J.-B. Grill, F. Strub, F. Altché, C. Tallec, P. Richemond, E. Buchatskaya,
C. Doersch, B. Avila Pires, Z. Guo, M. Gheshlaghi Azar, et al., Bootstrap
your own latent-a new approach to self-supervised learning, in: Advances

in Neural Information Processing Systems, Vol. 33, 2020.

X. Chen, K. He, Exploring Simple Siamese Representation Learning, arXiv

e-prints (2020) arXiv:2011.10566arX1v:2011 105686.

27

http://arxiv.org/abs/2002.05709
http://arxiv.org/abs/2006.05582
http://arxiv.org/abs/2006.05582
http://arxiv.org/abs/2010.02037
http://arxiv.org/abs/2011.10566

