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NEGATIVE SCALAR CURVATURE METRICS
ON NONCOMPACT MANIFOLDS

JOHN BLAND AND MORRIS KALKA

Abstract. In this paper we prove that every noncompact smooth manifold
admits a complete metric of constant negative scalar curvature.

0. Introduction

If M is a smooth compact manifold of dimension at least three, then ac-
cording to [A], M admits a metric of scalar curvature identically equal to — 1.
It becomes a natural question whether any manifold of dimension at least three
admits a complete metric of constant negative scalar curvature. This question
was first posed by Kazdan in his January 1984 NSF Regional Conference lec-
tures on Applications of Elliptic Partial Differential Equations to Differential
Geometry.

In [BK] we announced a result in this direction and sketched the proof for
(n + 1) dimensional manifolds when n > 3 . The purpose of this paper is to
supply the details missing in [BK], and to complete this result by showing the
necessary modifications in dimension 3 (n = 2).

Theorem 1. Let M be a noncompact manifold of dimension at least three. Then
M admits a complete metric of constant negative scalar curvature.

When M has dimension 2 this result is well known. In particular, if M is
orientable one has the uniformization theorem for Riemann surfaces. Thus M
is covered by the hyperbolic disc and the covering transformations are hyper-
bolic isometries. If M is nonorientable the result still follows from hyperbolic
geometry but one needs an orientation reversing reflection. See e.g. Besse [B].

Since the statement of the theorem is simple and the main ideas in the proof
can be easily explained, we include a rather lengthy introduction which gives a
heuristic outline of the proof and which shows the ideas modulo some tedious
but rather elementary calculus constructions. We hope that the effect of this
is to make our paper easy to read. In broad outline, our approach is to cut
the manifold up into a countable number of pieces each of which has finite
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434 JOHN BLAND AND MORRIS KALKA

topology. On each piece, a standard procedure produces a smooth metric with
constant negative scalar curvature. In the two dimensional case we can insure
that the boundary curves are simple closed geodesies of fixed length. This makes
it easy to glue the pieces together along the geodesic curves. In the higher di-
mensional case, the glueing is more delicate and constitutes the main body of
this paper.

We remark that Z. Jin has given a counterexample to the Yamabe problem
for noncompact manifolds [J]. Thus we cannot hope to prove our result by
pointwise conformal transformation.

We use Morse theory to cut up the manifold by sublevel sets of the distance
function to a point p e P as in [M]. As we have chosen a point p with the
property that the square of the distance function r is a Morse function, it
has at most countably many critical values which (after composition with a
diffeomorphism of R) we may assume to be a subset of the positive integers.
We break up the manifold into pieces Ck — {x\k — \< r(x) < k + -} and
Ak = {x\k + j < r(x) < k + |}. Since the Ak contain no critical points they
are differentiable products Nkxl where A^ = {x\r(x) = k + ^}. Since the Ck
contain all critical points, their topology can be quite complicated. We use the
fact that compact manifolds admit metrics of constant negative scalar curvature
in two essentially different ways. We will realize Ck as an open subset of its
double, 2Ck and restrict a constant negative scalar curvature metric from 2Ck
to Ck . Ak, on the other hand, is differentiably a product Nk x I. We use
the constant negative scalar curvature metric h on A^ and form the product
metric dt +ch which has negative scalar curvature for each positive constant
c. (Of course if M is three dimensional, it could very well occur that A^ is
diffeomorphic to S . We show in Lemma 2.2 that in this case we can modify
the Morse function so that A^ has genus at least 2.) Then since the ends CkC\Ak
and Ck+X n Ak are both differentiably Nk x I, we will modify the metrics on
them so that near the ends they are equal to dt + ch for possibly different
values of c.

On the open set Ck D Ak = Nk x I we have no a priori control on the metric
obtained from the double of Ck ; however, we can twist the end while leaving
the boundary components fixed so that the metric is in the form dt +g, where
the tensor g has no dt component (Proposition 1.1). To effect this change of
coordinates we choose a level surface of r in Ck and let t be the signed distance
from the hypersurface. Then, at least for small values of t, the gradient flow
of the function / is simply the geodesic flow normal to the hypersurface. In
general the flow lines will not agree with the flow lines induced by the gradient
of r. However, since both sets of flow lines are transverse to the hypersurface,
we can twist the end in such a way that the new flow lines for the function t
agree with the induced flow lines for the Morse function r. At the kth stage
we perform this operation on Ck+X n Ak as well.
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NEGATIVE SCALAR CURVATURE METRICS ON NONCOMPACT MANIFOLDS 435

We have now chosen our product coordinate t, so that there is a hypersurface
/ = constant in Ak n Ck and a neighborhood of this hypersurface on which the
metric has the block form dt + g, where g has no dt component. We refer
to this neighborhood as U. We alter the metric as follows: we consider metrics
of the form

dt2 + f(t)[<t>(t)g + (\ - <p(t))h]

where 4>(t) is a cut-off function supported in U and identically 1 in a neighbor-
hood of the initial hypersurface. The function /(f) is chosen to maintain scalar
curvature bounded above by a negative constant (Proposition 1.2). That such
an / can be chosen is verified by writing down a second order ordinary differ-
ential inequality expressing the scalar curvature in terms of f(t). We choose
f(t) = 1 near the initial hypersurface and sufficiently convex for positive values
of t. Geometrically, the choice of / corresponds to isometrically embedding
the neighborhood U where / = 1 and then "flairing" the end so much that
curvature in this direction dominates the curvature in the other directions.

When t is sufficiently large, 0 is 0 and the metric is of the form dt2 + f(t)h
(recall that h is a metric of scalar curvature -1 on the cross section and is
independent of t). We need to flatten out / to a constant while keeping the
sign of the scalar curvature; that is, we would like to obtain a metric of the
form dt + ckh for some constant ck . The special form of the metric allows
us to do this (Proposition 1.4) by defining a piecewise smooth C1 function
with the desired properties and rounding off the corners. The smoothing can
be done in such a way that the sign of the scalar curvature is maintained. An
appropriate diffeomorphism of the t variable must be chosen to allow enough
time to flatten the metric.

These preliminaries accomplished we now discuss how to define the metric
inductively. Choose a metric hx on Nx and on C, choose a metric gx as above
such that near the end AxnCx , the metric gx is of the form dt2 + c{hx . Scale
the metric by a sufficiently small constant e, so that the scalar curvature of
exgx is less than -1 and sxcx < 1 . Assume now that we have constructed
the metric out to Ck . Choose a metric hk+x on A^ , and construct a metric
on Ck+X as described above (that is, a product metric at the ends) and scale it
so that the scalar curvature is bounded above by -1 . Then the metrics from
Ck and Ck+X restrict to the ends of Ak to metrics of the form dt2 + ckhk
and dt +ck+lhk , respectively, where ck < 1, ck+x < 1 . Once again the scalar
curvature of a metric of the form dt + f(t)hk can be computed in terms of
/(/), f(t) and f"(t). A straightforward analysis (Theorem 1) shows that if
the length of the interval /in   Ak = A^ x / is sufficiently long, then /(/) can
be chosen to interpolate between the two product product metrics dt2 + ckhk ,
dt +ck+[hk while maintaining scalar curvature <— A. Completeness is assured
by making   / have length at least 1.
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The proof of the theorem for 3 manifolds requires extra care at various
points in the argument. Aside from the topological constructions necessary
in dimension 3, there are also technical problems in dimension three which
arise from the second term in formula (1.10) for scalar curvature being positive
instead of negative. We deal with these technicalities in §2.

1. Proof of the theorem for n > 3

According to [M] we can embed M as a closed submanifold of R in such a
fashion that for most points p e M, dRN(p, •) has only nondegenerate critical
points. As a translation in R will not affect the property of nondegeneracy
we can assume that p is the origin and we define

r.M i-> [0,oo)

by
r(x) = dRN(0,x).

By nondegeneracy, the critical points of r are isolated and therefore discrete.
Since there are at most countably many critical values of r, we may arrange
that after a suitable diffeomorphism of (0,co), the critical values are a subset
of the positive integers. (We remark here that the case in which there are only
a finite number of critical points is relatively easier; however, for expositional
convenience, we treat it as a part of the general case.)

We define C, = {x \ r < f} and for k >2, Ck = {x\k-\ < r(x) <k + \).
We further define Ak - {x \ k + | < r(x) < k + |}. Since the critical values
are at the positive integers, Ak is diffeomorphic to {x e M \ r(x) = k + \}x I.
We denote by Nk the codimension  1  submanifold

Nk = {xeM\r(x) = k + \}.

Thus Ak = Nk x I and M = ((J*>, Ck) U (U*>i^)- Let 2Ck denote the
double of Ck , a compact n-dimensional manifold. Since n > 3, 2Ck admits
a metric of scalar curvature identically -1 . Since Ck is an open submanifold
of 2Ck , the metric restricts to a constant scalar curvature metric on Ck . Since
Ak n Ck / 0 and Ak n Ck+X / 0, the metrics on the various Ck determine
a metric of constant negative scalar curvature on the ends of Ak . The main
point in what follows will be to extend the metrics to all of Ak in such a manner
that the scalar curvature is bounded above by a negative constant, independent
of k. It will then follow from the work of Aviles and McOwen [AM] that
the complete metric thus constructed can be conformally deformed to one of
constant negative scalar curvature.

The first proposition will guarantee that we can choose a product structure on
Ak such that restriction of the metric coming from the Ck 's to the ends of Ak
can be written in a block diagonal form. Once this product structure Ak = Nkxl
is chosen accordingly, it will be considered fixed, and all remaining calculations
will be essentially computations in one variable—the product coordinate.
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Proposition 1.1. There exists a product structure Ak = NkxI such that in local
product coordinates (xa , t) for Ak = Nkx (-e, 1 + e), the metrics from Ck ,
Ck+X restrict to neighborhoods of Nk x {0}   and Nkx{\} to metrics of the form
dt2 + Gap(x,t)dxadxli.

Proof. The gradient vector field d/dr induces a natural product structure Ak =
Nkx(-e,T+e) for some e,T>0. The metrics from Ck and Ck+X restrict to
Ak to define a metric on a neighborhood of the ends of Ak , say, on Nkx(-s, e)
and Nkx(T-e, T+e). Extend the metric smoothly to a metric on Nkx(-e,T+
e) and denote the associated inner product on vector fields by ( , ). Define
a new vector field X on A^ x {0} and Nk x {T} by the conditions (1) X
is orthogonal to the hypersurfaces A^ x {0} and A^ x {T} ; (2) (X, j-r) > 0
and (3) (X, X) = 1 . Extend X to a neighborhood of the hypersurfaces by the
condition that VXX = 0, where V is the covariant derivative associated to
the unique Riemannian connection; that is, X generates flow along geodesies
perpendicular to the respective hypersurfaces. The new vector field X is defined
now in neighborhoods of the hypersurfaces, say Nkx(-8,28) and Nkx(T-
28, T + 8), and we may assume further that (X, f-r) > 0 where X is defined
(by possibly choosing a smaller 8 > 0). Choose a smooth positive function
(j> with support contained in A^ x (8/2, T - 8/2) and satisfying <p = 1 on
Nkx[8,T-8]. Define an extension of X, call it T,by Y = <t>(§-r) + (l -<t>)X.
Then Y is a smooth nonvanishing vector field on Nk x (-8 ,T + 8). The flow
along Y defines a natural smooth map

Nk x[0,T + 8)^ Nk x[0,oo).

Further, the image of the hypersurface Nk x {T} is a hypersurface in A^ x
(0, oo) transverse to the vector field Y. Choose a smooth function y/ > -1
with support contained in Nk x (8 ,T - 8) such that the flow along the renor-
malized vector field Z = (1 + y/)Y defines a diffeomorphism from Nkx(0, T)
onto Nk x (0, 1). Notice that in a neighborhood of A^ x {0} and A^ x {1} , the
coordinate vector field ^ (where t represents the product coordinate) agrees
with the image of the vector field Z . Thus, by construction, the coordinates
agree with Fermi coordinates in a neighborhood of the hypersurface A^ x {0}
and Nk x {1}, and in local coordinates (x") for A^ , the metric has the desired
form dt + GaJx ,t)dx"dx . (This block diagonal form of the metric also
follows immediately from conditions (1), (2) and (3) above, and the condition
that   VxX = 0.)

Fix a metric on A^ locally representable as h„dx"dxp , which has constant
negative scalar curvature. When dim Nk > 3 (n > 3), this is always possible
by the result for compact manifolds [A]. When dim(Nk) = 2, this will be
possible as long as the genus of the compact surface A^ is at least 2 ; in §2, we
will indicate how this can always be arranged through an appropriate choice for
a Morse function.
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Let tp(t) be a smooth function with support contained in (|, 1 - |) which
is equal to 1 on [e, 1 - e]. Define

(1.1) g = dt2+f(t)(<p(t)hal)(x) + (\-(p(t))Gap(x,t))dxttdxli.

Here f(t) is a function yet to be determined. The next result gives us a choice
for /.

Proposition 1.2. In equation (1.1) the function f(t) can be chosen so that R-,
the scalar curvature of g, is < -| on (Nk x (0, 2e)) U (Nk x (1 - 2e, 1)).
Proof. We denote coordinates on Nkxl for the sake of notational convenience
by (x ,xa) with x  =t and Greek indices running from  1 to n .

Consider a metric of the form

g = dt + gaj} (x, t)dxadxp .

A routine computation shows that

d-2) (a)     r;o = r; = r;Q = o,
o       i dgaP(b)     r^ = -2^T'

[C)       l°°     28      dt   '

(d)       rlp = r7aP ,

where, as usual, g7^ denotes the inverse matrix to g„, the summation conven-
tion is employed and Y7n„ denote the Christoffel symbols for the induced metric
on the hypersurface A^ x {/0} . From this it is easy to see that the formula for
the components of the Ricci tensor are

f>Ty
r° vy  - rM r7  ~rM r°   - -_yJL1 yfi1 On        * YPl P<>       * 0/?1 pa QX«   ■

If we denote by Rnjj the components of the Ricci tensor for the induced metric
on A^ x {tQ} , then

,.,, £ \d28nP      1   pydg^dg^      i   ,ydg7/jdg^
V-%) Kap-"af>     2   dt1       4g      dt     dt   + 2g      dt     dt

and

(14) R    --- — (loedet*   )-iW*^^
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Taking the trace and denoting the scalar curvature of A^ x {t0} by R, we
get

2 2

(L5) R = *-\(it^^Sap)))   -£i(lQgdet(sa,))

_   1     70    M«d8aydgPf
Ag g    dt   dt '

Similarly if the metric g is perturbed by

(1.6) g = dt2+f(t)gafi(xt)dxadxfi

then the scalar curvature is given by either of the two formulae below

(L7) * = 7 ~ \ (ii^^8^ + ncTt{Xo% f))
d2

-—j(log det(gQ/?) + «log/)

We are now prepared to choose the f(t) in the statement of the proposition.
We first define f to be identically 1 on (0, §). From the first equation in (1.7)
it follows that if we maintain the inequality / > 1 on (0, 2e), then

d2 d2
(1-8) R < \R\ - -j(log det(#   )) - n-^log f).

dr p dt
Recall from equation (1.1) that

Sal3 = <P{t)Kfi(x) + (1 - <p(t))Ga)}(X , 0 .
Define

M(t0) = max (|j?| - -^(log delgap(x, t))\ .

It is trivially true, from (1.8), that R < -1 whenever n(log/)" > M(t) + 1. ('
represents derivatives with respect to t.) Thus it would be sufficient to choose
F = log/ on (0,2e) such that F = 0 on (0,f) and F" > ^^ on (§,2e).
Of course no such function could be smooth at x = §. On the other hand,
the two definitions can be patched together so that for any <5 > 0, 8 > F > 0
and \F'\ < 8 in an arbitrarily small neighborhood of (§ - a, § + a). Thus,
for some a > 0, R < -1 on (0, § - a) U (f + a, 2e), and it follows from the
second equation of (1.7) that on (§ - a, § + a)

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(1.9) R<R-nF" + c(8,g)

where the constant c = 0(8) as 8 J. 0. Since near t = §, R is close to -1 and
one can choose F so that F ' > 0, it becomes clear that F can be chosen so
that R < -1 on (0, 2e). This same argument works on (1 - 2e, 1) completing
the proof of Proposition 1.2.

Remark 1.3. We can guarantee that at t = 2e, f > 1, f > 0 and /"// >
{f If) s0 tnat /" > 0 . This follows from the initial conditions F = log/ = 0
and F' = 0, and the inequality F" = /'// - (///)2 > 0.

We will now show how to extend f(t) from being defined on t e {(0, 2s) U
(1 - 2e, 1)} to t E I. For convenience of notation one will take a change
of t variable (the new variable being denoted by s , and the constant T to be
chosen later) so that Ak = A^ x (-3e, T + 3e) with s = t - 2e for -e < t < 2e
and s = t+T-\+2e for 1 - 2e < t < 1 + s . In terms of the s-coordinates
g = ds2 + f(s)hn/j(x)dx"dxfi near s = 0 and s = T where /(0) > 1, /(0) >
0, /"(0) > 0 and   £ has negative scalar curvature for s < 0 and s > T.

Proposition 1.4. There is an extension of f(s) to {0 < s < sx}u {T - s2 < s <
T} so that (i) there exist c, > 0, c2 > 0, for which f - c, « zero to second
order at sx and f - c2 is zero to second order T - s2; (ii) the scalar curvature
of g is negative.

Proof. By equation (1.7), and using the fact that for 0 < 5 < T, the metric
gnp(x,t)dx"dx^ is the constant metric ha/j(x)dxndx^ for which i? = -l

~     -(l + nf)     n(n-3) (fVR=      7 4— [j) ■

Since n > 3 the second term is nonpositive, and the inequality R < 1 /2/ holds
as long as nf" > —1/2. It is now clear that there exists a smooth extension
of f(s) from s = 0 to s = sx which flattens / out at s — sx (that is, / = c,
vanishes to second order at 5 = 5, for some constant c, ) as long as sx is
sufficiently large (in particular, sx > 2nf(0)). A similar argument works for
the second end. This fixes our choices for sx and s2 and T is chosen to be
any number bigger than sx + s2.

After these preliminary observations we are ready to prove our main result.

Proof of Theorem 1 (Dimension > 4). Construct a metric gk on each Ck as
described above. In patching the metric on Ck to one on Ak, a fixed product
structure Ak = Nk x I is determined on the Ak , as well as a fixed metric hk
on Nk with constant negative scalar curvature. After choosing an appropriate
diffeomorphism for the interval, say Ak = Nk x (-e, Tk + e), the metrics gk
and gk+x   restrict to Ck n Ak  and Ck+i n Ak to a metric on the ends of Ak

2 n
which restricts to Nkx(0,s) and Nk x(T-e,T) as dt +ckh)fidx dx   and
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dt2 + ck+[ha„dxadxp, respectively. Choose ek so small that, 1) the scalar
curvature on ekgk has a scalar curvature < -1 and, 2) both ekck < 1 and
ekck < 1 . (Notice that scaling gk by ekgk scales the scalar curvature by
dividing by ek). (Scale gx on Cx by exgx such that excx < 1 and exgx has
scalar curvature < — 1.) Finally, notice that on the ends of Nk x I, the scaled
metrics look like ekdt +ekckhandxadx and ek+xdt + ek+lck+xh „dxadx^ ,
but that after an appropriate diffeomorphism of the t variable, it can be written
as   dt2 + (ekck)ha„dxadx^ and   dt2 + (£k+xck+x)hapdxadx.

The completion of the proof of the theorem again splits into two cases, with
the case n > 3 being the easier one. We will deal with this case here, again
leaving the case n = 2 to §2.

The relevant equation for the scalar curvature on Nkx(0, T) is again given
by

(..id R=.iL±jn.n^rf
and we wish to choose / such that

J   1(0,8)— EkCk '      J   \(T-£,T)= £k+\Ck+l

and R < -j on (0,F). We will interpolate between ekck and £k+lck+l
with a monotone function /, and since 0 < ekck ,ek+ick+x < 1, we may also
require that 0 < / < 1 on (0, T). It is clear that it is sufficient to require that
-(1 + nf")/f < -1 (since the other term has the correct sign when n > 3) and
it is even sufficient to guarantee that -(1 + nf") < -| (since 0 < / < 1 ); that
is, it is sufficient to interpolate between ekck and £k+[ck+l with a monotone
function / which satisfies nf" > -5 or f" > — ̂ . This is easy to do as long
as T > An + 2. In fact, one can easily check that a linear function of slope
< gL in absolute value will interpolate between any two values between 0 and
1 on an interval of length less than An . At the end nearest the smallest of ekck
and ek+lck+x , this can be smoothly spliced to a constant function by a convex
function (/" > 0) which only helps the scalar curvature. At the end nearest
the largest of ekck and ek+xck+x , this can be smoothly spliced to a constant
function by a concave function with f" > —j: over an interval of length 1
(f1 changes from 0 to ^ over an interval of length 1).

The result is now easily established. On C0, we choose our metric with
scalar curvature < — 1; this starts the process, and eliminates any problems
with a finite portion of the topology. Similarly, on each Ck, k > 1, we choose
our metrics as above. These metrics are spliced together over A^ x / in such a
fashion that on any compact submanifold, the scalar curvature is less than —j .
Since on Nk x (0,T), the metric is of the form dt + f(t)h„dxadx , and
T > An + 2 > 1, the distance between the relatively compact sets Ck is at least
two, and the resulting metric is complete.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



442 JOHN BLAND AND MORRIS KALKA

2. Proof of the theorem for n = 3

As indicated in the introduction, the proof given in § 1 has to be modified in
3 crucial places for 3 manifolds ( n = 2 ). The first is a topological modification.
Recall that the Ak were topological products Nkx I, and we used a metric on
the cross section Nk ( — 2 dimensional manifold) with constant negative scalar
curvature. For n = 2, this requires that the cross sections A^ have genus > 2.
This can always be attained through an appropriate choice of Morse function
and will be the main content of Lemmas 2.1 and 2.2. The other critical places
for n > 3 occur in Proposition 1.4 and the proof of the theorem. In both cases,
equation (1.7) is used as

(1.7) 3 = J1+ !*/') _n(n-3)//-
/ 4 f2

When n > 3 , the last term can be ignored. However, when n = 2 , the term is
a positive contribution to the scalar curvature, and it must be dealt with more
carefully. The modified Proposition 1.4 will be contained in Proposition 2.3,
and the modified proof of the theorem will be presented as such.

We begin by considering the necessary topological modifications. The proce-
dure which we employ (to add and subtract handles) is a standard topological
technique. We include a description of it to make this paper self-contained for
geometers.

1 ") % "\ 1 1 1Lemma 2.1. Let D = {(x ,x ,x ) € R /0 < x ,x ,x < 2} be a three-
dimensional cube equipped with the Morse function x . Then there exists a
Morse function tp on   D with the following properties:

W  <P\dD=x^\dD.
(ii) The sets {cp - c} for c e (0, \) U (|, 2) are topological discs.
(iii) The sets {<p = c} , for c e (\ , |) are, topologically, discs with a handle

attached.
Proof. We will describe the construction of   q> by a sequence of diagrams.

For small values of c, the sublevel sets {<p < c) look like thin plates with
flat tops. See illustration (1).

As the value of c grows the surface of the plates grows small bumps in two
disjoint places. See illustration (2).

As c continues to increase, the bumps grow into horns sticking out from a
flat plate. (Illustration (3).)

Thus far the level surface is still a topological disc. Now, however, we let the
tips of the horns grow toward each other and touch. At the point where they
touch, when c = ± , tp has a critical point and beyond this value the level sets
are no longer simply connected. (Illustration (4).)

For ce (3,3), it now fills smoothly around the point where the horns first
touched. As c continues to grow, however, the handle grows fatter and fills in
at the center.
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The surface which eventually fills in the center is a singular surface and thus
this corresponds to a critical value for tp, which we may set to be (p = |.
(Illustration (5).)

As c grows past |, the level surface is simply connected and eventually
becomes a flat plate again. Notice that the modification is carried on within a
cube and that on the boundary of the cube the Morse function equals the Morse
function x . (Illustration (6).)

(1)

(2)

L_/
(3)
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(4)

(5)

—#|S^-.

(6)

Lemma 2.2. For n = 2, and with notation as in §1, we can modify the Morse
function r so that each level set Nk is of genus at least 2.

Since r has only a finite number of critical points on each level set, choose
two distinct regular points, say pxk and p2k , for r on each component of
{r = k}. Let [/, k and U2k be disjoint open neighborhoods of p{ k and p2 k
on {r = k] respectively with the property that all points in Ut k are regular
points of r. We follow the gradient flow of r through Ul k . Since r is a Morse
function this intersects {r = k - |} in disjoint open sets t/ k_,. The gradient
flow through Uik intersects the critical level {r = k + 1} in sets c7 . . Pick
disjoint open subsets Vik+Xc Uik+X which have no critical points. Follow the
forward flow of the sets  Vik+X  to disjoint sets   V, k+i C {r = k + %} and the
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backward flow to disjoint open set Vj k_, c {r = k - \) . By Morse Theory we
have constructed two topological cubes to which we can apply Lemma 2.1.

The next proposition will be essentially the 3 dimensional analogue of Propo-
sition 1.4 (for n = 2). Recall that we have a metric on the ends of Nk x
(-3e, T + 3e) of the form g — ds + f(s)ha„dxadx where near 5 = 0 and
s = T,  g has negative scalar curvature, and /(0) > 1,    f(0) > 0, and
/"(0)>(/W//(0).
Proposition 2.3. There is an extension of f(s) to {0 < s < sx }l){T-s2 < s < T}
so that (i) there exist constants cx and c2 > 0 such that (f — cx) is zero to
second order at sx and (f - c2) is zero to second order at s = s2; ii) the scalar
curvature of g is negative.
Proof. We will show how to flatten / out only near the initial end (/ = 0),
the second end being an identical calculation. By (1.7) and using n = 2, the
scalar curvature is given by

The initial conditions imply that /"(0) > /(0)/(0)//(0) > f(0)f'(0)/Af(0).
Thus, the second term in (2.1^) is negative, but we can smoothly reduce /"
until f" = f'f' /Af at a point. Re-initialize this point to be t — 0 and extend
/ beyond   t = 0 by solving the initial value problem

(2.2) /' = ///4/
subject to the new initial conditions /(0) and /'(0). In particular, the general

4
solution to the ordinary differential equation (2.2) is given by / = (a + bt)}
where a and b are chosen to make / continuously differentiable near t =
0. (This implies, in particular, that a > 0 and b > 0.) From (2.lfc), it is
clear that R < -1// over this time interval. Further, as t —> oo, f f /f =
I6b2/9(a + bty -^ 0. In particular, after a finite time, //// < 1 . At this
point, (2.1c) shows that R < (l//)(-l/2) - 2f"/f. We can now reduce /"
to -1/8 in an arbitrarily small interval without changing the values of f ,f
by some amount which is specified to maintain the inequality f f / f < 1 and
by (2.1f) the negativity of R. Then, since f" < 0 and f > 0, we have
that f is decreasing and / is increasing, so f f If is decreasing and remains
less than   1 .   Equation  (2.1C)  shows that R < (-1/2 - 2/")// < -1/(4/)
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whenever f" > -1/8. It is now clear that / can be flattened out (that is,
f can be reduced to be identically zero) in a finite time maintaining negative
scalar curvature by maintaining f" > -1/8 .
Proof of the theorem (for 3-manifolds). To complete the proof for three di-
mensional manifolds, it remains to show that given arbitrary constants 0 <
c, < cQ < 1 , there exists a function / defined on some finite time interval
(0, T) = (0, gsif£l + 8c,) such that / agrees to second order with the constant
function c0 at   t — 0 and the constant function c, at t — T and such that

(2.3, ^l(_,_2/. + ̂

satisfies /?<--. Then, the proof for the three dimensional case will follow
exactly as for the higher dimensions.

Near t = 0, f" can be changed sufficiently quickly to - g so that the values
of f ,f are not significantly altered; by (2.3), R is still less than (-1 + \)/f.
Next, solving the differential equation f" = —l forte (0,8c,) decreases f
from approximately 0 to -c, . Now reduce f" back to zero in an arbitrarily
small interval without significantly affecting the value of f. Solve the linear
differential equation f — -c, for  t e (8c,, 8c, + £ilf£L). Then / is decreasing
on (0,8c, + ia^1) and   /(8c, + i£s^il) < c, ; thus there is a t' e (8c,,8c, +
M) for which /(/') = c, . For t e'(0,0 > /' > 4 , /> c,, |/| < c, and
by (2.3)

/J?<(-l + ± + c,/2)<-±    or   R<-L4c0.
Near t = t', by making f" arbitrarily large positive for a sufficiently short time,
we can reduce f1 to zero rapidly and by (2.3), only increase the negativity of R .
Finally, extend / as a constant for an interval of length 1 to insure completeness
of the metric.
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