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Excitable media support self-organized scroll waves which can be unstable and give rise to three-dimensional
wave chaos. Winfree turbulence of scroll waves results from the negative-tension instability of scroll waves;
it plays an important role in the cardiac tissue where it may lead to ventricular fibrillation. By numerical
simulations of the Oregonator model, we show that this instability and, thus, the Winfree turbulence may
also be observed in the Belousov-Zhabotinsky reaction. The region in the parameter space, where the instability
takes place, is determined, and a relationship between the negative-tension instability and the meandering
behavior of spiral waves is found. The application of global periodic forcing to control such turbulence in the
Oregonator model is discussed.

1. Introduction

The autocatalytic Belousov-Zhabotinsky reaction provides
characteristic examples of wave behavior in excitable media.
Experiments with the Belousov-Zhabotinsky reaction in thin
layers exhibit such generic two-dimensional (2D) wave patterns
as pacemakers1 or spiral waves;2 the transition to chemical
turbulence due to spiral breakup has also been found.3 For the
reaction in thick layers, three-dimensional (3D) effects become
important, and patterns of scroll waves are observed4 which can
be unstable and give rise to chaotic dynamics.5,6 Generally, the
behavior of chemical waves in the Belousov-Zhabotinsky
reaction is well described by the Oregonator model of this
reaction.7 Similar kinds of patterns exist in a completely different
excitable medium, i.e., in the cardiac tissue.8 There, electrical
excitations propagate through the tissue as traveling waves
which coordinate physiological contractions of the cardiac
muscle, while spiral and scroll waves are related to pathological
conditions.9 The heart is three-dimensional, and this is crucial
for several types of arrhythmias.10 The close correspondence
between the phenomena in cardiac tissue and in chemical
excitable media provides an additional motivation for the studies
of wave patterns in the Belousov-Zhabotinsky reaction. It is
known that only thick preparations of cardiac tissue may show
fibrillation, and, therefore, 3D effects must be important in this
system.10 Having this in mind, it is interesting to look for the
instabilities which only appear in 3D excitable media, when
wave propagation in thin layers is completely stable. One of
them is the negative tension instability associated with the
expanding scroll rings.11,12 This instability was studied for a
general Barkley model of excitable media in our previous
publications.13,14 The negative-tension instability and the as-
sociated Winfree turbulence of scroll waves have not yet been
observed in the experiments with the Belousov-Zhabotinsky
reaction. Numerical simulations of scroll waves in the Orego-
nator model of the Belousov-Zhabotinsky reaction, based on
the mechanism proposed by R. J. Field, E. Koros, and R. M.
Noyes,15 show that such instability should also be possible in
this classical system and determine the conditions for its
experimental observation.

Scroll waves rotate around a nonexcited linear filament. This
filament could be straight or curved and can be closed into a
ring. Scroll rings found in the experiments are not stationary:
they shrink and eventually disappear.16 However, analytical and
numerical studies predict that scroll rings should not always
shrink: they may also expand under weakly excitable condi-
tions.17 The expansion of scroll rings means that small local
perturbations of a linear filament, representing small curved
pieces, grow, and thus the filaments are unstable, tending to
stretch spontaneously. This effect is known as the negative-
tension instability. Such instability is purely 3D, and, in the
same 2D medium, rotating spiral waves may remain stable. The
first numerical investigations of the expansion of scroll rings11

and the first studies of the negative-tension instability12 as well
as the recent detailed explorations of the final turbulent
state13,14,18 were performed using abstract models of excitable
media. Our study extends these investigations to the realistic
Oregonator model of the Belousov-Zhabotinsky reaction.

Wave patterns in the Belousov-Zhabotinsky reaction can be
easily controlled if a photosensitive modification of this reaction
is chosen (see, e.g., ref 19). External optical forcing20 and
feedback21 have been used to steer propagation of 2D waves in
this system. Furthermore, several methods have been employed
for the control of scroll waves. It was experimentally shown
that gradients of temperature or illumination can affect the
orientation22 and the dynamics23 of scroll rings. Previous
theoretical studies have further predicted that the negative
tension instability can be controlled by application of periodic
external forcing.13,24 Here, we extend these predictions by
numerical simulations of the photosensitive Oregonator model
under global periodic modulation of the illumination intensity.

In the next section the model and the employed numerical
methods are described. Simulation results are reported in section
3 and are discussed in section 4.

2. The Oregonator Model

In the last two decades, the Oregonator model has been widely
used to predict, compare, and verify observations in the
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Belousov-Zhabotinsky reaction. 3D simulations with this model
can help to guide experiments aimed at the observation of the
negative-tension instability. Our numerical simulations are
performed using the two-variables variant of the Oregonator
model,7 modified to take into account illumination in the
photosensitive version.25 The reaction-diffusion equations of
this model are

where u is the fast activator variable, and V is the slow inhibitor
variable. The variable u corresponds to the local chemical
concentration of HBrO2, and V corresponds to the concentration
of the catalyst of the reaction, i.e., ferroin for the classical
version of the reaction and ruthenium bypyridyl in its photo-
sensitive modification. The small parameter ǫ , 1 represents
the ratio of time scales of the dynamics of the fast and slow
variables; f is the stoichiometric parameter which is positive
and typically smaller than 4,26 and q is another chemical
parameter. Du and DV are, respectively, the dimensionless
diffusion coefficients of HBrO2 and the catalyst. Choosing
appropriate length units, we fix Du ) 1. For the diffusion
coefficient of the catalyst, we take the values DV ) 0.6 in the
aqueous solution, following ref 26, and DV ) 0 when the reaction
takes place in a gel which immobilizes the catalyst and prevents
its diffusion.27 The parameter φ is proportional to the intensity
of the illumination.

Spiral waves in the Oregonator model were systematically
studied for DV ) 0.6 and φ ) 0 by W. Jahnke and A. T. Winfree
in 1991.26 They determined the parameter regions of rigidly
rotating, meandering, and chaotic spiral waves and described
dynamical properties of spiral waves in these different regimes.
Their main focus was on the meandering spiral waves. The tip
of a meandering spiral wave performs composite motion with
several frequencies, giving rise to flower patterns. In the simplest
case, the tip follows a cycloidal trajectory representing a
superposition of two circular motions with different frequencies.
The main motion is a periodic rotation of the spiral tip around
the unexcited region of the core with frequency ω0 and radius
R0 and corresponds to the small loops of both panels in Figure
1. Furthermore, the center of rotation of the spiral migrates
around a circle of radius R1, plotted by dashed lines in Figure
1. When the center of the spiral rotates around the second radius
in the direction opposite to the motion of the tip around the
circular core, the spiral tip meanders with outward loops (Figure

1,A). On the other hand, when the center of rotation and the tip

of the spiral rotate in the same direction, the loops of the

meander are inward oriented (Figure 1,B). Both regimes are

observed in the Oregonator model.26,28 Equations 1 are dimen-

sionless and are integrated using the finite-difference method

with the temporal step ∆t ) 0.0015 and the spatial step ∆x )

0.5 in all simulations. A grid of 256 × 256 points is used to

integrate the equations in 2D. The linear size of the medium in

our system is at least five times larger than the distance between

two subsequent coils of the spiral waves, preventing the

influence of boundaries on the spiral wave motion. No-flux

boundary conditions are employed in all our simulations. For

large meandering of spiral waves, the tip of the spiral would

reach the boundary of the medium. To avoid such interactions

with the boundaries, special moving boundaries conditions are

then used to keep the tip of the spiral wave inside the square of

128 × 128 pixels. These moving boundaries conditions consist

of adding a slice of the grid in the direction of the motion and

removing at the same time a slice on the other side of the grid

when the spiral waves leaves the square, thus keeping the tip

inside the grid and far away from the boundaries (see ref 14).

Typically, the waves just follow the spiral tip, and small

modifications far away from the center do not affect the

dynamics. In 2D media, the position of the tip of the spiral wave

is detected using the condition of the minimal value of the cross-

gradient of activator and inhibitor fields, as in ref 28.

Scroll rings are 3D waves with axial symmetry. Therefore,

they are independent of the angle in the cylindrical coordinates

with the vertical axis coinciding with the symmetry direction

of the ring. To determine whether a scroll ring would expand

or shrink for the given medium parameters, it is sufficient to

integrate the dynamic equations of the effective 2D system

which are obtained by assuming axial symmetry. Note that such

reduced simulations are valid only at the initial stage of the

expansion of scroll rings, because the negative-tension instability

of the filament eventually leads to its deformations and the

breakdown of the axial symmetry.

3D simulations of scroll waves with an initially straight

filament are performed for a grid with 150 × 150 × 200

elements with the same discretization quantities as in the 2D

systems and with the nonflux boundaries conditions. For the

computation of the Laplacian, not only the first neighbors but

also the second neighbors are taken into account, by the use of

the 19-point finite-difference scheme. We employ the condition

of crossover of the isosurfaces uf ) 0.15 and F(uf) ) 0 to detect

the filament (see ref 29). Isosurfaces corresponding to us ) 0.25

with the additional condition Vs < 0.05, to show only the frontal

part of the wave, are plotted in the 3D snapshots in the last part

of the paper. A modulation of the parameter f along the vertical

direction f(z) ) f0 + fmcos(2πz/λ) is introduced during a time

lapse ∆t ) 0.75 when the scroll wave is already formed, to

perturb the initially straight filament and study its stability. The

values employed in our simulations are fm ) 0.2 and λ ) 8.0.

Figure 1. Motion of the tip of a meandering spiral wave with outward
loops (A) and with inward loops (B). The solid arrows show the
direction of motion around the loops (ω0) and around the secondary
circle (ω1). Simulations are performed with the Oregonator model with
Du ) 1, DV ) 0.0, ǫ ) 0.05, q ) 0.002, φ ) 0 and (A) f ) 3.8 or (B)
f ) 4.0.
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3. Numerical Investigations

The negative-tension instability, predicted in 1987,17 was
observed in numerical simulations of the FitzHugh-Nagumo
model.12 Subsequently, the parameter region with negative
tension was identified in the phase diagram of the Barkley
model. This region lies between the region of meandering of
2D spiral waves and the nonexcitable domain.13 Below, we first
determine the corresponding regions with the negative tension
of filaments in the parameter space of the Oregonator model.
After that, full 3D simulations are performed to observe the
evolution of the filament and the final Winfree turbulence. At
the end, we consider the effect of a periodic external forcing of
scroll waves by periodically varying the model parameter that
specifies the illumination intensity.

3.1. The Phase Diagrams. In the previous studies of the
Oregonator model, its parameter regions with rigid rotation of
spiral waves and meandering of spirals were determined.26 These
results serve as the initial point in our current investigations.
Figure 2 shows the phase diagram of the Oregonator model in
the parameter plane of f and ǫ, keeping other parameters
constant. Inside the region marked “no waves”, wave propaga-
tion is not possible. To find the boundary of this region, we
performed simulations of one-dimensional pulses. In the region
of the parameter space where spiral waves were possible, two
principal types of dynamics were observed, i.e., rigidly rotating
and meandering spiral waves. Rigid spiral waves rotate around
a circular core with frequency ω0. The size of the core depends
on the excitability of the medium: weak excitability implies a
large radius and long periods of rotation and high excitability
implies a small radius and short periods of rotation. Meandering
spiral waves have two or several frequencies involved in the
motion of the tip. With only two frequencies ω1 and ω0, the tip
motion is cycloidal as in Figure 1. The motion becomes more
complex when more frequencies are involved in the meandering.

The phase diagram of the Oregonator model, shown in Figure
2, is essentially the same as given in ref 26. To favor
comparison, notice that f and ǫ increase respectively from top
to bottom and right to left. However, we include here two
additional lines. The boundary separating parameter regions with
oscillatory and excitable dynamics is indicated by the dashed

line (see ref 30). The bold line shows the boundary separating
regions with expansion and collapse of scroll rings. Above this
line in Figure 2, scroll rings shrink.16 Below this line, scroll
rings grow, and the tension of the filament of the scroll waves
is negative, leading to the chaotic regime known as Winfree
turbulence.

The loops of the meandering motion can be oriented toward
the center of the large radius (Figure 1,B) or outside (Figure
1,A). Separating the regions of meandering with inward and
outward loops, there is a boundary on which linear drift of spiral
waves is observed. We have found in our numerical simulations
that this boundary always coincides, inside the meandering
region, with the boundary separating the regions with expansion
and collapse of scroll rings. Thus, meandering with outward
loops in the 2D media corresponds in three dimensions to the
collapse of scroll rings, and meandering with inward loops
corresponds to the expansion of scroll rings. Examples of the
evolution of the radius of scroll rings for different values of
the parameter f are displayed in Figure 3. To help understanding
these examples, we also show in Figure 3,A the dependence of
the main period of rotation of spiral waves, associated with the
frequency ω0 inside the loop of the meandering motion, on the
parameter f. As expected, the period of spiral waves increases
as f increases, and the medium becomes less excitable. Under
high excitability, the radius decreases with time and the scroll
ring collapses (Figure 3,B). In the same 2D medium, spiral
waves are rigidly rotating around a small core (Figure 3,B′).
When the excitability is decreased and the parameter region
with meandering of spiral waves is entered, the scroll ring

Figure 2. Phase diagram of the Oregonator model in the parameter
plane (f, ǫ). The gray domain corresponds to meandering of spiral
waves, the dashed light gray region to nonexcitable media, and the
white area to rigidly rotating spiral waves. The medium is oscillatory
above the dashed line and excitable below it. The bold line shows the
boundary between the regions with positive and negative tension of
the filament. For the meaning of the dotted lines, see Figure 6. Other
parameters of the model are Du ) 1, DV ) 0.6, q ) 0.002, and φ ) 0.

Figure 3. Dynamics of scroll rings and spiral waves for different values
of the parameter f, with ǫ ) 0.06 and other parameters as in Figure 2.
(A) The period of the spiral waves as a function of f. Examples of the
evolution of the radius of scroll rings (B-E) and the dynamics of spiral
waves (B′-E′), for (B,B′) f ) 1.75, (C,C′) f ) 2.5, (D,D′) f ) 3.015,
and (E,E′) f ) 3.1.

Scroll Waves and Winfree Turbulence J. Phys. Chem. A, Vol. 110, No. 43, 2006 12065



continues to shrink, although its radius exhibits also some
periodic time modulation (Figure 3,C). Now, the spiral wave
tip performs a cycloidal motion with outward loops (Figure
3,C′). This cycloidal motion is superposed with the collapse of
the ring, as seen in Figure 3,C. When the parameter f is further
increased, the meandering of the spiral wave becomes different
and the loops are then looking inward (Figure 3,D′). Under these
conditions, the scroll ring expands, while also showing some
periodic modulation related to the meandering (Figure 3,D).
Finally, when excitability of the medium is weak, the spiral
wave again rotates rigidly around a core with a large radius
and with a long period (Figure 3,E′). Now, the scroll ring
steadily expands (Figure 3,E), and this expansion gives rise to
turbulence.14 Numerical simulations in Figure 2 were done using
a relatively large value of the inhibitor diffusion (DV ) 0.6), to
compare these results with those of ref 26. However, spiral and
scroll waves can also be observed in the Belousov-Zhabotinsky
reaction inside gels or porous medium. Gels typically prevent
diffusion of the inhibitor. This effect can be important because
we have shown previously14 that decrease of the diffusion
coefficient of the inhibitor can induce the negative-tension
instability of filaments. In the opposite limit Du ) DV, scroll
rings always collapse at rate - Du/R (see ref 31).

Therefore, simulations have been repeated for the immobile
inhibitor (DV ) 0). Their results are presented in Figure 4. The
meandering region occupies the main part of the phase diagram.
It can be noticed that the size of the region corresponding to
negative tension is increased now, and, importantly, the
meandering region with inward loops is much larger under this
condition. As before, the boundary between expansion and
collapse of scroll rings coincides with the boundary between
the regions with inward and outward loops inside the domain
of meandering of spiral waves. The boundary between oscil-
latory and excitable dynamics remains the same because it does
not depend on diffusion coefficients. Increasing the parameter
f lowers excitability of the medium, and spiral waves rotate
slower, as seen in Figure 5,A. For high excitability, spiral waves
rotate rigidly, but meandering soon develops. Meandering with
different numbers of loops is observed, five loops in Figure
5,B′ or six in Figure 5,C′, but scroll rings shrink in both cases,
see Figure 5,B,C. However, in agreement with Figure 3, when
the loops of the meandering become inward (Figure 5,H), scroll

rings begin to expand (Figure 5,D). For still weaker excitabilities
where no meandering is observed, scroll rings also expand
(Figure 5,E).

The above numerical simulations have been performed using
the original version of the two-variables Oregonator model
without taking into account illumination (i.e., by formally putting
φ ) 0 in the considered model). The modified version of the
Oregonator system describing the photosensitive Belousov-
Zhabotinsky reaction includes parameter φ, which is proportional
to the illumination intensity. For higher values of this parameter,
excitability of the medium decreases, and, starting from some
critical value, wave propagation is no longer possible. The effect
of the variation of the parameter φ, as seen in Figure 6,A, is
similar to that of the increase of the parameter f (cf. Figure 2).

In Figure 6, phase diagrams of the Oregonator model in the
parameter planes (ǫ, f) and (φ, f) are displayed. The limits of φ

f 0 in both figures correspond to the dotted lines in Figure 2.
For f ) 2 (Figure 6,A), spiral waves rotate rigidly in the
oscillatory media close to the transition to meandering of spiral
waves. The meandering region is reduced here to a small domain
of the parameter plane, although it grows for the smaller values
of ǫ. Meandering with inward loops is no longer observed, and
the transition from positive to negative tension occurs outside
the meandering region. This is another indication of the
relationship between meandering motion with inward loops in
2D and the negative-tension instability of filaments in 3D.

The phase diagram in Figure 6,B is plotted in the parameter
plane (φ, f), while keeping ǫ ) 0.06; it corresponds in the limit
φ f 0 to the vertical dotted line in Figure 2. The diagram is

Figure 4. Phase diagram of the Oregonator model in the parameter
plane (f, ǫ). The gray domain corresponds to meandering of spiral
waves, the dashed light gray region to nonexcitable media, and the
white area to rigidly rotating spiral waves. The medium is oscillatory
above the dashed line and excitable below it. The bold line shows the
boundary between the regions with positive and negative tension of
the filament. Other parameters of the model are Du ) 1, DV ) 0, q )

0.002, and φ ) 0.

Figure 5. Dynamics of scroll rings and spiral waves for different values
of the parameter f, with ǫ ) 0.05 and other parameters as in Figure 4.
(A) The period of the spiral waves as a function of f. Examples of the
evolution of the radius of scroll rings (B-E) and the dynamics of spiral
waves (B′-E′), for (B,B′) f ) 2.5, (C,C′) f ) 3, (D,D′) f ) 3.5, and
(E,E′) f ) 3.6.
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similar to that of Figure 6,A. However, the boundary between
oscillatory and excitable behaviors depends on the illumination
intensity φ, while it was almost independent of the parameter
ǫ. The boundary between expansion and collapse of scroll rings
coincides, as in the previous diagrams (Figure 2 and Figure 4),
with the boundary between inward and outward loops of the
corresponding 2D motion.

3.2. Three-Dimensional Simulations. The numerical simula-
tions, used to determine the boundaries of the transition to
negative tension in the phase diagrams, have been performed
in the previous section assuming axial symmetry of scroll rings.
Full 3D simulations are, however, necessary to investigate
further evolution of the negative-tension instability and to
observe the final turbulent state. An example of the evolution
of a straight scroll wave under the conditions of the negative-
tension instability of its filament is shown in Figure 7. Here,
the medium is weakly excitable, and spiral waves are rigidly
rotating in the 2D medium with the same value of the parameters
of the model. To perform this 3D simulation, a plane wave with
a free cut edge is generated as the initial condition. The wave
rolls around this linear defect and gives rise to the scroll wave
rotating around a linear filament (Figure 7,A). To initiate the
instability development, small perturbations must be applied.
To generate them, weak external sinusoidal perturbation of the
parameter f along the scroll axis is introduced and maintained
within a short time interval 12 < t < 12.75. As a result of this
perturbation, a small-amplitude modulation of the filament is
created (Figure 7,B). Later on, the perturbation is removed, and
the evolution starting with this perturbed state is monitored.
After some initial relaxation (Figure 7,C,D), bumps gradually
develop (Figure 7,E,F), and the filament acquires a complex
shape (Figure 7,G,H). The filament breaks when it touches the
boundaries of the system (Figure 7,I). Eventually, a set of short
filaments is formed that snake out through the medium. The
scroll waves rotate around these complex filaments and Winfree
turbulence sets in Figure 7,J-L. The final state in Figure 7 is
similar to the turbulent regimes previously observed for abstract
reaction-diffusion models12-14 Although computer tomography
methods allow for the reconstruction of 3D waves and the

filaments from the experimental data are available,5,32 they have
their own limitations, and, in the experiments, only planar
projections of the actual 3D wave patterns are typically
observed.23,33 In such experiments, the waves are viewed from
the top of a thick layer of the medium with the Belousov-
Zhabotinsky reaction. To facilitate comparison with such
experimental data, we have also constructed in Figure 8 the
planar projections of the 3D wave patterns shown in Figure 7.
To obtain such projections, the reacting medium was assumed
to be transparent. The local image density U at a point (x, y) in
the planar projection was determined by the integration of the

Figure 6. Phase diagrams of the Oregonator model in the parameter
planes (φ, ǫ) (A) and (φ, f) (B). The gray domain corresponds to
meandering of spiral waves, the dashed light gray region to nonexcitable
media, and the white area to rigidly rotating spiral waves. The medium
is oscillatory above the dashed line and excitable below it. The bold
line shows the boundary between the regions with positive and negative
tension of the filament. The limits φ ) 0 correspond to the dotted lines
in Figure 2. The rest of parameters of the model are kept constant: Du

) 1, DV ) 0.6, q ) 0.002 and (A) f ) 2, (B) ǫ ) 0.06.

Figure 7. Evolution of a straight scroll wave and its filament under
the negative-tension instability for weak excitability. To create the initial
perturbation, small sinusoidal modulation of the parameter f is
introduced within a short interval 12 < t < 12.75. The snapshots
corresponds to (A) t ) 10, (B) t ) 12.75, (C) t ) 15, (D) t ) 30, (E)
t ) 45, (F) t ) 60, (G) t ) 75, (H) t ) 90, (I) t ) 105, (J) t ) 120, (K)
t ) 135, and (L) t ) 150. The parameters of the model are f ) 2.80,
ǫ ) 0.07, DV ) 0.6, φ ) 0, and q ) 0.002.

Scroll Waves and Winfree Turbulence J. Phys. Chem. A, Vol. 110, No. 43, 2006 12067



activator concentration u along the vertical coordinate, U(x, y)
) ∫u(x, y, z)dz. White regions in the image correspond to higher
local total concentrations U.

In the previous section, strong correlation between a transition
from meandering with outward loops to meandering with inward

loops for spiral waves in 2D medium and the negative-tension
filaments in 3D was noticed. To further explore this relationship,
3D simulations of unstable scroll waves under meandering
conditions have also been performed. The straight scroll wave,
which initially rotates under meandering conditions with inward
petals (Figure 9,A), is perturbed with a weak sinusoidal
modulation in the parameter f over a short time interval (Figure
9,B). After some initial relaxation of the perturbation (Figure
9,C), the filament begins to bend (Figure 9,D-I) and to develop
a complex wave pattern (Figure 9,J-L). The density of filaments
in the developing turbulent regime is larger than in Figure 7

Figure 8. Evolution of a straight scroll wave under the negative-tension
instability of its filament for weak excitability. The top view planar
projection of the wave patterns is displayed (see the text); however, a
nonlinear filter is applied to enhance the contrast. The model parameters
and the time moments of the respective snapshots are the same as in
Figure 7.

Figure 9. Evolution of a straight scroll wave and its filament under
the meandering conditions for spiral waves in the respective 2D
medium. To create the initial perturbation, small sinusoidal modulation
of the parameter f is introduced within a short interval 12 < t < 12.75.
The snapshots corresponds to (A) t ) 10, (B) t ) 12.75, (C) t ) 15,
(D) t ) 30, (E) t ) 75, (F) t ) 120, (G) t ) 165, (H) t ) 210, (I) t )

255, (J) t ) 300, (K) t ) 345, and (L) t ) 390. The parameters of the
model are f ) 3.5, ǫ ) 0.05, DV ) 0, φ ) 0, and q ) 0.002.
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because the excitability is higher here. It should be noted that
time scales are different in Figures 7 and 9, with the Winfree
turbulence needing the longer time to develop under meandering
conditions. Another important difference is that, similar to the
situation with uniform periodic forcing of scroll waves (see ref
34), meandering leads to repeated self-crossing of the filament
and budding of small scroll rings which grow and evolve. This
kind of behavior was previously observed only in Winfree
turbulence induced by slow periodic forcing.24 Simulations have
also been performed under the condition of meandering with
outward loops, when the negative-tension instability is absent.
Initially, until the perturbation, moderate meandering is observed
(Figure 10,A). After the application of the perturbation, the
filament does not return to its straight shape, and some bumps
persist during the entire evolution (Figure 10). Although these
bumps move along the filament, they do not, however, grow
with time, and the filament remains roughly straight. This
behavior of filaments has been previously found for another
model of excitable media (ref 35). If meandering is stronger,
the effect becomes more pronounced, but the filament still
remains connected and never spontaneously breaks if the
boundaries are far away enough and the filament does not touch
them (cf. ref 35).

3.3. Effects of Uniform Periodic Forcing. The photosensi-
tive version of the Belousov-Zhabotinky reaction allows for
the introduction of parametric forcing by periodic modulation
of the illumination intensity. In the experiments, such forcing
can never be spatially uniform, because of light attenuation in
the medium. The actual spatial profile of the light intensity
would depend on a particular experimental setup, and, in the
present general study, we prefer not to take into account the
effects of illumination gradients. Therefore, only the hypothetical
uniform periodic modulation of light intensity will be considered
here. This simplification would also allow us to perform
comparison with the previous studies of uniform periodic forcing
of Winfree turbulence in abstract models of excitable media.13,24

Under the conditions of weak excitability, scroll rings expand
(Figure 11,A). When uniform periodic forcing is applied by
modulation of the light intensity φ ) φ0 + φscos(2πt/Tf) with
a period Tf shorter than the rotation period T0 of the waves
around their filament (Tf < T0) and high enough amplitude φs,
the expansion is changed into the collapse of the scroll ring
(Figure 11,A), in agreement with previous results.13 While the
unforced system presents only one frequency, the periodically
forced scroll ring develops a complex motion composed of two
frequencies, as can be observed in the Fourier spectrum (Figure
11,B). The new frequency is the difference between the forcing
frequency and the frequency of rotation around the filament ωf

- ω′0. It is also important to note that forcing shifts the main
rotation frequency, as seen in Figure 11,B. While the unforced
scroll ring rotates around the filament with T0 ) 8.2, the forced
scroll ring rotates with T′0 ) 9.6.24 These numerical simula-
tions have been performed in the reduced 2D geometry,
assuming axial symmetry of the filament, and they correctly
describe only the initial stage of the instability development.

Full 3D simulations of the wave patterns under periodic
uniform modulation of the illumination intensity have also been
performed. When forcing was applied from the beginning of
the simulation, the filament did not undergo an evolution to
chaotic dynamics and remained roughly straight, with some
helicoidal modulation. If forcing is applied after the filament
has already developed a significant shape variation (Figure
12,A-D), it is able to prevent further development of the
instability and make its shape more regular (Figure 12,E′-L′).

Under the same conditions without forcing, transition to
turbulent dynamics is observed (Figure 12,E-H). Note that,
under forcing, the parameter φ varies inside the interval φ0 (

φs, always remaining within the region in the phase diagram in
Figure 6 where negative tension is observed.

Within the computation time in Figure 12, the periodic forcing
does not return the filament to the initial straight configuration.
This may be related to the fact that, as seen in Figure 6,B,
forcing increases the main rotation period from T0 to T′0, and,
the system moves away from the resonance making the forcing
less efficient (see the analysis in ref 24). Employing forcing

Figure 10. Evolution of a straight scroll wave and its filament under
the meandering conditions in the absence of the negative-tension
instability. To create the initial perturbation, small sinusoidal modulation
of the parameter f is introduced within a short interval 12 < t < 12.75.
The snapshots corresponds to (A) t ) 10, (B) t ) 12.75, (C) t ) 15,
(D) t ) 30, (E) t ) 75, (F) t ) 120, (G) t ) 165, (H) t ) 210, (I) t )

255, (J) t ) 300, (K) t ) 345, and (L) t ) 390. The parameters of the
model are f ) 2.5, ǫ ) 0.05, DV ) 0, φ ) 0, and q ) 0.002.
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with a larger period Tf (T0 < Tf < T′0), which is closer to the
actual rotation period T′0, we could see that such forcing leads
the scroll wave to eventually rotate around a straight filament.

4. Discussion and Conclusions

It would be very interesting to find the intricate and
impressive 3D patterns of Winfree turbulence in the Belousov-
Zhabotinsky reaction. Until recently, these kinds of patterns have
been seen only in numerical simulations of abstract models of
excitable reaction-diffusion systems. In our study, we have
performed numerical simulations of the realistic two-variables

Oregonator model of the Belousov-Zhabotinsky reaction and
demonstrated that there are regions in the parameter space of
this model where scroll filaments are unstable due to the
negative tension. These regions are determined in terms of the
parameters f, φ, and ǫ. Although there is not direct cor-
respondence between these parameters of the Oregonator model
and chemical concentrations, qualitative relations between them
are known.26 Therefore, we hope that our study would help to
design experiments in the Belousov-Zhabotinsky reaction
aimed at finding the negative-tension instability of filaments
and Winfree turbulence in this classical system.

The phase diagram is divided into domains with excitable
and oscillatory dynamics. It should be noted that the properties
of propagation of spiral and scroll waves in the oscillatory
parameter region do not change much with respect to those in
the excitable domain. At large values of ǫ, the boundaries of
the negative-tension instability and of the transition to oscillatory
dynamics are crossing (see Figures 2 and 4). Therefore, unstable
filaments may also be observed in the oscillatory version of
the Belousov-Zhabotinsky reaction. Filament instabilities in
the oscillatory systems described by the complex Ginzburg-
Landau equation have previously been considered.36

The dynamics of scroll waves under meandering conditions
is not completely understood, and various kinds of complex
behavior have been observed in previous numerical studies.35

Our numerical investigations indicate a clear relation between
the condition of straight drift of spiral waves, which separates
meandering spirals with inward and outward loops, and the

Figure 11. Effects of uniform rapid periodic forcing of expanding
scroll rings. (A) Dependence of the radius R of a scroll ring on time
without forcing (thick line) and under forcing with φs ) 0.0025 and Tf

) 8 (thin line). (B) Power spectra of the temporal signals in panel A.
Without forcing (thick line), the single power peak is located at T0 )

8.2. When forcing is applied (thin line), the peaks appear at T′0 ) 9.6
and T′1 ) 56.2. The model parameters are f ) 2.0, ǫ ) 0.065, DV )

0.6, φ0 ) 0.0150, and q ) 0.002.

Figure 12. Evolution of a straight scroll wave and its filament under conditions of negative tension instability, without (A-H) and with uniform
periodic forcing (E′-L′). To create the initial perturbation, small sinusoidal modulation of the parameter f is introduced within a short interval 12
< t < 12.75. Snapshots (A-D) show the instability development. At time t ) 90 (snapshots D), uniform periodic forcing in the parameter φ is
applied, and the evolution of the wave patterns is monitored (snapshots E′-L′). For comparison, snapshots E-H show the continued behavior of
the wave pattern if the forcing has not been applied. The shown snapshots corresponds to the time moments (A) t ) 15, (B) t ) 30, (C) t ) 60,
(D) t ) 90, (E,E′) t ) 120, (F,F′) t ) 150, (G,G′) t ) 180, (H,H′) t ) 210, (I′) t ) 270, (J′) t ) 330, (K′) t ) 390, and (L′) t ) 450. The parameters
of the model are f ) 2.0, ǫ ) 0.065, DV ) 0.6, φ0 ) 0.0150, and q ) 0.002.
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condition of zero tension, which separates regions with expan-
sion and collapse of scroll rings. A similar relationship has been
also obtained by us in the Barkley model, and it was sketched
in ref 9 for a reduced model of cardiac tissue. While the direction
of the loops in the meandering motion of spirals is a 2D effect,
the negative-tension instability of the filaments is a purely 3D
property. Remarkably, both effects are nonetheless related. In
a previous study,37 the condition of negative tension for rigidly
rotating scrolls was associated with a resonance between the
meandering and translation modes. However, this study was
done outside of the meandering domain, and the dynamics inside
the region of meandering was not discussed there.

This empirical relation can be helpful in the experiments
aimed at finding the negative-tension instability. Although
meandering with outward loops has been extensively studied
in the Belousov-Zhabotinsky reaction,28,38,39 there are only a
few experimental observations of the other type of meandering.
It was clearly seen in the photosensitive version of the reaction40

and in the standard Belousov-Zhabotinsky reaction in porous
media.41 Typically, diffusion coefficients of the activator and
the inhibitor species in the experiments with aqueous solutions
are not much different, and, as we have shown, the region with
inward meandering should be reduced in size in this case. In
ref 40, the reaction was taking place in a silicahydrogel gel
which reduced the diffusion of the inhibitor. In ref 41, the
reaction taking place in a porous media has also probably a
reduced inhibitor diffusion.

We would like to note additionally that the relation between
the type of meandering and the filament tension of scroll waves
can be important for the understanding of wave instabilities in
the cardiac tissue. In the cardiac tissue, waves usually undergo
strong meandering with several involved frequencies. Here this
relation could guide in order to find regions of negative tension
at least in numerical models of cardiac tissue because each
frequency involved in the complex motion in 2D could give
rise to different contributions in the 3D dynamics.

An important property of the Belousov-Zhabotinsky reaction
is that, in its photosensitive version, this reaction is amenable
to control by varying the illumination intensity which is directly
related to the parameter φ of the Oregonator model. We have
shown that the forcing of scroll waves by periodic uniform
modulation of the illumination intensity can be used to control
the negative-tension instability and suppress Winfree turbulence
of scroll waves in the photosensitive Belousov-Zhabotinsky
reaction, similar to what has previously been shown in refs 13
and 24 for the abstract Barkley model. In the experiments, a
gradient of the illumination intensity inside the volume is always
present.23 We expect however that, at least for relatively small
gradients, the effects of periodic forcing would be qualitatively
the same as in the ideal case of uniform forcing, which has
been considered here. We would like to note that forcing with
periodic variation of an applied electric field can also be
employed to control 3D wave patterns.
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