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NEGATIVE THEOREMS ON MONOTONE
APPROXIMATION

JOHN A. ROULIER

Abstract. In this paper we show that for / continuous on [— 1,-t-l] and

satisfying (f(xz) — f(xx))/(x2 — xx) £ 8 > 0, it is possible to have infinite-

ly many of the polynomials of best uniform approximation to/not increasing

on [-1,4-1].

1. Introduction. Monotone approximation in its simplest form is the study of

the uniform approximation of continuous functions on a closed interval by

algebraic polynomials which are increasing there. Of particular interest is the

case when / is continuous and increasing on the interval since in this case /

may be uniformly approximated as close as desired by polynomials which are

also increasing on the interval.

We now introduce some notation. We will work on the closed interval

[—1, + 1] since no loss of generality is imposed by this. If/ G C[—1, + 1] we

define the uniform norm by

ll/H = max{|/(x)|;-l ^Sl).

For each nonnegative integer n define

Hn = [p;p is an algebraic polynomial of degree less than or equal to «},

M„ = {p E H„;p'(x) S 0 for all x in [-1,4-1]}.

Now define the degree of approximation

E„if) = inf{\\f-p\\;p E Hn)

and the degree of monotone approximation

D„if) = M{\\f-p\\;pe Mn).

It is well known that for each / in C[—1,4-1] and for each nonnegative

integer n that there is a unique/? G Hn such that ||/— p\\ = E„if). It is also

known that there is a unique q E Mn such that ||/— q\\ = Dnif). See G. G.

Lorentz and K. L. Zeller [4]. The polynomials p and q above are called the

polynomial of best approximation and the monotone polynomial of best approxi-

mation to / respectively.

One might ask if the study of these concepts is trivial if/is increasing. That

is, if/is increasing then is p = q 1 Or equivalently is Enif) = Dn(f)1 The

answer to these questions is in general no. Numerous examples are given to
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verify this. See J. A. Roulier [6] and [7] and G. G. Lorentz [3] and G. G.

Lorentz and K. L. Zeller [5]. These references show that even if n is large we

need not have Dn(f) = En(f). All of these examples have one thing in

common:

There is no 8 > 0 for which

/(*2)-/(*i) z g   forall*, *jc,in[-l, + l]
(1) X2 ~ x\

(or/'(x) 2 8   if/G C'l-1,+1]).

On the other hand, J. A. Roulier in [7] proves:

Theorem 1.1. Iff G C2[-l,+l], and if there is 8 > 0 so that f'(x) g 8

> 0 for — 1 ^ x ^ 1, and if f" G Lip a for some 0 <C a ;S 1, then, for n

sufficiently large, En(f) = Dn(f).
The purpose of this paper is to show that if f satisfies (1), it still may happen that

Ai(/) ^ En(f) even for large n.

2. A negative theorem. The main theorem of this section involves the

modulus of continuity of the 277-periodic function <f>(f) = /(cos t) induced by

/(<o(<M) = sup{|$(0 - 4>(t')\; \t - t'\ =1 h}).

Theorem 2.1. Let f be monotone increasing and continuous on [— 1, +1 ] and let

cb(t) = /(cos t). Assume that

/^x ,• ku(cb,l/k)
(2) hm sup —,      /   ' = +oo.

Then there are infinitely many positive integers n for which the polynomial p in

Hn of best approximation to f is not increasing.

In order to prove this theorem we need two lemmas.

Given a continuous 27r-periodic function g we define E*(g) to be the degree

of approximation to g by trigonometric polynomials of degree n or less. The

following lemma is due to S. B. Steckin [8]. See also the book of G. G. Lorentz

[2, p. 59].

Lemma 2.2. There is a constant M such that for each continuous 2it-periodic

function g

(3) 4*, A) ̂  Mh     2      E*(g).

The next lemma makes use of (3).

Lemma 2.3.    Let g be a continuous 2-n-periodic function for which

k<4g, 1/k)
(4) hm SUP     log k +0°-

Then there does not exist a positive constant C so that E*(g) < C/n for n = 1,

2 3
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Proof. Assume that there is C so that

E*(g)^C/n,       n= 1,2,3.

Then by Lemma 2.2 with h = 1/A we have a constant M for which

(5) Nu{^) = M„?0E*^).

But by the above assumption we have

2  E*ig) tk E%ig) + C 2 \^ D 4- 2C log M   for A i£ 3.
n=0 n=l «

Z) depends on g but not on A.

Thus for A sufficiently large

2 2T*(g)=§3ClogA.
n=0

This together with (5) gives for A sufficiently large

N<4g, 1/AO/log A g 3CM.

But this contradicts (4).

Hence, the assumption is false and the lemma is proven. □

Proof of Theorem 2.1. Assume that / satisfies the hypotheses of the
theorem and that there is A > 0 so that for all n =£ A the p E Hn of best

approximation to / is increasing. Let n is A be given. It follows from the

Chebyshev alternation theorem (Lorentz [2, p. 30]) that there are n

4-2 points x0 < xx < • • • < xn+x in [-1,4-1] where |/(x,) -/>(jc,)| = £„(/)

and fixj) -pixj) alternate in sign. If pixi+x) = fixi+x) - £„(/) then />(*,)

= /(*,) + E„(f) and

pixi+l) - pixj) = fixi+x) -fixj) - 2Enif).

By our assumption that p is increasing, we must have

*„(/)S (/(*,+,)-/(*,))/2

for all such i. Since there are at least [(/j 4- l)/2] such pairs of points we have

\Enif) ^ [JL+Ij^c/) g 12 (/(*,+,) -/(*,))

Sj(/(l)-/(-l»

Thus for n g A

(6) £n(/)^ (/(I)-/(-!))/«•

Now E*i<b) = E„if) where </>(0 = /(cos f). Thus (6) gives

(7) £*(*) Si (/(l) -/(-!))/«    for«i£A.
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But this contradicts Lemma 2.3 since (7) implies the existence of a constant C

for which £*(<f>) Si C/n for n = 1, 2, 3,_Thus the assumption is false

and the theorem is proven.    □

It is clear from the above proof that the following stronger but less

constructive theorem is true.

Theorem 2.4. Let f be continuous and monotone increasing on [—1,-1-1] and

assume that En(f) ¥= 0(1/n). Then there are infinitely many positive integers n

for which the polynomial p in Hn of best approximation to f is not increasing.

3. Further negative results. In the previous section we showed that all

continuous increasing functions whose moduli of continuity satisfied a certain

condition would fail to have increasing polynomials of best approximation

even for n large. One might ask if/satisfies (1) but not (2) whether for n large

enough the polynomials of best approximation must be increasing.

The purpose of this section is to provide a constructive proof that this need

not happen no matter how nice the modulus of continuity of /is.

Theorem 3.1. Let u> be any modulus of continuity. Then there is an increasing

function f in C[— 1, +1] which satisfies (I) and for which

(8) u(h) g u(f,h) ^ Ku(h),

and yet there are infinitely many positive integers n for which the polynomial of

best approximation from Hn to f is not increasing.

In order to prove this theorem we need several lemmas.

The following two lemmas are found in Lorentz [2, p. 45 and p. 94

respectively].

Lemma 3.2. Let w be any modulus of continuity. Then there is a concave

modulus of continuity w with the same domain of definition as to for which

(9) x2w(h) < co(n) g cd(h).

Lemma 3.3. If g(x) = |x| on [-1. + 1] then there is a constant M > 0

independent of n for which

(10) E„(g)^M/n,       n-1,2.

The next lemma is due to M. I. Kadec [1]. We first make a few comments.

Let cb be a 27r-periodic continuous even function, and for each positive

integer n let Tn be the nth degree trigonometric polynomial of best approxima-

tion to <f>. Then Tn is an even trigonometric polynomial.

By the Chebyshev alternation theorem then there are 2/j + 2 points in

[—77, it] at which <b — T„ assumes its maximum absolute value with alternating

signs. This together with the fact that cb and T„ are even shows the existence of

at least n + 2 points t0n < /,,„'<•••< tn+x„ in [0, tr] of maximum deviation

at which the signs alternate. Let

(11) A„ =     max     tkn-—j- .
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Lemma 3.4. Let <b be a continuous even 2it-periodic function and let the

notation be as above, and let e > 0 be given. Then

(12) lim inf A„«*~E = 0.

The following corollary to Lemma 3.4 will be used in the sequel.

Corollary. Let f E C[-l, 4-1] and for each n = 0,1,2, ... let x0n < ■■■

< xn+x „be a Chebyshev alternation for f. Let

(   kit  \\
8„ =     max     xkn — cos I ——r I .
"      os/t£n+i    M. \n 4- 1/|

Then there is a sequence {fl/j/Lo of positive integers for which

(13) Jj& Snj = 0.

Proof. Let <f>(r) = /(cos r) and use Lemma 3.4.    □

Proof of Theorem 3.1. Let M be as in (10) and let e = min(l, M/10). Let

co be any modulus of continuity. We define

!x - co(l) 4- w(x 4- 2)       on [-2,-1],

2x 4- jjc| on [-1,4-1],

3 + e(x- 1) on [1,2].

Clearly /G C[-2,2] and is increasing and satisfies (1) on [-2,2] with 6

= min(l,E). We will work on [-2,4-2] for simplicity of notation although

everything could be "shrunk" to [-1, 4-1] with no difficulty.
Clearly for 0 g A s 1

(14) u(h) g co(/,A) S 4h + aih).

Let co be a concave modulus of continuity for which (9) holds. It is easy to

see that uih)/h is a decreasing function of h (Lorentz [2, p. 44]). Thus for

0 <h =1, 55(A)/A g co(l). Hence, for 0 g h = 1,

(15) h g Ci55(A).

Thus using (9), (14) and (15) we have for 0 ^ h = 1

(16) C0(ri)  =  C0(/rl)  ^  Ato(/i),

where K = 8C, 4- 1.

Let g(x) = 2x 4- |x| on [-1,4-1]. Then for n ^ 1, £„(#) = £„(|x|). Thus
(10) gives

(17) £„(g) S M/n        for «= 1,2, ....

Let £„(/) be the best approximation to / by polynomials from Hn on

[-2,4-2]. It is easy to see that for n = 0, 1, 2, ..., £„(g) S £•„(/). This
combines with (17) to give
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(18) En(f)^M/n   for/I = 1, 2, 3, ....

Now use the corollary to Lemma 3.4 to find a sequence {nj}JLo of positive

integers so that (13) holds. We note that we are using this corollary on/on the

interval [-2,2]. This is accomplished by first applying the corollary to

f(2z) for -1 s= z Si 1 and then replacing z by x/2 throughout to return to

[-2, +2]. In this case we are working with

/   *«■   M
8. =     max     xkn - 2 cosl      ,  , )

where the xkn are the Chebyshev alternation points for/on [—2, +2]. It is easy

to see from this corollary that fory sufficiently large at least («y + 2)/5 + 2 of

the nj + 2 alternation points are in the interval [1, 2].

For each n = 0, 1, 2, ... let pn be the polynomial from Hn of best

approximation to / on [—2,2]. Assume that for n sufficiently large pn is

increasing on [-2,2].

We may now use the same argument on [1, 2] as is used to arrive at

inequality (6) to show that for j sufficiently large

Enj(f)^5(f(2)-f(D)/(nj + 2).

Thus since f(2) — f(l) = e S A//10 we have

£„.(/) Si 5e/(«y + 2) S M/2(n, + 2).

This together with (18) gives for/ sufficiently large

M/nj Si £„,(/) Si M/2(«/- + 2).

But this implies that (nj + 2)/n S= j for j sufficiently large. This is a

contradiction since liny, „,(«,■ + 2)//iy = 1. This proves Theorem 3.1.    □

4. Conclusions. There is a gap between the main theorems of this paper and

the main theorem in [7]. That is, if we assume that / G C*[—1,-f-l] and

f'(x) =£ p > 0 on [— 1, +1] then does it follow that for n sufficiently large the

polynomial from Hn of best approximation to / is increasing? This author

conjectures that the answer is no, but this remains an open question.

The condition on/' in Theorem 1.1 can be relaxed, but this theorem will

appear elsewhere.
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