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1 Introduction

Quantum entanglement has proven to be a key concept in modern quantum many-body
physics. For example, the (von Neumann) entanglement entropy of ground states can
be used to distinguish different quantum phases and phase transitions [1, 2]. It is also an
important diagnostic for problems in quantum dynamics, such as thermalization in isolated
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systems and quantum information scrambling [3, 4]. Furthermore, quantum entanglement
is expected to be behind the mechanism for emergent geometry in holographic duality [5].

While the vast majority of the literature focuses on the entanglement entropy as a
measure of quantum entanglement, entanglement entropy has a well-known caveat when
applied to mixed quantum states, such as thermal states (Gibbs states) and reduced density
matrices obtained by tracing out a part of the total system. For these mixed states, the
entanglement entropy is no longer a measure of correlations, let alone quantum correlations.

Negativity [6–12] is a measure of entanglement that is well defined not only in pure
states, but in mixed states as well. Consider a Hilbert space that is a tensor product of two
Hilbert spaces HA ⊗HB, with a state given by a bipartite density matrix ρ. The partial
transpose (say with respect to B) of ρ in the orthonormal basis composed of |i〉A of HA
and |j〉B of HB is defined to have matrix elements

ρTBiAjB ,kAlB = ρiAlB ,kAjB , (1.1)

which is a Hermitian matrix with unit trace. While the eigenvalues of ρ are non-negative,
this is not necessarily the case for its partial transpose. Negativity is based on this property
and quantifies the amount of entanglement by the negative eigenvalues of ρTB . Denoting
the eigenvalues of ρTB by λi, the negativity is defined by

N := ||ρ
TB ||1 − 1

2 =
∑
λi<0
|λi|, (1.2)

where || · ||1 is the trace norm (sum of absolute values of eigenvalues), and similarly the
logarithmic negativity is

E = log ||ρTB ||1. (1.3)

Indeed [8], a separable (unentangled) state can be written as

ρ =
∑
a

paρ
(A)
a ⊗ ρ(B)

a (1.4)

with pa ≥ 0,∑a pa = 1, and ρ(A)
a , ρ(B)

a are density matrices, so that (1.4) is indeed a density
matrix. Such states satisfy Bell’s inequality. For these states, ρTB = ∑

a paρ
(A)
a ⊗

(
ρ

(B)
a

)T
,

where
(
ρ

(B)
a

)T
is also a density matrix, so ρTB has no negative eigenvalues. This shows

that a necessary condition for a state to be unentangled is to have vanishing negativity.1
Note that it is known that determining if a density matrix is separable is generally NP
hard [13, 14]. These definitions of negativity do not depend on the choice of bases for
HA,HB, and are invariant under interchanging A and B. In the rest of the paper, when
we say the negativity, we will always mean the logarithmic negativity (1.3).

A finer measure of entanglement is given by the negativity spectrum which is the
spectrum of the partially transposed density matrix. This is analogous to the entanglement
spectrum which has been studied extensively, e.g., in the context of topological phases of

1It is not a sufficient condition. However, the entanglement that goes undetected by the negativity may
not be useful as negativity places an upper bound on the distillable entanglement [7].
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matter [15–17]. The negativity spectrum has been studied in many-body quantum systems
— see e.g., refs. [18–22].

The basic objects we will study for negativity are the moments

mk := tr
(
ρTB

)k
. (1.5)

For even k, the moments are given in terms of the absolute values of the eigenvalues by∑
i |λi|k, so we can obtain the logarithmic negativity by an analytic continuation of the

even moments
E = lim

k even→1
logmk. (1.6)

An important object that can be extracted from the moments is the resolvent, which is
defined by

R(z) = tr
(
z − ρTB

)−1
=
∞∑
k=0

mk

zk+1 . (1.7)

Indeed, the negativity spectrum ρN (density of eigenvalues) can be obtained from it using
the Stieltjes transformation

ρN (λ) = − 1
π

lim
ε→0+

ImR(λ+ iε). (1.8)

The negativity can be extracted from the spectrum without relying on analytic continuation

E = log
[∫

dλ ρN (λ)|λ|
]
. (1.9)

In this paper we will use a diagrammatic approach to study negativity and negativity
spectra in general random tensor networks [23, 24]. We define the tensor networks that
we study as follows. These are unoriented graphs consisting of internal vertices, and edges
connecting the vertices. We include external edges that attach to a single vertex. An
example is shown in figure 1. A vertex corresponds to a tensor X(i), where we will take
the different tensors to be independent, complex Gaussian random variables. The edges
correspond to Hilbert spaces. An edge connecting two vertices represents a contraction of
the corresponding tensor indices, while external edges stand for free indices that form the
resulting state. A tensor network, such as the one shown in figure 1, prepares a state

|ψ〉 = N−1/2∑X
(1)
ijklX

(2)
mjno · · · |i〉|m〉 · · · , (1.10)

where N is the normalization.2
Each Hilbert space corresponding to an edge has a dimension Li. We will assume here

that all
Li = Nwidi (1.11)

with N � 1 and di, wi > 0 finite. We take the variances of the tensors such that∏
i

Var
(
X(i)

)
=
∏
i

|X(i)|2 =
∏
edges

L−1
i , (1.12)

2Usually random tensor networks are expressed in terms of projected Haar random states. An argument
for the equivalence of the two descriptions can be found in [25].
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Figure 1. An example of a general random tensor network.

where we denote an average over the random tensors by an overline, and their mean value
is taken to be vanishing. The density matrix corresponding to the state above is

ρ = |ψ〉〈ψ| = N−1∑X
(1)
ijklX

(2)
mjno · · · |i〉|m〉 · · ·X

(1)∗
i′j′k′l′X

(2)∗
m′j′n′o′ · · · 〈i

′|〈m′| · · · . (1.13)

With the choice of variances above, the expectation value of the normalization is 1, and the
fluctuations around it are small in the large-N limit. Therefore, we can drop it at leading
order.3 When discussing mk, E , R, and ρN for a random tensor network, these quantities
will always stand for their averaged values.

We will start (section 2) with the case of a Haar random state, which corresponds to
a single tensor. The negativity spectrum for this case was studied in [22, 26–28] for the
bulk of the different phases. We then move to the case of a two-tensor network (section 3).
We use it as a relatively simple example where we demonstrate the different ingredients
of our analysis. We explain the diagrammatic method that we use and that also applies
to general tensor networks, its large-N structure, and its relation both to random tensors
and permutations. We will classify the rich phase diagram for the two-tensor network and
check these results with finite size numerics. The details are given in appendix B.

Pure states are analyzed in section 4. The negativity spectrum for pure states is
explicitly determined in terms of the entanglement spectrum. We analyze it for the two-
tensor network in several phases and write a non-trivial Schwinger-Dyson equation for
general large Hilbert space dimensions.

In section 5 we analyze general random tensor networks, and express the negativity
moments using a solution to a flow network problem. In [29] the negativity of holographic
states in contractible topologies with unique extremal Ryu-Takayanagi surfaces was found.
Here we consider general random tensor networks with large bond dimensions. In partic-
ular, we do not assume that there is a unique RT surface, and allow the Hilbert spaces
associated to edges to have different dimensions. We find a wide range of negativity spec-
tra, beyond the semi-circle distribution. We may also have different states on the same
tensor network and ask how different they are, and this was studied recently in [25].

In sections 6–8, we discuss the implications of the results in prior sections for holo-
graphic systems. In section 6, we recall the model of [30] involving Jackiw-Teitelboim

3For example, considering an averaged moment of the density matrix, the normalization is a singlet that
equals one at leading order.
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gravity in the micro-canonical ensemble, a toy model for a black hole and its radiation.
We note that negativity in this model, when we consider subsystems of the radiation and
the black hole system, is described by the smallest random tensor network, namely the
one-tensor network of section 2.

A holographic setting that is described by a larger class of random tensor networks is
that of holographic fixed-area states, which are discussed in section 7. The diagrammatic
approach that we use is also useful in showing that the calculation of entanglement in a
fixed-area state is given by that in a random tensor network. We discuss some examples of
this. We also describe how more general random tensor networks are related to holography.

Assuming that we have access to part of the Hawking radiation of an evaporating
black hole, it is interesting to look for an island formula that describes the negativity in
such systems coupled to gravity. In section 8, we only describe it semi-classically, rather
than providing a formula analogous to the quantum extremal surface prescription. We do
this at first by applying the random tensor network result to the doubly-holographic idea
of [31]. We can think about this as holographic states where we fix the generalized entropy
rather than the area. We then test it in the same simple model based on JT gravity [30].
This provides an argument for the replica wormhole origin of the island contributions to
negativity in systems coupled to gravity.

2 Haar random states

Let us begin by considering the case of a single tensor X. The broad motivation here is to
study mixed state entanglement in a random state (see [22]). In order to do that, we start
with a pure Haar random state (as was used by Page [32])

|Ψ〉 =
∑
ijα

Xijα|i〉A|j〉B|α〉C , (2.1)

where the Hilbert space is the tensor product of three Hilbert spaces, and we then trace
out subsystem C. This leaves us with a random mixed state for the AB system, and
we can study the negativity in order to learn about the entanglement between A and B.
In [22], a phase diagram for this entanglement structure was found, as a function of the
sizes LA, LB, LC of the Hilbert spaces, and we reproduce it in figure 2.

Let us first summarize the result for the phase diagram, and relate it to the more
familiar entanglement entropy. There are three regions in the phase diagram:

• region I (LC > LALB): the negativity vanishes, and the negativity spectrum is given
by a semi-circle distribution with a support on the positive real axis.

• Region II (LA>LBLC or LB>LALC): the negativity grows linearly with min{logLA,
logLB}. The negativity spectrum is given by two copies of the Marchenko-Pastur
distribution, one supported on the positive, and one on the negative real axis.

• Region III (LA < LBLC and LB < LALC and LC < LALB): the negativity does
not change with the system size LA independently, only with LALB. The negativity
spectrum is a semi-circle with support on both positive and negative real axes.
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NA
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Figure 2. Phase diagram for the entanglement in a random mixed state. For a given fixed LC , the
logarithmic negativity is shown on the right. In this figure, L is the Hilbert space dimension, and
N = logL is the number of qudits. In the pure state limit, there is the Page curve for entanglement,
being proportional to the size of the smaller subsystem min{logLA, logLB}. Away from this limit,
there is a plateau in the Page curve in a region of the phase diagram where multipartite entanglement
is present.

Indeed, for an empty subsystem C (top horizontal line in the phase diagram), this
reduces to the random pure state studied by Page [32]. In this case, region III disappears,
and the entanglement takes the form of the Page curve shown in figure 2. The unnormalized
reduced density matrix is XX†, where X is considered as a matrix Xij , which is known
in random matrix theory as the Wishart ensemble. Its entanglement spectrum is given by
the Marchenko-Pastur distribution.

In the region in the phase diagram between phases II and III, we have a phase transi-
tion. The negativity spectrum within this phase transition was plotted numerically in [22].
Here, in section 7.3, we will find its analytic form and will compare to the numerical plot.

We will use a diagrammatic approach for negativity similar to [22], so we start by re-
viewing it for Haar random states. Every instance of the density matrix can be represented
by drawing one line for every index, where we have one index for each Hilbert space factor
or equivalently, a tensor network edge. This way, the matrix elements of the full density
matrix are

(|Ψ〉〈Ψ|)ijα,klβ = XijαX
∗
klβ =

i jα β l k

(2.2)

where dotted, solid, and dashed lines correspond to subsystems A,B, and C respectively.
In these diagrams, we perform matrix operations in the lower part of the diagram, and
ensemble averaging in the upper part. This way, tracing over system C gives us a mixed
state for system AB with matrix elements

(ρ)ij,kl = , (2.3)

where from now on we omit the explicit indices. Then, for example for the purity, we
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should consider
tr ρ2 = . (2.4)

For the negativity, we implement the partial transpose just by switching the indices

ρTB = . (2.5)

For the averaging, we sum over all Wick contractions, going from the left end of one density
matrix instance to the right end of another. There are two such contractions for the purity
of the partially transposed density matrix tr (ρTB )2

+ . (2.6)

The value we assign to every diagram is given simply by

• A factor of LA, LB, or LC for every dotted, solid, or dashed loop respectively, from
summing over the index.

• For every contraction, we get from the variance a factor of 1
LALBLC

.

There are several methods to evaluate the moments. One method is to obtain relations
between the moments using manipulations of the defining integrals, similarly to random
matrix theory. We show how to derive such loop equations in the presence of the partial
transpose in appendix A, and use it for random Haar states. Another method is to write
consistency relations for all diagrams representing the summation of all moments. This is
done in the following subsection.

2.1 Schwinger-Dyson equation

For any given moment we consider, one should first determine which diagrams dominate.
In the case at hand, this was done for the bulk of the three regions in the phase diagram of
figure 2 in [22]. Here, we will not repeat this analysis, as we later analyze this in detail for
general tensor networks. One of the ingredients is an ’t Hooft-like large-N expansion that
we will use. In each of the three regions of the phase diagram, different sets of diagrams
are dominant, but all of them are special cases of planar diagrams, e.g., for the dotted
and the dashed lines. We will write a Schwinger-Dyson equation that sums all the planar
diagrams.

The Schwinger-Dyson equation is written for the resolvent. Let us consider the same
object as the resolvent, but without taking the trace, i.e., it is an operator acting on the
Hilbert space of system AB, and denote it by a shaded disc. That is, it is the sum over all
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the diagrams mentioned above with the same factors of z and the Hilbert space dimensions.
It is related to the resolvent just by

R = (2.7)

and it satisfies the recursion relation

= + +

+ +

(2.8)
for planar diagrams. The different terms are distinguished by which density matrices are
contracted to the first one. The main point to notice is that on the r.h.s., whenever there
is an odd number of R’s, there is a single solid line, while for an even number, there are
two solid lines. This gives the equation

zR = LALB +
∞∑
k=0

R2k+1

L2k
C L

2k+1
A L4k+1

B

+
∞∑
k=1

R2k

L2k−1
C L2k

A L
4k−2
B

=

= LAL
3
BL

2
C(L2

A +R)− LALBR2 + L2
BLCR

2

L2
CL

2
AL

4
B −R2 .

(2.9)

Completing the geometric sums, we find a cubic Schwinger-Dyson equation

zR3 + (L2
BLC − LALB)R2 +

(
LAL

3
BL

2
C − L2

AL
4
BL

2
Cz
)
R+ L3

AL
5
BL

2
C = 0. (2.10)

This equation allows one to get the negativity spectrum in the different regimes. We will
not perform that explicitly here, as our main focus lies in higher tensor networks.

3 Two-tensor network

The simplest case involving an internal structure of a tensor network is the case consisting of
two tensors connected to each other. This allows us to “tune an additional knob” controlling
the connectivity of the external Hilbert spaces. We will demonstrate our methods on this
case, making the later generalization to an arbitrary tensor network easier.

– 8 –
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Denoting the two tensors by X and Y , the tensor network looks as follows

X Y
j ∈ HA k ∈ HEW n ∈ HB

i ∈ HC1 m ∈ HC2

. (3.1)

We now explain the Hilbert space structure and the reason that there are two external edges
for each tensor. The total external Hilbert space is the tensor product HC1⊗HA⊗HC2⊗HB.
We have chosen the notation in a way that will correspond later to the holographic system
that this tensor network represents. The Hilbert space HEW is an internal space. The two
tensors are independent complex Gaussian random variables Xijk (with i = 1, · · · , LC1 ,
j = 1, · · · , LA, and k = 1, · · · , LEW ) and Ymnk (with m = 1, · · · , LC2 , n = 1, · · · , LB and
again k = 1, · · · , LEW ). Their variance satisfies (1.12), so we can take them to be

Xi1j1k1X
∗
i2j2k2

=
(
LC1LA

√
LEW

)−1
δi1i2δj1j2δk1k2 ,

Ym1n1k1Y
∗
m2n2k2

=
(
LC2LB

√
LEW

)−1
δm1m2δn1n2δk1k2 .

(3.2)

The state that this tensor network prepares is

|ψ〉 =
∑

i,j,m,n,k

XijkYmnk|i〉|j〉|m〉|n〉. (3.3)

While this is a pure state, we will trace over HC1 and HC2 , inducing a mixed state on
the system AB. We are interested in studying the entanglement between A and B using
negativity. This means that we should study the moments of the partial transpose with
respect to A of the density matrix on AB

mn = tr (ρTA)n, (3.4)

where the density matrix on AB is

ρj1n1,j2n2 =
∑
k,l

Xij1kYmn1kX
∗
ij2lY

∗
mn2l. (3.5)

We introduce the following diagrammatic representation for calculating the moments
mn. The basic building block corresponds to one instance of the partially transposed
density matrix, and is shown in figure 3. We first connect n copies of this basic ingredient,
as shown in figure 4. The moment is then given by summing over all possible contractions.
We group each of the six lines on each side of figure 3 into two groups: the green group
consisting of the two green and one black lines, corresponding to Xijk, and the blue group
made of two blue and one black lines, corresponding to Ymnk.4 These give us two multi-
lines. Then, the contractions are done so that left green multi-lines are contracted with
right green multi-lines, and left blue multi-lines are contracted with right blue multi-lines.
An example of an allowed contraction is shown in figure 5.

4The colors are not essential but rather redundant, as they are determined according to their position.
We include them for convenience.

– 9 –
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C1
A
C2
B
EW

XY Legend:

Figure 3. The representation of the density matrix graphically.

Figure 4. The negativity moment is given by the sum over all contractions of this diagram.

Figure 5. A diagram contributing to the third negativity moment.

Each line corresponds to an index that we sum over in the corresponding Hilbert space.
The Hilbert space associated with the light green line is of dimension LC1 and similarly for
the rest (see the legend in figure 3 for the mapping). Therefore, in each diagram, we will
get LC1 to the power of the number of closed green lines, and the same for the rest.

To summarize, the moment is calculated by summing over all such diagrams, where
each closed line is assigned the corresponding L factor, each multi-line green contraction
is assigned 1

LC1LA
√
LEW

, and each multi-line blue contraction is assigned 1
LC2LB

√
LEW

.

3.1 ’t Hooft-like large-N expansion

We now show that these diagrams obey a topological expansion at large dimensions. Sup-
pose that LC1 , LC2 , LA, LB ∼ N � 1 with LEW fixed. The two blue lines of the diagram
form a double line structure. To see this, we draw the diagram on a circle; an example
with n = 3 is shown in figure 6. In this figure, the propagators contribute a factor of 1/N2n

and there is a factor of N for every loop. The number of loops is F − 1 (with F being
the number of faces), where the one is subtracted since there is one missing loop that was
added in black at the center of the figure. We see that the diagram is made of 2n cubic
large-N vertices, and there are 3n edges. Therefore, each such diagram is assigned

1
N2nN

F−1 = N1−2g−n, (3.6)

where g is the genus of the surface.

– 10 –
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Figure 6. Large-N counting in the blue (left) and green (right) parts for n = 3.

For the green part, a very similar analysis holds. An example is shown in figure 6. We
connect the l.h.s. of each of the matrix insertions with the r.h.s. of another matrix insertion.
But then, if we exchange the two ends of each such insertion, we are in the same situation
as in the blue part, with the same counting. Therefore, we once again get N1−2g−n where
now g is the genus of the surface obtained by this construction.

Together, we get that the large-N counting of a general diagram is

N2−2gA−2gB−nA−nB , (3.7)

where gA is the genus of the A subsystem (green), nA the number of matrix insertions
XX†, and similarly for the B part.

Note also that if we have two traces of only the (say) B subsystem (only blue diagrams),
then the connected part goes as N−2g−n1−n2 where n1, n2 are the number of matrices in
each of the two traces. This is suppressed with respect to the disconnected contribution,
which is N2−2g1−2g2−n1−n2 .

3.2 Permutations interpretation

A particularly useful advantage of this diagrammatic method is that it makes it clear that
there is an equivalence between random tensor networks and a problem of counting per-
mutations. The permutations interpretation that we will show in a moment is immediately
related to holographic entanglement in fixed-area states. This gives us another way to
see how the entanglement structure in fixed-area states is described precisely by that in
random tensor networks.

We will use permutations of n elements. We denote by γ = (1, 2, · · · , n) the cyclic
permutation taking i → i + 1 and correspondingly γ−1 is its inverse. For any permu-
tation τ , we denote by C(τ) the number of cycles in the permutation. For example,
C ((1, 2)(3, 5)(4)) = 3.

In any diagram built by contractions of figure 4, let τ1 be the permutation of n elements
such that the right green multi-line of the i’th insertion of a density matrix is contracted
to the left green multi-line of the τ1(i)’th insertion. Similarly τ2 is assigned for the blue
counter-part. We then see that the partially transposed moment is given by

mn = Z
(PT)
n

Zn1
(3.8)

– 11 –
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1 σ(1) σ2(1)

Figure 7. Diagram used to prove the triangle inequality.

with the permutations partition function defined by

Z(PT)
n =

∑
τ1,τ2∈Sn

L
C(τ1)
C1

L
C(γ◦τ1)
A L

C(τ2)
C2

L
C(γ−1◦τ2)
B L

C(τ−1
1 ◦τ2)

EW
. (3.9)

Each element in the sum corresponds to a particular contraction.
Note that we can also calculate the unnormalized permutation partition function (3.9)

using averaged moments of the tensor network — the only modification required is to take
the tensors to have unit variance.

We can now simply prove the following familiar claim using this diagrammatic repre-
sentation together with the large-N expansion above:

Claim (the triangle inequality). For any two permutations σ, τ of n elements, we have
that C(τ) + C(τ−1 ◦ σ) ≤ C(σ) + n.

In order to specify when the inequality is saturated, we will use the following termi-
nology. Consider a permutation c = (c1, c2, · · · , cn) consisting of a single cycle. It induces
an order ≺ on the n elements {1, 2, · · · , n} according to the way that they appear in the
cycle which is not necessarily the usual ordering. We will say that a permutation τ is
non-crossing in c if (1) any cycle of τ can be written as (i1, · · · , ik) with i1 ≺ · · · ≺ ik
according to the order of c, and (2) there are no elements a ≺ x ≺ b ≺ y such that a, b
belong to one cycle of τ and x, y belong to another cycle.5 If we draw the nodes of c on a
line and represent cycles of τ by connecting arcs, this definition just says that the arcs do
not cross. We will say in short that τ is non-crossing in cycles of σ if the cycles of τ are
contained in cycles of σ, and in each cycle of σ, τ is non-crossing. For the simplest case
c = γ = (1, 2, · · · , n), we will simply say that a permutation is non-crossing.6 With these
definitions, the inequality in the claim is saturated iff. τ is non-crossing in σ.

The proof of this is simple using the tools above. We use a diagram consisting of the
(say) blue part of what we had before (see figure 7). There is one block for each cycle of
σ. For example, the first block has nodes 1, σ(1), σ2(1), · · · . The contractions are made
according to τ ; we contract a right pair of lines of node i with the left pair of node τ(i).
The quantity C(τ) + C(τ−1 ◦ σ) = C(τ) + C(σ−1 ◦ τ) is found by counting the number of
closed lines.

In each connected component of size ni, we saw that there is a genus expansion giving
that the number of loops (closed lines) is 1− 2gi + ni.7 As we saw, the disconnected piece

5Note that the ordering of a cycle (c1, c2, · · · , cn) is in fact cyclic, so we could start it at any element.
However, this definition does not depend on this, and we can use a linear order.

6Note that in this case we can just think about the permutation as a partition, but there are two possible
orientations, so we fixed the orientation to be that of γ.

7Here we consider unnormalized “traces” where no value is assigned to a propagator, so we do not
subtract 2ni.
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dominates and is given by∑i(1−2gi+ni) = C(σ)+n−2∑i gi. This is indeed bounded by
C(σ) + n and is saturated by planar contractions, which are the permutations mentioned
above. This concludes the proof of the claim.

Now, let us come back to the two-tensor network. One way to think about the problem
that we have is to replace the two tensors by a single tensor, and ask if we can apply the
results of section 2. That is, by comparing (2.1) to (3.3) we replace

Xone-tensor
(j)(n)(im) ↔

∑
k

XijkYmnk. (3.10)

The right hand side is a random variable which has a variance∑
k,l

Xi1j1kYm1n1kX
∗
i2j2l

Y ∗m2n2l
= (LC1LC2LALB)−1 δi1i2δj1j2δm1m2δn1n2 , (3.11)

with the LEW dependence canceling. This is just the variance needed in section 2. The
important difference from the one-tensor case is that this is not a Gaussian variable, so
we cannot apply the results there. We expect that when LEW is large, we may be able to
apply these results. Indeed, this is easy to see using the permutations language. In (3.9)
there are two terms that depend only on τ1, and similarly there are two terms for τ2. The
only interaction between τ1 and τ2 is through the EW term. For large LEW , (3.9) will be
dominated by τ1 = τ2. Therefore, in the large LEW limit, this two-tensor network reduces
to the one-tensor network described in section 2.

We can analyze the full phase structure of the two-tensor network. This is done in
detail in appendix B, and the result is summarized in table 1. In the table, we show
the range of system sizes that correspond to each phase. In each phase, we indicate the
dominant permutations in the large-N limit, where we recall that wi is the power of N for
each Li. As for the moments and the negativity spectrum, we can write them using the
one-tensor case, and so we indicate the result using the corresponding phase in the one-
tensor network. The precise parameters that should be used in the analogous one-tensor
network can be found in appendix B. In one of the phases, the distribution is related to
the corresponding one in the one-tensor case by a rescaling of both the eigenvalues and
the distribution. Note, though, that as expected, in general the two-tensor network differs
from the one-tensor network. It reduces to a one-tensor network for large enough LEW as
anticipated above. Indeed, in such a case, the two permutations are the same, as can be
seen in the table. This happens for phases 1, 4, and 6. We also plot the different phases
graphically in figure 8.

3.3 Numerics

We numerically study the entanglement of the two-tensor network using exact diagonal-
ization. This strongly limits the probeable Hilbert space dimensions. In figures 9 and 10,
we show how the negativity spectrum is deformed as we tune LEW . When the dimension
of EW approaches the total dimension of the external Hilbert space, the tensor network
acts as one large random tensor. When the dimension decreases, the spectrum undergoes
a variety of phase transitions due to the loss of connectivity in the graph.
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Range τ1 τ2 Analogous one-tensor

1


wA < wC1

wB < wC2 + wEW

wA + wB < wC1 + wC2

or


wB < wC2

wA < wC1 + wEW

wA + wB < wC1 + wC2

id id Phase I

2
wA > wC1 + wEW

wB > wC2 + wEW
γ−1 γ Phase II

3

wEW < wA + wC1

wC1 < wA + wEW

wA < wC1 + wEW

wB > wC2 + wEW

NC2 γ

Rescaled phase III
wEW < wB + wC2

wC2 < wB + wEW

wB < wC2 + wEW

wA > wC1 + wEW

γ−1 NC2

4

|wA − wC1 | < wB − wC2 < wA + wC1

wEW > wB − wC2

NC2 = τ1
Phase III

|wB − wC2 | < wA − wC1 < wB + wC2

wEW > wA − wC1

NC2 = τ1

5

wC1 > wA + wEW

wB > wC2 + wEW
id γ

Phase I
wC2 > wB + wEW

wA > wC1 + wEW
γ−1 id

6

wEW > wB + wC2

wA > wB + wC1 + wC2

γ−1 = τ1
Phase II

wEW > wA + wC1

wB > wA + wC1 + wC2

γ = τ1

Table 1. Phases of a two-tensor network. We show the range of each phase corresponding to
the intersection of the inequalities and the values of the permutations that give the dominant
contribution. In these cases, the behavior in each phase can be mapped to a possibly rescaled
phase of the one-tensor network, and this is shown in the table. A permutation is in NC2 if it is
non-crossing and consists of only 2-cycles, unless it is of odd size and in such a case it also has a
single 1-cycle.
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(a) wEW ≥ 25.
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(b) wEW = 23.
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(c) wEW = 20.
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(d) wEW = 15.
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(e) wEW = 10.
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(f) wEW = 5.
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(g) wEW = 3.
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(h) wEW = 1.

Figure 8. Plots of different slices of the four-dimensional phase diagram of the two-tensor network.
We have taken wC1 = wC2 , keep wA +wB = 50 fixed, and vary wEW

. The horizontal axis is wA

wA+wB

and the vertical axis is wA+wB

wA+wB+wC
where wC = wC1 + wC2 .

4 Negativity of pure states

We saw that in the limit of large dimensions, the two-tensor network relates to a one-tensor
network. An interesting case to consider is when HC1 andHC2 are in fact empty, so that the
state on AB is pure. This case is quite rich, having various regimes with different results.
For general dimensions, we will find that the system is governed by a highly non-trivial
Schwinger-Dyson equation.

Before that, let us start by showing what is the negativity spectrum for a general pure
state.

4.1 Negativity spectrum of a pure state

For any density matrix, since it is positive semi-definite, the entanglement spectrum is
supported on the non-negative real line. As we saw, the negativity is defined by considering
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Figure 9. The negativity spectrum for the two-tensor network as we vary wEW
and keep wA =

wB = 4, wC1 = wC2 = 2, and N = 2. There is a topological transition between Phase 2 (upper
left) with two connected components and Phase 4 (lower right) with a single connected component.
The colors of the plots match the colors of the phases in figure 8. We average over 103 realizations.

the partially-transposed density matrix and consequently is supported on the negative real
line as well.

Consider a bi-partite system AB that is in a global pure state. We will see that
the negativity spectrum is fully determined by the entanglement spectrum, and in fact
the eigenvalues of the partially transposed density matrix are simply determined by the
entanglement spectrum.

A pure state can be written using the Schmidt decomposition as

|ρ〉 =
L∑
i=1

ci|ei〉|fi〉 (4.1)

where L ≤ LA, LB, and |ei〉 and |fi〉 are orthonormal vectors of subsystems A and B,
respectively. The corresponding density matrix is then

ρ =
∑
ij

cic
∗
j |ei〉|fi〉〈ej |〈fj |. (4.2)

The reduced density matrix to system A is then a diagonal matrix with values |ci|2 on the
diagonal. Therefore, the entanglement spectrum is

Entanglement spectrum: {|ci|2 : i = 1, · · · , L} plus LA − L zeroes. (4.3)
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-0.05 0.05 0.10 0.15 -0.05 0.05 0.10 0.15

-0.05 0.05 0.10 0.15 -0.05 0.05 0.10 0.15

Figure 10. The negativity spectrum for the two-tensor network as we vary wEW
and keep wA = 1,

wB = 6, wC1 = wC2 = 3, and N = 2. There is the transition from vanishing negativity (Phase I
in the one-tensor network) between Phase 5 (upper left) to Phase 3 to Phase 4 (lower right) where
the eigenvalues gain support on the negative real axis. The colors of the plots match the colors of
the phases in figure 8. We average over 103 realizations.

The partially transposed density matrix is

ρTA =
∑
ij

cic
∗
j |ej〉|fi〉〈ei|〈fj |. (4.4)

First, note that |ei〉|fi〉 is an eigenvector of ρTA with eigenvalue |ci|2. This shows that
the entanglement spectrum is contained in the negativity spectrum. A general eigenvector
v = ∑

ij dij |ei〉|fj〉 will satisfy

ρTAv =
∑
ij

dijcic
∗
j |ej〉|fi〉 =

∑
ij

djic
∗
i cj |ei〉|fj〉 = λ

∑
ij

dij |ei〉|fj〉, (4.5)

so that
λdij = djic

∗
i cj (4.6)

for all i, j. Now, fixing k > l we claim that we have two eigenvalues for the two solutions
of λ2 = |ck|2|cl|2. Indeed, the corresponding two vectors for the two solutions of λ

|ek〉|fl〉+ 1
λ
c∗l ck|el〉|fk〉 (4.7)
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are eigenvectors of ρTA as they satisfy the equations (4.6). Note that for any ck = 0,
the vectors |ek〉|fl〉 and |el〉|fk〉 for all k are eigenvectors with zero eigenvalues. We have
therefore found all the eigenvectors of ρTA , so the negativity spectrum is

Negativity spectrum: {|ci|2 : i = 1, · · · , L} ∪ {±|ci| · |cj | : 1 ≤ i < j ≤ L}
plus (LALB − L2) zeroes. (4.8)

The negativity spectrum for pure states can thus be obtained immediately from the
entanglement spectrum: any entanglement eigenvalues appear also in the negativity spec-
trum, and for any two distinct entanglement eigenvalues λi, λj there is a pair of eigenvalues
±
√
λiλj in the negativity spectrum, and the rest are zero eigenvalues. The eigenvalues in-

herited from the entanglement spectrum may also vanish. This result was also noted in [18].
In terms of the density of states of the entanglement spectrum ρE(λ), we therefore find

that the density of the negativity spectrum ρN (λ) is

ρN (λ) =
∫ ∞
−∞

dλ′
∣∣∣∣ λλ′
∣∣∣∣ ρE(λλ′)ρE

(
λ

λ′

)
+ 1

2 (ρE(λ)− ρE(−λ)) + c · δ(λ) (4.9)

where c is a constant to be determined by
∫
dλ ρN (λ) = LALB. The first term just gives

for any two eigenvalues of ρ an eigenvalue in ρN (λ) that is the square root of their product
as we can see by the arguments of ρE . The coefficient is simply a measure factor for ρE
used with this choice of arguments. For any eigenvalue λ of ρ, this term gives both a λ
and a −λ eigenvalues in ρN (λ) while we need only the positive part, and this is corrected
by the second and third terms which are anti-symmetric in λ→ −λ. We do not keep track
of the zero eigenvalues just as above, as those are determined according to the condition
that we mentioned.

4.2 Two-tensor pure state

The permutation interpretation allows us to find the negativity in various limits quite
easily, so here we explore the various regimes.

In the pure state limit, the moments of the reduced density matrix ρ on AB are

Tr (ρTA)n =
∑

τ1,τ2∈Sn
L
C(γ◦τ1)−n
A L

C(γ−1◦τ2)−n
B L

C(τ−1
1 ◦τ2)−n

EW
. (4.10)

When LA, LB � LEW , τ1 = γ−1 and τ2 = γ dominate the sum and we approximately have
for n > 0

Tr (ρTA)n =

L
1−n
EW

n ∈ 2Z + 1,
L2−n
EW

n ∈ 2Z.
(4.11)

This leads to a resolvent of

R(z) =
∞∑
n=0

L1−n
EW

(LEW (1 + (−1)n) + (1− (−1)n))
2zn+1

=
L4
EW

z + L2
EW

L2
EW

z2 − 1 , (4.12)
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such that the negativity spectrum is8

ρN (λ) =
L2
EW
− LEW
2 δ(λ+ L−1

EW
) +

L2
EW

+ LEW
2 δ(λ− L−1

EW
) + (LALB − L2

EW
)δ(λ).

(4.13)
Subleading saddles lead to a finite width structure in the distribution at finite N . The
negativity is

E = log(LEW − 1) ' logLEW . (4.14)

Next, consider LEW � LALB. In this case τ1 = τ2 dominates the sum and we sim-
plify to

Tr (ρTA)n =
∑
τ∈Sn

L
C(γ◦τ)−n
A L

C(γ−1◦τ)−n
B . (4.15)

This is equivalent to the pure state limit of the single-tensor network so the negativity
spectrum is a sum of two Marchenko-Pastur laws.

Now, consider the mixed limit LA � LBLEW but LB ∼ LEW .9 We have τ1 = γ−1

Tr (ρTA)n =
∑
τ2∈Sn

L
C(γ−1◦τ2)−n
B L

C(γ◦τ2)−n
EW

. (4.16)

Now, let us shift τ2 → γ−1 ◦ τ to get

Tr (ρTA)n =
∑
τ∈Sn

L
C(γ−2◦τ)−n
B L

C(τ)−n
EW

. (4.17)

We would like to maximize C(τ) +C(τ−1 ◦ γ2). By the triangle inequality we know this is
bounded by C(γ2)+n and maximized for τ non-crossing in γ2. For odd n, C(γ2) = 1, so, up
to an unusual ordering of nodes, the non-crossing permutations will dominate. Moreover,
it is known that the number of non-crossing permutations of n elements with k cycles is
given by the Narayana number

Nn,k = 1
n

(
n

k

)(
n

k − 1

)
. (4.18)

We can therefore reorganize the sum according to the number of cycles, as

Tr (ρTA)n =
n∑
k=1

Nn,kL
1−k
B Lk−nEW

(4.19)

=


L1−n
EW 2F1

(
1− n,−n; 2; LEWLB

)
, LEW < LB

L1−n
B 2F1

(
1− n,−n; 2; LB

LEW

)
, LEW > LB .

(4.20)

8We did not keep track of the zero eigenvalues or the zeroth moment and restored them here using∫
dλ ρN (λ) = LALB .

9The systems A and B appear here in a symmetric way, so the case LB � LALEW is just the same with
exchanging A↔ B.
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For even n, γ2 has two cycles, consisting of the even and odd sites. Thus, the dominant
saddles will be of the form NCn/2×NCn/2 with NCn/2 being the non-crossing permutations
of n/2 elements. Each noncrossing permutation acts on the even or odd copies. We can
then reorganize the sum as

Tr (ρTA)n =
n/2∑

k1,k2=1
Nn/2,k1Nn/2,k2L

2−k1−k2
B Lk1+k2−n

EW

=


L2−n
EW
· 2F1

(
1− n

2 ,−
n
2 ; 2; LEWLB

)2
, LEW < LB

L2−n
B · 2F1

(
1− n

2 ,−
n
2 ; 2; LB

LEW

)2
, LEW > LB .

(4.21)

We can take the replica limit of these even moments to find

E =


log

[
LEW · 2F1

(
1
2 ,−

1
2 ; 2; LEWLB

)2]
, LEW < LB

log
[
LB · 2F1

(
1
2 ,−

1
2 ; 2; LB

LEW

)2
]
, LEW > LB .

(4.22)

This smoothly interpolates between logLEW for when LEW � LB and logLB when LEW �
LB. The resolvent is more complicated, though simple away from the phase transitions.

4.3 Schwinger-Dyson equation

Finally, we now assume the large-N limit where LA, LB, LEW ∼ N � 1 without having
some dimensions that are excessively large.

Taking τi → γ−1◦τi for i = 1, 2 in (4.10) (considering it unnormalized for the moment),
we get

Z(PT)
n =

∑
τ1,τ2

L
C(τ1)
A L

C(γ−2◦τ2)
B L

C(τ−1
1 ◦τ2)

EW
. (4.23)

For any given τ2, we have C(τ1) + C(τ−1
1 ◦ τ2) ≤ n+ C(τ2) by the triangle inequality.

Therefore we obtain the maximal contribution whenever τ1 is non-crossing in cycles of τ2.
Together with the term C(γ−2 ◦ τ2) this gives n + C(τ2) + C(γ−2 ◦ τ2) ≤ 2n + C(γ2), so
again we have the dominant contribution for τ2 that is non-crossing in cycles of γ2.

For even n, γ2 = (1, 3, · · · , n − 1)(2, 4, · · · , n) consists of two cycles. Thus, we have
a decoupling of the odd sites from the even sites. In the odd sites, τ2 are just all the
possible non-crossing permutations, and similarly for the even sites. In each of them, τ1 is
non-crossing in cycles of τ2. For odd n, γ2 = (1, 3, · · · , n, 2, 4, · · · , n− 1) is a single cycle.

Just as before, we can represent (4.23) diagrammatically. Since we do not have the
subsystems Ci, we are left with the dark green, dark blue, and black lines. We get (4.23)
by summing over all contractions of the diagram shown in figure 11. The green lines
correspond to τ1 in the new variables, and the blue lines to τ2. The ordering within the
diagram has changed slightly because of the re-definition of the permutations that we did.

The nodes in these diagrams can be conveniently rearranged so that each node is
contracted by the dark blue line to the following node. As a result, similarly to before, for
even n they split into two parts, while for odd n there is a single piece. The rearranged
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Figure 11. Diagrammatic representation of the negativity for the pure two-tensor case.

Odd n

Even n

Figure 12. Rearranging the negativity diagrams results in these diagrams for odd and even n.

diagrams are shown in figure 12. Importantly, since τ2 factorizes according to γ2, and τ1
according to the cycles of τ2, the contractions in the two pieces of the even case factorize.
That is, there are no contractions connecting the left part with the right one.

Every connected piece in figure 12 is what we would have gotten if we were calculating
entanglement entropy instead of negativity. Diagrammatically, this is because the (say)
green lines are not crossed, which is what we had to do before in order to implement the
partial transpose. Instead, here, such a diagram calculates the trace of the density matrix
traced over A, which is used for the entanglement entropy between A and B in the pure
state on AB. Let us denote the nth moment of the density matrix by

m′n = tr(ρB)n, ρB = trA ρ. (4.24)

In fact, it is known that the negativity moments in a pure state are given simply in terms
of the entanglement moments, m′n, (see e.g., [33]) — the even nth negativity moment is the
square of the (n/2)’th entanglement moment, while the odd negativity and entanglement
moments are the same. This is exactly what figure 12 shows.

However, the subtlety here is that the pure state is random, and therefore the even
moments do not completely factorize to a square of entanglement moments, but rather we
should average the product. What we have shown here is that in the large-N limit, we do
have a full factorization because of the structure of contractions found above.

Let us denote the resolvent corresponding to m′n by

R′ =
∞∑
n=0

m′n
zn+1 . (4.25)

According to the structure of the permutations τ1, τ2 that we found above, we can
write a Schwinger-Dyson equation for R′. It is based on the drawing in figure 13. We
organized it according to blue contractions. However, green contractions are planar and
are embedded inside cycles of the blue ones, exactly because τ1 is non-crossing in τ2. Thus,
even though the green contractions are not shown, in the (k + 1)’th term on the r.h.s. of
the Schwinger-Dyson equation, we will need to sum over the planar green contractions of
k nodes. We already saw how to calculate such a sum. In fact, this is the same as the sum
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+

+ · · ·

Figure 13. Schwinger-Dyson equation for R′.

we are after if we replace n→ k, use γ instead of γ2 as we rearranged the diagrams so that
the blue lines contract neighboring nodes, and take τ2 = γ. Counting the blue, green, and
black lines, this sum is

LkB
∑

τ∈NCk

L
C(τ)
A L

C(γ−1◦τ)
EW

:= LkBfk(LA, LW ), (4.26)

where recall that NCk are non-crossing permutations of k elements. The factor of LkB does
not enter in our SD equation, since the closed blue lines go to the trace of R′. We have
already calculated fk using the Narayana numbers and found

fk(LA, LEW ) =
∑

τ∈NCk

L
C(τ)
A L

C(γ−1◦τ)
EW

=
k∑
l=1

Nk,lL
l
AL

k+1−l
EW

=

=

LAL
k
EW 2F1

(
1− k,−k; 2; LA

LEW

)
, LA < LEW

LEWL
k
A 2F1

(
1− k,−k; 2; LEWLA

)
, LA > LEW

.

(4.27)

The SD equation for R′ is then

zR′ = LB +
∞∑
k=1

(R′)k
(LALBLEW )k fk(LA, LEW ) (4.28)

or more explicitly, when LA < LEW

zR′ = LB +
∞∑
k=1

(R′)k

Lk−1
A LkB

2F1

(
1− k,−k; 2; LA

LEW

)
. (4.29)
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The resolvent of the negativity is given in terms of the entanglement moments by

R =
∞∑
n=0

mn

zn+1 =
∑
n odd

m′n
zn+1 +

∞∑
n=0

m′2n
z2n+1 , (4.30)

and the logarithmic negativity is

E = lim
n even →1

mn = (m′1/2)2, (4.31)

which is the 1/2 Rényi entropy.
We have found that the negativity spectrum for a pure state is given by (4.9). The

case that we consider now is indeed a pure state and so this formula is valid here. However,
we have a random pure state. Therefore, if we are interested in the averaged negativity
spectrum, we have

ρN (λ) =
∫ ∞
−∞

dλ′
∣∣∣∣ λλ′
∣∣∣∣ ρE(λλ′)ρE

(
λ

λ′

)
+ 1

2
(
ρE(λ)− ρE(−λ)

)
+ c · δ(λ). (4.32)

In the first term on the r.h.s., we have the average of a product of density of states, while
we have studied the averaged pure state entanglement spectrum. In general, the average
of the product is different from the product of averages and this would require calculating
higher moments in the randomness of the tensor variables sense.

However, in large-N , we saw using large-N diagrammatics that if we consider a product
of two moments of the density matrix (without partially transposing), as in the second part
of figure 12, then the averaging can be done separately. This means that we can use (4.9)
as is for large-N .

To demonstrate this consider LA � LEW . At leading order we can approximate the
2F1 in (4.29) by 1, giving

zR′ = LB + R′LA
LALB −R′

. (4.33)

The solution is10

R′(z) =
zLALB + LB − LA −

√
(LALBz + LB − LA)2 − 4zLAL2

B

2z . (4.34)

Therefore,
ρE(λ) = LALB

2πλ

√
(L+ − λ)(λ− L−), L− ≤ λ ≤ L+. (4.35)

where we have defined
L± =

( 1√
LA
± 1√

LB

)2
. (4.36)

In order to get ρN (λ), we should just plug this in (4.9). We do this numerically and
show the result without the contribution going as δ(λ) in figure 14. Note that when finding
ρN (λ), for small LA, LB, we get significant regions with negative density of states, but as
we mentioned, the current calculation is valid at large-N . Indeed, as we increase LA, LB
these regions disappear.

10We choose the branch such that R′ → 0 as z →∞.
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Figure 14. Negativity spectrum at leading order for large LEW
. We use here LA = 4 and LB = 10.

5 Entanglement and negativity in random tensor networks

We would like to generalize the analysis to a larger class of tensor networks, such as the
one shown in figure 1.

Let us consider a generalized reduced density matrix that will allow us to calculate
entanglement and negativity spectra. We divide the external indices of the tensor network
into three sets:

• T : indices that are partially traced over, corresponding to the subsystem that we
trace out,

• S: no operation is performed on these indices,
• P : indices that are partially transposed, allowing us to compute negativity.

Then, we define the marginal density matrix

ρ′ = trT ρTP . (5.1)

In order to calculate tr ρ′n, we define a diagrammatic construction generalizing what
we did before. We take a basic ingredient, or node, consisting of two parts, each one
made of a series of lines, one line for any index. This node represents the density matrix
and generalizes what we had in figure 3. The lines are grouped into multi-lines, where
each multi-line consists of all those lines belonging to the same X(i), just as before. It
is convenient to represent each such tensor by a different color. This is demonstrated in
figure 15 (compare to figure 1). The internal black connecting lines in the bottom part are
just like the EW line we had in the two-tensor case. They correspond to an edge connecting
two tensors.

We place n copies of this basic diagram next to each other. These are connected among
themselves according to the rules shown in figure 16. Any index, depending on which set it
belongs to, contracts either in the same instance of the density matrix, or to the previous
or the following one.

Having n such copies combined with periodic boundary conditions, we should sum over
all possible contractions of the multi-index sets. That is, the lines of the same color on the
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ijkl

X(1)X(2)

j

Internal edge

Figure 15. The diagram corresponding to a single insertion of a marginal density matrix.

i i

If i ∈ T :

If i ∈ S:

If i ∈ P :

connects to LHS of next instance

connects to RHS of next instance

Figure 16. Connecting the density matrix to its neighbors.

l.h.s. of an instance are contracted together with lines of the same color on the r.h.s. of
some instance. Each contraction is assigned the value of the variance of the corresponding
X(i). Every closed index loop gives the dimension of the corresponding Hilbert space.

Just as we did before, we can express this diagrammatic description of a tensor network
in terms of permutations. Suppose that there are k different tensors X(i), i = 1, · · · , k,
and that each index takes values in an Li dimensional space. We write Li = Nwidi and
assume that N � 1 with wi, di being fixed. We thus have a permutation βi for every X(i),
i.e., for every tensor describing the contractions of that particular color (multi-index). The
moments are then given by

tr ρ′n =
∏
i

Var
(
X(i)

)n
·
∑
{βi}

∏
edges



L
C(βi)
i for i ∈ T

L
C(γ−1◦βi)
i for i ∈ S

L
C(γ◦βi)
i for i ∈ P

L
C(β−1

i′ ◦βi)
i for an edge connecting i, i′ ,

(5.2)

where again γ = (1, 2, · · · , n) is the permutation consisting of one cycle, and note that
Li = Li′ for an index in common to X(i) and X(i′). These values are obtained from the
number of closed loops of each given index.

To summarize, we can in fact represent the permutation structure easily in terms of the
same tensor network. We show this, together with the rules for evaluating the moments,
in figure 17.
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β1 β2

β3 β4 β5

i ∈ T : L
C(βi)
i

i ∈ S: L
C(γ−1◦βi)
i

i ∈ P : L
C(γ◦βi)
i

L
C(β−1

i′ ◦βi)
i

Figure 17. A generic tensor network in terms of permutations.

For example, the (mixed) original two-tensor network (3.1) is given in terms of per-
mutations as

P τ1 τ2 S

T T

j ∈ A k ∈ EW n ∈ B

i ∈ C1 m ∈ C2

(5.3)

and applying the rules of figure 17 to this diagram gives exactly expression (3.9).

5.1 Special case: no partial transpose (entanglement spectrum)

We can now apply the same logic we used in section 4.3 in order to get the leading, large-N
behavior of a random tensor network. In fact, a useful way to organize this analysis for
the case of the entanglement entropy appears in [23].

The appropriate language is that of flow networks and flows. The basic question
motivating the problem of flow networks is having a transportation network with various
routes with a limited capacity, and the goal is to find the maximal possible flow one could
achieve getting from some initial point (source) to a destination point (sink). We will define
the needed notions below.

A flow network is a directed graph consisting of vertices V and edges E. Among the
vertices, there are two distinguished elements, the source s and the sink t. There is a
capacity function w(u, v) from pairs of vertices into the non-negative real numbers, such
that w(u, v) > 0 for (u, v) ∈ E and zero otherwise. A flow is a function f : V × V → R

such that

1. f(u, v) ≤ w(u, v) (we cannot exceed the capacity),

2. f(u, v) = −f(v, u) (more on this in the following),

3. ∑v∈V f(u, v) = 0 for any u 6= s, t (that is, the total flow is of course zero at interme-
diate points).

For sets X,Y , we denote g(X,Y ) = ∑
x∈X

∑
y∈Y g(x, y) for any function g, and similarly

we define g(x, Y ) and g(X, y). A cut is a partition of V into two sets V = S t T such that
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s ∈ S and t ∈ T .11 The value of a flow is

|f | =
∑
v∈V

f(s, v) = f(S, T ) (5.4)

for any cut. This is the total flow from the source to the sink. The goal in this problem is
to find the maximal possible value of a flow. There can be more than one flow saturating
this value.

Given a flow network and a flow f , we define the residual network by having capacity
wf (u, v) = w(u, v) − f(u, v). Note that the residual network is a sensible flow network
by the definition of a flow, having edges (u, v) for wf (u, v) > 0. Also note that having a
positive flow from u to v reduces the capacity from u to v, but increases the capacity from
v to u.

An augmenting path is a path from the source to the sink and so consists of positive
capacity edges.12 The Ford-Fulkerson method allows us to find a maximal flow. We take
the original network, look for an augmenting path, construct the residual network, and
continue in this process. In each residual network we look for an augmenting path and
construct another residual network. We stop when there are no augmenting paths left.
Note that if f ′ is a flow in a residual network constructed in turn using a flow f , then
f +f ′ is a flow in the original network with value |f +f ′| = |f |+ |f ′|. An augmenting path
together with a value x > 0 that is less than or equal to the capacity for each edge along
the path gives us a flow given by f(u, v) = x on the edges of the path and f(v, u) = −x.
Therefore, we get a flow by adding up the augmenting paths, and we necessarily stop at
some point because w(s, V ) decreases at each step.

Interestingly, we are guaranteed that the resulting flow is always a maximal flow. This
follows from the max-flow min-cut theorem [34–36]. Moreover, this theorem tells us that
the maximal flow equals the minimal cut capacity |f | = mincutsw(S, T ). Clearly, we cannot
pass a flow that exceeds the minimal cut, and according to the theorem, we can in fact
saturate this bound.

Going back to the tensor network, we can assume that we have a single edge of the same
type. That is, among external edges connecting to the same tensor and having the same
type T, S or P , or internal edges connecting the same tensors. Otherwise, if we have several
such edges, we can replace them by a single edge with a corresponding weight w ∈ R, given
by the sum of the weights of the edges we combine. The finite relative dimension of the
new edge is the product d = ∏

di.
Before that, we used C(β) as counting the number of cycles in a permutation β. A

complementary quantity is the minimal number of swaps needed to bring a permutation
β to the identity permutation that we denote by |β|. Indeed, for permutations of size n,
the two are related by |β| + C(β) = n. The triangle inequality claim that we have shown
before becomes in this language |αβ|+ |β−1γ| ≥ |αγ| making it more manifest that this is

11Note that in this definition we allow each of the sets S and T to have disconnected components.
12A path is a finite sequence of distinct vertices such that each two adjacent vertices in the sequence are

connected by an edge.
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β1 β2

β3 β4 β5

id

wT3|β3|
= |β3|

|β1|

w5S|β−1
5 ◦ γ|

= 2|β−1
5 ◦ γ|

w12|β−1
1 ◦ β2|

γ

Figure 18. The flow network corresponding to a tensor network. Going from a permutation β to
β′ we have a weight depending on β−1 ◦ β′.

a triangle inequality. As we saw, it is saturated for αβ non-crossing in cycles of αγ, and in
such a case we will denote this by αβ ≤ αγ.

Following [23], we construct a flow network associated to the tensor network. Each
tensor becomes a vertex in the flow network. Each vertex is associated with a permutation.
We also add one vertex for every type of external edge. For the type T , we assign the
identity permutation, while we assign γ for type S. The internal edges of the tensor
network become a pair of directed edges in both directions with capacity wij |β−1

i βj |. The
identity is taken to be the source, with every edge in the tensor network of type T becoming
a directed edge from the identity to βi with capacity wT i|βi|. Similarly, the vertex of type
S becomes the sink, with capacities wiS |β−1

i ◦ γ| (see figure 18). Therefore an edge i → j

is assigned wij |β−1
i βj |.

Maximizing the moments over N is the same as minimizing

Fβ =
∑
i

wT i|βi|+
∑
ij

wij |β−1
i ◦ βj |+

∑
i

wiS |β−1
i ◦ γ|. (5.5)

We should give a remark on flows. The definition of a flow as an anti-symmetric
function may appear to be confusing; one could expect that for two vertices having two
edges connecting them in both directions, we could have a flow in each direction, and
this flow should be limited by the capacity. This is not the case in the definition of a flow.
Phrased differently, in the Ford-Fulkerson method, we are allowed to have many flows going
in both directions and cancelling each other, which seems to imply physically more flow
than we can. The resolution lies in the fact that we can always assume that in such a pair
of edges, the flow is chosen to go only in one direction. Physically the intuition is that we
just do not need to waste flow going in one direction and then going in exactly the opposite
direction. More precisely, we can always replace any pair of augmenting paths shown in
figure 19 by the other paths in that figure.13 Importantly, this reduction is not necessary
for the Ford-Fulkerson method and the method works for any choice of augmenting paths;
it may just happen that we use far too many steps than we could have used. However, we
assume that this reduction has been made for the application to tensor networks below.

13Note that the resulting paths are not necessarily valid. We may be required to remove loops from
them. However, such loops will not affect the value of the resulting flows, and so we can proceed in the
algorithm. Again, logically this is just the statement that we do not gain anything by running loops inside
our transportation network.
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⇒A B +

x1weight: x2 < x1 x1 − x2 x2

A A A A++B B B B

x2

Figure 19. Having two flows passing through an edge and its opposite orientation can be replaced
by the flows shown in the figure, resulting in the same flow, but passing in only one of the directions
of that edge.

With this assumption, we can in fact think of the edges in our graph as being undirected
as long as we do not include paths that start and end on the same external node.

Having constructed the flow network associated to the tensor network, we apply the
Ford-Fulkerson method where the capacities of the flow network are given by the wi defined
through the Hilbert space dimensions. For each augmenting path, we apply a series of
triangle inequalities

|βi|+ |β−1
i ◦ βj |+ · · ·+ |β−1

k ◦ γ| ≥ |γ|. (5.6)

Equality is obtained for β’s being non-crossing with βi ≤ βj ≤ · · · ≤ βk. After getting a
maximal flow f , we have a residual network. Note that in the residual network, for each
pair of edges of opposite orientation connecting the same two vertices, there will be one
with smaller or equal capacity; we define the residual network to have the same capacity
on both edges with value equal to the minimal value, getting symmetric edges as in the
original network.14 Then,

Fβ ≥ |f |(n− 1) + Fβ(residual network), (5.7)

where we used |γ| = n−1. As mentioned, |f | is the maximal flow, so it equals the minimal
cut capacity wmin cut.

As Fβ ≥ 0, we can saturate the bound, that is get Fβ = |f |(n − 1) by precisely all βi
satisfying that

• βi are non-crossing,

• βi1 ≤ βi2 ≤ · · · ≤ γ for the β’s along each augmenting path,

• βi = id for all vertices in the connected component of id in the residual network,

• βi = γ for all vertices in the connected component of γ in the residual network,

• all β’s are equal in the same connected component of the residual network.
(5.8)

Note that the connected components of the source and the sink are distinct since
otherwise we would have a remaining augmenting path, so these conditions are consistent;
they are also consistent with respect to the conditions on augmenting paths. Strictly
speaking, we found that only all β’s belonging to an augmenting path or to the connected

14Similarly, we can drop the edge going into the source or out of the sink.
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component of the source or the sink are non-crossing. The reason that all β’s are non-
crossing is because any vertex is initially connected to the source or the sink (or both), so
if it is not in an augmenting path, it is in the connected components of one of those in the
residual network.

To summarize, we get at large-N

tr ρ′n =
∏
i

Var
(
X(i)

)n
·Nn

∑
i
wi−(n−1)wmin cut

∑
βi satisfying (5.8)

∏
edges

d
n−|β−1

i′ ◦βi|
i . (5.9)

Using the variance in (1.12),15

tr ρ′n = N−(n−1)wmin cut
∑

βi satisfying (5.8)

∏
edges

d
−|β−1

i′ ◦βi|
i . (5.10)

The N dependence is fixed by the minimal cut as in the Ryu-Takayanagi (RT) prescription.

5.2 Negativity spectrum in a tensor network

We would like to see how to also calculate the negativity spectrum in a general state. This
time, we have in addition to external states of type T and S, the states of type P that we
partially transpose. The corresponding flow network that we construct has an additional
vertex γ−1 that all the states in P connect to.

We will describe how to analyze the general case where we have a partial transpose
as two steps. Initially, let us take id to be the source, and both γ and γ−1 to be the sink.
A network with several sources and/or sinks is solved similarly to a network with a single
source and sink.16 This is shown in figure 20.

We define Fβ just as before as being ∑wij |β−1
i ◦ βj | with the external vertices being

id, γ, γ−1. Since |γ| = |γ−1|, for the contribution to Fβ it does not matter whether an
augmenting path gets to one sink or the other.

In the first step, we thus apply the Ford-Fulkerson method to this flow network. Each
augmenting path corresponds to an application of the triangle inequality. Recall that as
before, when having two edges connecting two vertices, we symmetrize the capacities in any
residual network to the smaller value. Eventually we have no augmenting paths meaning
that the source is not connected to either of the sinks. This step tells us that once again
if f1 is a maximal flow

Fβ ≥ |f1| · (n− 1) + Fβ(residual network 1), (5.11)

where we call the residual network at this stage “residual network 1”.
However, in order to saturate the bound to |f1| · (n− 1) we would need to add to the

conditions (5.8) that βi = γ−1 in the connected component of γ−1. The point is that these
15Note that there could be several different maximal flows. We should pick a single one, and they all give

the same result, as we derived a bound and saturated it.
16Formally, one could turn it into an equivalent network with a unique sink. This is done by adding a

new sink vertex s, with an edge going from every sink si in the network we are interested in into s, having
an infinite capacity. We can do a similar construction when having several sources. This is not necessary
though, as we can just think about {γ, γ−1} as our sink.
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β1 β2

β3 β4 β5

id

wT3|β3|
= |β3|

|β1|

w5S|β−1
5 ◦ γ|

= 2|β−1
5 ◦ γ|

w12|β−1
1 ◦ β2|

γ

γ−1 P

T S

|β−1
2 ◦ γ−1|

Figure 20. The flow network associated to a tensor network.

β1 β2

β4 β5
2| β−1

5 ◦ γ|

w12|β−1
1 ◦ β2|

γ

γ−1 P

S

|γ ◦ β2|

Figure 21. The flow network for the second step.

new conditions are not necessarily consistent and so the bound is not tight. Indeed, while
the component of id is different from that of γ and γ−1, we might get that γ and γ−1 are
connected in the residual network and then we cannot impose that the permutations in
this connected component equal to both γ and γ−1.

In order to resolve this, we introduce a second step. After the first step, the connected
component of the source is disconnected from γ, γ−1, so let us forget about it for the
majority of the second step. We consider the remaining flow network, and turn γ−1 to be
a source, where γ remains the sink. We could do the other way around, with the same
result. For clarity, this is shown in figure 21. This time we use the triangle inequality

|γ ◦ βi|+ |β−1
i ◦ βj |+ · · ·+ |β−1

k ◦ γ| ≥ |γ
2|. (5.12)

Thus, we get

Fβ ≥ |f1| · (n− 1) + Fβ(residual network 1) ≥
≥ |f1| · (n− 1) + |f2| · |γ2|+ Fβ(residual network 2).

(5.13)

The residual network in the final expression includes also the component of the identity,
which is the same as that after the first step. Now, the conditions to saturate the bound are
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• βi1 ≤ βi2 ≤ · · · ≤ γ or γ−1 for the β’s along each augmenting path in step 1,

• γ ◦ βi1 ≤ γ ◦ βi2 ≤ · · · ≤ γ2 along each augmenting path in step 2,

• βi = id for all vertices in the connected component of id in the final residual network,

• βi = γ−1 for all vertices in the connected component of γ−1,

• βi = γ for all vertices in the connected component of γ,

• All β’s are equal in the same connected component.
(5.14)

In short, we can express the last four conditions in a single statement, so that the full list
of conditions can be summarized by

• βi1 ≤ βi2 ≤ · · · ≤ γ or γ−1 for the β’s along each augmenting path in step 1,

• γ ◦ βi1 ≤ γ ◦ βi2 ≤ · · · ≤ γ2 along each augmenting path in step 2,

• All β’s are equal in the same connected component of the final residual network
(including the components of id, γ, γ−1).

(5.15)

We can see that the only problem with consistency of (5.15) happens when there is a
vertex taking part in an augmenting path in step 1 ending on γ but is connected to γ−1

in the final residual network (or the same with γ ↔ γ−1). In this case, the first and last
conditions cannot be satisfied at the same time. We will explain how this is avoided below,
but for now, let us assume this does not happen.

Then, the result at large-N is

tr ρ′n = N−(n−1)wI
min−l(n)wII

min
∑

βi satisfying (5.15)

∏
edges

d
−|β−1

i′ ◦βi|
i , (5.16)

where

l(n) =

n− 1 for odd n
n− 2 for even n .

(5.17)

In this equation, wI
min is the minimal cut of the first step, and similarly for the second step.

Note that this description is symmetric with respect to exchanging the set S with P , as it
should be, and provides a consistency check.

Let us do some simple examples to demonstrate this. Consider the two-tensor network
shown in (5.3). Suppose for simplicity that all the weights are 1. The associated flow
network is shown in figure 22. The flow in the first step is depicted in blue. The residual
network after the first step is shown in the same figure. In this case, γ, γ−1 are not
connected in the residual network after step 1, and therefore we do not have the second
step. The conditions (5.15) become in this case just τ1 = τ2, as they belong to the same
connected component in the residual network, with both being non-crossing in γ, γ−1. This
is an immediate diagrammatic way to get these constraints. Note that this case does not
belong to the classification of phases we did for the two-tensor network, but rather includes
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τ1 τ2

id

γ−1 γ

Residual Network:

τ1 τ2

id

γ−1 γ

Figure 22. The flow network corresponding to the two-tensor network. The flow is shown in blue.
All the weights are taken to be 1 here.

X Y
k

nj

Figure 23. A two-tensor network corresponding to a pure state.

id β γ

γ−1

flow 1

flow 2

Figure 24. A one-tensor network.

a special relation among the Hilbert space dimensions. Since τ1 = τ2, this network behaves
as a one-tensor network that we analyze in section 7.3.

In the pure case of the two-tensor network (figure 23) the set T is empty, so it is
the other way around here: we do not have the first step, but do have the second step.
This is what we have done in section 4.3, and we see that we get the conditions on the
permutations there immediately from (5.15).

Let us now return to the possible obstruction for consistency of (5.15). We start with
the simplest example of this situation and then argue in general. This example is the one-
tensor network shown in figure 24 with unit weights. In either of the two possible choices
for an augmenting path in step 1 shown in the figure we will get the clash we mentioned
before.17

However, we can still solve this. Let us first find the permutations giving the maximal
contribution in N , and then we can use the usual formula. In order to do that, we can

17Also, skipping step 1 and choosing the unique possible path in step 2 gives an inconsistency as well.
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id β γ

γ−1

1/2

1/2 1/2

Figure 25. A flow solving the one-tensor network with unit capacities.

construct the flow shown in figure 25 resulting in an empty residual network. We get that
the conditions for this bound to be consistent are that (1) β is non-crossing in γ, γ−1, and
(2) γ ◦ β is non-crossing in γ2. The first condition is equivalent to β being non-crossing
with only one- and two-cycles.18 This condition means that

|β|+ |β−1 ◦ γ| = |γ|,
|β|+ |β−1 ◦ γ−1| = |γ|.

(5.18)

The second condition is |γ ◦β|+ |β−1 ◦γ| = |γ2|. Together we get that |γ2| = 2(|γ|− |β|) or

|β| = |γ| − |γ
2|

2 =


n
2 n even
n−1

2 n odd ,
(5.19)

where we used that |γ| = n − 1 and |γ2| is n − 1 for n odd and n − 2 for n even. The
conclusion is that the set of β’s satisfying these conditions are in a class denoted by NC2,
that are

NC2 =

Non-crossing with only 2-cycles n even
Non-crossing with a single 1-cycle and the rest are 2-cycles n odd .

(5.20)

For these permutations,

Fβ = (n− 1) + 1
2 |γ

2| =


3n−4

2 n even
3n−3

2 n odd .
(5.21)

In general, the network we analyze is not a usual source-sink flow network, so a-priori
there is no guarantee that all choices of flows are equivalent, as this is not a single Ford-
Fulkerson process. We can think about this problem as having three external nodes, and
we construct augmenting paths that go from any one of them to another one. We will think
about this problem as having the goal of maximizing the total flow that we can construct,
i.e., the sum of the augmenting paths irrespective of which nodes get the maximal individual
flow. However, now the Ford-Fulkerson method does not necessarily work — indeed, we

18This is so because higher cycles have a particular orientation that matches to either γ or γ−1, but
not both.
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γ

γ

γ−1

γ−1

2x1 ≥ x2

2x1 < x2

x2/2x2/2

x1 − x2/2

x1x1

X

X

X

Figure 26. Argument for absence of the inconsistency.

saw in figure 24 a flow that does not admit leftover augmenting paths, and yet it is not a
maximal flow because the flow there was of 1 unit, while in figure 25 we found a flow of
3/2 units. Even though we are not guaranteed that the Ford-Fulkerson method works, we
may still look for a maximal flow.

The claim then is that in a maximal flow the inconsistency mentioned above does
not occur and the inequality is saturated, justifying (5.16). Indeed, suppose that after
constructing a maximal flow, we are left with some vertex X connected to γ−1 and took
part in a path from id to γ. This is demonstrated on the left hand side of figure 26. Note
that we do not assume that this is a one-tensor network, but merely show several paths
without drawing the full network. We denote by x1 > 0 the flow that went through the
path from id to γ passing by the node X, and there is a capacity of x2 > 0 remaining in
a path connecting the node to γ−1. Depending on whether 2x1 ≥ x2 or not, we show in
the figure two alternative flows that we could use instead of the x1 flow that was on the
l.h.s. . In either case, we increase the total flow in the network. This is a contradiction,
so we cannot have this kind of inconsistency. The same argument holds for exchanging
γ ↔ γ−1 and also to a vertex on an augmenting path from γ−1 to γ that remains in the
end connected to id.19

In fact, even though the Ford-Fulkerson method does not work in general, so that
we might end up with a flow which is not maximal, we can still know whether the flow
that we obtained is maximal or not. The easy way to know this is just by the absence
of the inconsistency mentioned above: if there is an inconsistency of this form, which is a
trivial condition to check, that means we did not get a maximal flow. This is a necessary
and sufficient condition in fact, because then the bound is tight. That is, if we found a
flow that cannot be increased with additional augmenting paths and does not have this
inconsistency, it is a maximal flow. This provides us an alternative to the Ford-Fulkerson
algorithm that we can apply in such problems.

It is natural to compare this situation to the problem of a flow network where we treat
node i (where i ∈ {id, γ, γ−1}) as the source, and the other two nodes that we will denote

19We can think about the network symmetrically when constructing the maximal flow, where each of
these three options should be considered. Even if we do so, the two steps above are still relevant because
the augmenting paths in the first and second steps contribute differently. Still, we see that after the first
step, there will not be any vertex connected to id that will take part in a path from γ−1 to γ, as we assumed.
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by j, k as the sinks. Given a maximal flow f that we constructed before to the full network,
we may ask whether taking all the augmenting paths from i to j and from i to k (dropping
those going from j to k), giving us a flow fi to the problem where i is the source, is a
maximal flow. In fact, this is true. Indeed, suppose that there is an additional augmenting
path from i to j or k. If it does not pass through a path going from j to k in f , we could
add it to f , which is a contradiction. Otherwise, it means that we have a path starting
at i, passing by some node X and ending in k, or in short i → X → k, such that X → k

is part of a path j → k in f . In this case, we cannot add i → X → k as an additional
augmenting path to f . However, this is just the situation that we had in figure 26, where
the remaining path is the one labeled by x2 and x1 is the flow that we had in f . We saw
that there is a contradiction here as well.

Dividing the augmenting paths in f into fid,γ , fid,γ−1 , and fγ,γ−1 in the manner men-
tioned above, we have shown that fij ∪ fik is a maximal flow in the network where i is a
source and j, k are sinks. By the max-flow min-cut theorem, we know that this flow equals
the minimal cut w(i)

min of i. Therefore, the cuts of the two steps that we found before are

wI
min = w

(id)
min, wII

min = w
(γ)
min + w

(γ−1)
min − w(id)

min
2 = w

(γ)
min + w

(γ−1)
min − w(γ,γ−1)

min
2 . (5.22)

Thinking about the minimal cut as the RT surface, we see that the latter is the RT
surface corresponding to the mutual information of the two subsystems P and S. If we
are interested in the negativity E , from (5.16) we see that the coefficient of log(N) in E =
wII
min log(N) + · · · is half the mutual information for a tensor network with any capacities,

agreeing with [29], but the di dependence can be different in general. The negativity
spectrum is not unique and depends on these other terms.

5.3 Examples and new spectra

We saw that the semi-circle and Marchenko-Pastur distributions are realized as negativity
spectra of random tensor networks, but in general we can obtain other new spectra. One
such spectrum will be obtained in section 7.3. Here we will do another example which is the
pure two-tensor network studied in sections 4.2 and 4.3. We take here wA = wB = wEW :=
w. While we can have any dimensions in the Schwinger-Dyson equation of section 4.3, here
we take all relative dimensions to be di = 1, but we can get the resolvent without further
approximations.

In this case, we need a single augmenting path of magnitude w in figure 23, and there
are no edges in the residual network. The solution in (5.15) tells us that γ◦τ1 ≤ γ◦τ2 ≤ γ2,
where the permutations corresponding to the two tensors are τ1 and τ2, so defining βi = γ◦τi
with i = 1, 2, this means just β1 ≤ β2 ≤ γ2, as we saw in section 4.3. It is not hard to count
the number of permutations explicitly as we assume di = 1. For n odd, γ2 has a single cycle,
and so we just count the number of non-crossing permutations β1, β2 such that β1 ≤ β2.
This is known to be given by the second Fuss-Catalan number FC(2)

n = 1
2n+1 ( 3n

n ). For n
even, γ2 has two cycles, and so we have two copies of the same counting with n → n/2.
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-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

Figure 27. A plot of the spectrum of the pure two-tensor network for N2w = 256. We compare it
to a simulation of this tensor network, averaging over 103 disorder realizations.

Using (5.16) we get

mn =

N (1−n)wFC
(2)
n odd n

N (2−n)wFC
(2)
n/2 · FC

(2)
n/2 even n

. (5.23)

The resolvent is therefore

R(z) = 1
z2 · 4F3

2
3

5
6

7
6

4
3

5
4

3
2

7
4

; 729
16N2wz2

+ N2w

z
· 4F3

1
3

1
3

2
3

2
3

1 3
2

3
2

; 729
16N2wz2

 . (5.24)

It is not hard to find numerically the spectrum given the resolvent (5.24) using (1.8).
We show this in figure 27. This spectrum is bounded, but differs from the previous cases.

Let us give another example of a more complicated network, and apply the formalism
of the previous subsection. We consider the cycle graphs of [23]. If we take a three-cycle
graph

id γ

γ−1

T1 T2

T3

0.5

0.5 1

1 1

1

(5.25)

with the capacities indicated in the figure, we need to maximize
1
2
(
2C(β1) + C(β−1

1 ◦ β2) + C(β−1
1 ◦ β3) + 2C(β−1

2 ◦ β3) + 2C(γ−1 ◦ β2) + 2C(γ ◦ β3)
)
.

(5.26)

From the flow network with augmenting paths id → β1 → β2 → γ, id → β1 → β3 → γ−1

and γ−1 → β3 → β2 → γ, we find the following conditions on the permutations

β1 ≤ β2 = β3, (5.27)
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with β2 = β3 the same permutations of type NC2 as we saw in the last subsection
(see (5.20)). The number of non-crossing permutations of size 2n consisting of only two-
cycles is given by the nth Catalan number, so there areCn/2, n ∈ 2Z

nC(n−1)/2, n ∈ 2Z + 1
(5.28)

ways to choose β2 = β3, and for each specific choice, there are2n/2, n ∈ 2Z
2(n−1)/2, n ∈ 2Z + 1

(5.29)

ways to choose β1. Therefore, the total degeneracy is2n/2Cn/2, n ∈ 2Z
n2(n−1)/2C(n−1)/2, n ∈ 2Z + 1 .

(5.30)

Choosing all di = 1, we get the negativity moments

mn =

2n/2Cn/2N2− 3n
2 , n ∈ 2Z

n2(n−1)/2C(n−1)/2N
3(1−n)/2, n ∈ 2Z + 1 .

(5.31)

Let us now compute the resolvent

∞∑
n∈2Z

2n/2Cn/2N2− 3n
2

zn+1 = −1
4zN

5
(√

1− 8
z2N3 − 1

)
∞∑

n∈2Z+1

n2(n−1)/2C(n−1)/2N
3(1−n)/2

zn+1 = 2N3

z2N3
(√

1− 8
z2N3 + 1

)
− 8

.

(5.32)

This is the same spectrum as we find in phase III of the one-tensor network, i.e., a semi-
circle law, except that the radius of the semi-circle is larger by a factor of

√
2.

The logarithmic negativity may be computed from the even moments as

E = 1
2 log [N ] + log

[ 8
3π

]
+ 1

2 log [2] . (5.33)

We have separated this out into three terms to emphasize that this is the same as the
single-tensor network except there is an additional half qubit of information.

6 Micro-canonical JT gravity as a one-tensor network

The simplest random tensor network that we have mentioned, which is the one-tensor
network of section 2, has an immediate relation to a holographic model that we recall in
this section, with practically the same diagrams used in both contexts.

Recently, the quantum extremal surface prescription with an island for the entangle-
ment entropy of the Hawking radiation of a black hole was explained using Euclidean replica

– 38 –



J
H
E
P
0
2
(
2
0
2
2
)
0
7
6

wormholes [30, 37]. In this section, we will study mixed state entanglement in a setting of
a black hole with its radiation, using the model of [30] that is based on Jackiw-Teitelboim
gravity.20

The authors of [30] consider JT gravity with an end-of-the-world (EOW) brane sim-
ilarly to [40]. The EOW brane resides behind the horizon in Lorentzian signature, and
can be thought of as the trajectories of the Hawking pairs of the radiation. It has a large
number of orthogonal internal states to account for the radiation particles. In addition,
there is an auxiliary quantum system R corresponding to the radiation that came from
the black hole. For our purposes, we will imagine that we can divide the space where we
have the radiation into two parts such that one has k1 possible orthonormal states |i〉R1 ,
while the other has k2 states |a〉R2 . Correspondingly, the states of the black hole with the
EOW brane in state i, a are denoted by |ψia〉B. The matrix elements 〈ψia|ψjb〉 are given by
gravity amplitudes having a single asymptotic boundary, where on one endpoint an EOW
brane of type i, a should end, and on the other an EOW brane of type j, b ends. Allowing
gravitational wormhole configurations, when considering a single such matrix element, two
different states appear to be orthogonal, while the absolute value squared of this matrix
element is non-zero. This can be interpreted as if the gravitational theory implements
a disorder average, consistent with having vanishing average value with a non-vanishing
variance of the matrix element. This non-orthogonality is the origin of the Page curve-like
behavior in this model. It is also the origin of the distinguishability of different black hole
microstates [25, 41].

As the radiation is entangled with the interior particles, we consider the state

|ψ〉 = 1√
k

∑
i,a

|ψi,a〉B|i〉R1 |a〉R2 , (6.1)

where k := k1k2.
First, suppose that we do not have access to part of the radiation corresponding to

system R2, and would like to measure the entanglement between subsystem R1 of the
radiation, and the black hole. In this case, we should trace out R2 and remain with a
density matrix, omitting the subscripts in the states describing the corresponding system

ρ = trR2 |ψ〉〈ψ| =
1
k

∑
i,a,j

|ψi,a〉|i〉〈ψj,a|〈j|. (6.2)

For the negativity, we consider the partially transposed density matrix ρTR1 , having mo-
ments

tr
(
ρTR1

)n
= 1
kn

tr [|ψi1,a1〉|j1〉〈ψj1,a1 |〈i1| · |ψi2,a2〉|j2〉〈ψj2,a2 |〈i2| · · · ] =

= 1
kn
〈ψj1,a1 |ψi2,a2〉〈ψj2,a2 |ψi3,a3〉〈ψj3,a3 |ψi4,a4〉 · · · 〈ψjn,an |ψi1,a1〉δi1,j2δi2,j3 · · · δin,j1 =

= 1
kn
〈ψin,a1 |ψi2,a2〉〈ψi1,a2 |ψi3,a3〉〈ψi2,a3 |ψi4,a4〉 · · · 〈ψin−1,an |ψi1,a1〉

(6.3)
20We note that different details and perspectives on negativity in this model are considered in refs. [38, 39].
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i2, a2 i1, a2

i3, a3

i2, a3

i4, a4i3, a4

Figure 28. Replica trick for negativity after tracing out part of the radiation.

with an implicit summation over the indices. The boundary condition for the gravitational
theory that this expression gives is shown on the l.h.s. of figure 28 with the explicit appear-
ance of the indices, and an example for a contributing configuration including a wormhole
is shown on the r.h.s. for n = 4. This index structure can conveniently be represented
using the diagrammatic notation that we used before, as shown in figure 29. In this repre-
sentation, the black lines correspond to the asymptotic boundary of JT gravity, the green
line corresponds to the R1 part, and the blue line to the R2 part. The diagram implements
precisely the index constraints, so that now we do not need to write the indices explicitly.
Any bulk configuration is given by contracting a triple line on the left of the blue segments
on the boundary with a triple line on the right of a blue segment. This gives the possible
geometries, excluding handles that we can neglect when the entropy parameter S0 that
multiplies the Euler term in JT gravity is large. These are precisely the rules we had for
the one-tensor model. In the JT language, this multiline corresponds to the worldline of
the EOW particle.

The value that we should assign in JT gravity to each configuration contributing to the
nth moment is a factor of Zm for every wormhole having m boundaries, and normalize by

1
(kZ1)n where the k dependence comes from the normalization of the state in (6.3) and the
Z1 dependence normalizes the bulk integral. Zm here is the JT gravity partition function
with m asymptotic boundaries in the presence of EOW branes. Every closed loop of the R1
system gives a factor of k1 and similarly for R2. As explained in [30], in the micro-canonical
ensemble with entropy S, Zm is given by eS times an mth power law which simply cancels
with the normalization 1/Zn1 , so that we can effectively replace Zm → eS. Therefore, in
the micro-canonical ensemble, where we assume that eS and k1, k2 are large such that we
can neglect handles, the model is the same as a one-tensor network where we consider the
negativity between two systems of Hilbert space dimensions eS and k1, after tracing out a
system of size k2. The diagrammatic rules are indeed the same as in section 2.

Suppose that while the black hole evaporates, which is described by increasing k, we
only have access to a fixed amount of radiation, and ask how the entanglement between
this radiation and the black hole behaves. This is described by keeping k1 and eS fixed
while increasing k2. It corresponds to moving along a vertical line in the phase diagram
of figure 2. Let us denote by N1 = log k1 and similarly for N2, representing the number of
Hawking particles. At first when N2 is very small, we are in phase II where the negativity is
min (S, log k1). This is the regime where we have approximately a pure state, reproducing
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Figure 29. Equivalent one-tensor network diagrammatic representation of figure 28.

min(S, N1)

|S−N1|

1
2
(S+N1 −N2)

S+N1

N2

E

Figure 30. Entanglement as measured by negativity between a fixed amount of radiation that we
have access to, and the black hole, as a function of an increasing amount of escaping radiation.

the result of [30] and corresponding to the Page curve. As we increase N2, after passing |S−
N1|, we move to phase III where the negativity starts decreasing and is 1

2 (S +N1 −N2).21
Eventually, for N2 > S +N1 the negativity remains zero. In the case that S = N1, we do
not have the first step (which is phase II). This behavior as a function of N2 is shown in
figure 30. Note that even though we still have some portion of the radiation for N2 > S+N1,
the negativity vanishes.

Alternatively, we can also trace out the black hole and consider instead the entangle-
ment between the two parts of the radiation. Similarly to before, the moments are now

tr
[
(trB |ψ〉〈ψ|)TR2

]n
= 1
kn
〈ψi2,a1 |ψi1,a2〉〈ψi3,a2 |ψi2,a3〉〈ψi4,a3 |ψi3,a4〉 · · · 〈ψi1,an |ψin,a1〉.

(6.4)

This can be represented in the diagrammatic notation as before by the diagrams shown in
figure 31. The difference from before is that the basic element corresponding to the density
matrix was built on top of the blue segments before, while now it is on the black segments.
This is of course precisely consistent with what system we trace out if we compare to the
one-tensor network notation. The rules for evaluating diagrams are again as in the one-
tensor case, where now we consider the negativity between spaces of dimensions k1 and k2,
after tracing out a system of dimension eS.

21There is an O(1) contribution of log 8
3π in the negativity in this regime, but we are interested in large

dimensions.
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Figure 31. One-tensor network diagrams for the negativity between the two parts of the radiation.

We again get a description of the different cases of the negativity if we think about
fixing the radiation sizes N1 and N2, while changing the size of the traced out system, that
is changing S starting from large to small. It also makes sense to consider this physically.
In this case we again move vertically in the phase diagram of figure 2, now from bottom
to top. If we consider the state (6.1) naively, as if the different B states are orthonormal,
then after reducing to the radiation subsystem, we have a density matrix corresponding to
a statistical mixture, but quantum mechanically an unentangled state. Indeed, for large S
the negativity vanishes. Note that naively, before the correction giving the Page curve, the
black hole system has (exponent of) N1 +N2 states which keeps increasing. Indeed, there
is a transition that begins precisely once we get to S = N1 + N2, where the negativity is
no longer vanishing. We can understand it as follows. Once there are |ψi,a〉 states that are
identical, we start generating parts of the density matrix that correspond to an entangled
state ∑i,a |i〉|a〉 where the sum is not over the full range but rather part of it. This leads
to a linear growth. However, once we reach S = |N1 −N2|, we get to a plateau where the
negativity remains constant and does not grow anymore, as it cannot exceed min(N1, N2).
Note that in the diagrams of figure 31 (differently from those of figure 29), the permutation
structure corresponds directly to the wormhole structure in JT gravity in the sense that
no transformation is needed, since the density matrix sits on the black segments. At the
beginning, when S was very large, we were dominated by the identity permutation with
no wormholes at all. In the plateau region phase on the contrary, we are dominated by a
1-cycle permutation, so that the wormholes span over all the copies of the system.

7 Negativity in holographic fixed-area states

7.1 Fixed-area states

The information theoretic aspects of random tensor networks appear in holography as holo-
graphic fixed-area states [42, 43]. Let us review this starting with entanglement entropy.

In quantum field theory we can calculate the entanglement entropy by analytic con-
tinuation from the Rényi entropies using the replica trick. Given a subsystem A and its
complement B, the entanglement between A and B is studied using the reduced density
matrix ρA on A. For states prepared using the path integral we calculate the moments
tr ρnA by taking n copies of the system, cutting each one open along A, and gluing the copies
cyclically, i.e., using the permutation γ. In system B we have no cuts, so we can think

– 42 –



J
H
E
P
0
2
(
2
0
2
2
)
0
7
6

A

A

A

A

A

A

A
γ

id

a

a

a

Figure 32. Branched surfaces for the Rényi entropies. On the l.h.s. we show the gluing on the
field theory side. On the r.h.s., a spatial slice of the bulk is shown.

about it as gluing the n copies using the identity permutation along B. This is shown on
the left hand side of figure 32.

In holographic states we can calculate the nth moment by considering the bulk dual
of this branched covering space. The simplest candidate for the bulk topology is to take
the bulk dual of a single copy of the system, and consider a subregion a that intersects the
boundary at A. We denote the boundary of a by ∂a = γA ∪ A. Taking n copies of this
system branched over a, and glued cyclically using γ along a we get an admissible topology
for the corresponding bulk geometry (see figure 32).

Semi-classically, we can approximate the path integral of the bulk partition function
by Z = e−I[gn] where I is the action evaluated on the solution gn for the geometry. For
simplicity, let us consider Einstein-Hilbert as the bulk effective theory. Then, the nth Rényi
entropy is approximated by

Sn = I[gn]− nI[g1]
n− 1 . (7.1)

In general, the geometry gn differs from g1, even locally. This is due to backreaction
from coupling the replicas. In the n → 1 limit that gives the entanglement entropy, the
surface γA is extremal in g1, giving a replica trick explanation [44] of the Ryu-Takayanagi
formula [45, 46].

We can now consider a state where we fix the area of the extremal surface homologous
to A in the bulk to some value A [42, 43]. That is, we include in the path integral a delta
function setting it to a fixed value. If we enforce this using a Lagrange multiplier, it enters
the action only locally along the RT surface. This means that for n = 1, away from the
RT surface, the equations of motion are unchanged compared to the situation where we do
not fix the area. At the RT surface, there is a cosmic brane with a conical deficit angle φ
set such that the area in the classical solution agrees with the fixed area. Now, for general
integer n, we can glue n copies of this solution along the entanglement wedge a with the
same geometry locally and still get a solution. This is because the equations of motion
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Figure 33. Branched surfaces for the negativity moments.

are satisfied away from γA and the area agrees with the fixed area. The total (uniform)
deficit angle around γA is now nφ. This is the reason for the simplicity of fixed-area states.
The Einstein-Hilbert action (without a cosmic brane term that vanishes for the fixed area)
evaluated with this solution has a linear piece in n coming from the geometry away from
the RT surface. Because of the deficit angle, we get a piece proportional to (nφ − 2π)
from the conical defect at the RT surface times the fixed area. The terms linear in n do
not contribute to the Rényi entropies, as they cancel in (7.1). Therefore, we get that the
Rényi entropies are A

4GN where GN is Newton’s constant. That is, we get the Bekenstein-
Hawking entropy with the fixed area and a flat entanglement spectrum as the entropies
are independent of n.

Let us now move on to negativity which was previously considered in [29]. Now we
partition the quantum field theory into three subsystems A, B, and C. We trace out system
C and do a partial transpose over system A. The moments of the partially transposed
density matrix trC ρTA in this case are obtained by taking n copies, cutting them open
along A and B, gluing along B with γ, while gluing along A with γ−1, implementing the
partial transpose. Along C, we glue with the identity as we did before for the traced
system. This is shown on the l.h.s. of figure 33.

We can construct a bulk topology by extending A, B, and C into the bulk as in [29].
In the configuration shown in figure 33, the gluing in the bulk is done in correspondence
with the boundary permutations, while in the remaining region we can allow a-priori any
permutation β.

Again, it is simplest to see what happens when we fix the areas of the RT surfaces of
all these regions. As before, the contribution away from the entangling surfaces is linear
in n and does not contribute to the negativity moments as in (7.1). Now, consider an
entangling surface such that on one side of it, we glue according to a permutation σ1 and
on the other side σ2. As we encircle the entangling surface, we move between the n copies
according to σ1 ◦ σ−1

2 . For any cycle of size ni of this permutation, we get a contribution
proportional to (niφ−2π)A, with A being the fixed area, to I[gn], as we mentioned before.
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Figure 34. Matching a fixed-area state with the corresponding tensor network.

Since∑i ni = n, the ni terms again cancel in the moments. We remain with 2πA times the
number of cycles. Therefore, each such entangling surface contributes to the nth moment
simply as A

4GN C(σ1 ◦ σ−1
2 ). We get that the moments are

mn = Z
(PT)
n

Zn1
(7.2)

with
Z(PT)
n = exp

[∑
i

Ai
4GN

C
(
σ

(i)
1 ◦ (σ(i)

2 )−1
)]
, (7.3)

where the sum goes over the fixed areas in the bulk. For the example of figure 33, we have

Z(PT)
n = exp

[
A[γA]
4GN

C(γ ◦ β) + A[γB]
4GN

C(γ−1 ◦ β) + A[γC ]
4GN

C(β)
]
, (7.4)

where A[γB] is the fixed area of the RT surface of B and so on.
Equation (7.3) is exactly the same as the moments of a random tensor network (5.2).

For any internal region in the bulk, we place a random tensor. The bulk regions touching
boundary subsystems that we partially transpose have a network node of γ−1. Those that
are traced out have an id node and those corresponding to subsystems that we do not
trace or partially transpose have a γ node. The negativity moments here and in (5.2) then
agree once we identify the Hilbert space dimension L of a tensor network edge connecting
two tensors with the exponential of the fixed area crossed by this edge exp [A/(4GN )].
Figure 33 with its moments (7.4) is the simplest tensor network which is the one-tensor
network, as shown explicitly in figure 34.

7.2 Two-tensor network holographically

We may also have higher tensor networks corresponding to states with more fixed areas.
Let us mention the holographic setting that is described by the two-tensor network of
section 3. It is shown in figure 35. We have three subsystems A, B, and C of the boundary
theory, just as before. In the bulk, the RT surface of A is denoted by γA, and similarly
for B and C. The connected RT surface for the AB system is shown as well, and it is
divided in two by the entanglement wedge cross section, the extremal surface with two
ends on γAB. The entanglement wedge cross section is denoted by EW and the piece of
the connected RT surface that connects to A is γC1 , while the remaining piece is γC2 .
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Figure 35. The holographic setting described by the two-tensor system.

In the general phase structure of the two-tensor network shown in table 1, this holo-
graphic setting can be achieved in phases 1 and 4, while the rest of the phases are necessarily
non-holographic. This is because in the holographic setting we have A[γC1 ] + A[EW ] >
A[γA] and A[γconn] + A[γB] > A[γA] as γA, γB are RT surfaces, where γconn = γC1 ∪ γC2

and similarly for switching A and B. In both holographic phases, we saw that the two-
tensor network essentially behaves as a one-tensor network since at leading order the two
permutations are equal. One regime is when LC1LC2 � LALB, which belongs to phase 1
in table 1. It corresponds in holography to the disconnected regime where the dominant
RT surface for the entanglement entropy of AB is γA ∪ γB. By matching to the corre-
sponding one-tensor network dimensions, we see in figure 2 that we land on region I in the
phase diagram where the negativity vanishes. The other regime is when LC1LC2 � LALB,
belonging to phase 4, which corresponds to the connected regime in holography where the
dominant RT surface for AB is γconn = γC1 ∪ γC2 . Since in holography we always have
A[γconn] + A[γB] > A[γA] and A[γconn] + A[γA] > A[γB], that means that we are in region
III of the phase diagram in figure 2. The negativity spectrum in this region is a semi-circle
as we saw, and as was also found in [29]. Note that region II with the Marchenko-Pastur
distribution is not realized holographically in the setting of figure 35. It turns out that
region II can be realized holographically in multiboundary wormholes.

7.3 Wormholes

Let us consider a three-boundary wormhole configuration with three fixed areas A1, A2,
and A3 that corresponds to the one-tensor networks (see figure 36). Note that while either
of (say) A1 or A2 + A3 could be an RT surface for the same boundary region, they differ
topologically.

As a first case, consider the situation where A1 = A2 + A3. Let us denote by Nwi

the value eAi/(4GN ) for the minimal area from now on, so that here w1 = w2 + w3. In this
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Figure 36. A three-boundary wormhole configuration.

case the flow is id → β → γ−1 and id → β → γ. This means that β is a non-crossing
configuration made of one- and two-cycles only. Therefore the moments are

tr ρ′n = N−w1(n−1)|NC1,2| (7.5)

where |NC1,2| is the number of non-crossing partitions of a cycle made of n elements
consisting of parts of size 1 or 2 only.

The number of non-crossing partitions of a cycle of size n with sk parts of size k is
given by [47]

v(s) = (n)h−1
s1!s2! · · · = n!

(n− h+ 1)!s1!s2! · · · (7.6)

where
h = s1 + s2 + · · · (7.7)

is the total number of parts in the partition.
Let us denote by k = s2 the number of two-cycles. Then there are n− 2k one-cycles,

and so the total number of partitions we are interested in is

|NC1,2| =
bn/2c∑
k=0

n!
(k + 1)!k!(n− 2k)! = 2F1

(1− n
2 ,−n2 , 2; 4

)
. (7.8)

Denoting this number by an, we note that it satisfies the recursion relation

(n+ 3)an+2 − (3 + 2n)an+1 − 3nan = 0, a0 = a1 = 1. (7.9)

|NC1,2| are the Motzkin numbers Mn as those are defined precisely as the number of
possibilities to draw non-crossing chords on a circle with n nodes, not necessarily covering
all the nodes so that we think about the leftover nodes as being 1-cycles. We find

Nw1ntr ρ′n = Nw1Mn. (7.10)
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The generating function of the Motzkin numbers is
∞∑
n=0

Mnx
n = 1− x−

√
1− 2x− 3x2

2x2 . (7.11)

The resolvent of ρ′ is therefore

R(z) = N2w1

2

(
Nw1z − 1−Nw1

√(
z − 3

Nw1

)(
z + 1

Nw1

))
, (7.12)

so

ρN (λ) = N3w1

2π

√( 3
Nw1

− λ
)(

λ+ 1
Nw1

)
· 1[− 1

Nw1 ,
3

Nw1 ]. (7.13)

This is a semi-circle distribution, non-symmetric with respect to the origin, having support
in the negative part as well.

Another interesting regime is when A3 = A1 + A2 (equivalently w3 = w1 + w2). The
flow is then id→ β → γ and γ−1 → β → γ. This gives conditions

|β|+ |β−1 ◦ γ| = |γ|,
|γ ◦ β|+ |β−1 ◦ γ| = |γ2|,

(7.14)

or alternatively the contributing permutations are such that for odd n

β is NC, i.e., |β|+ |β−1 ◦ γ| = |γ|,
C(β) = C(γ ◦ β)

(7.15)

(where NC stands for non-crossing) while for even n

β is NC, i.e., |β|+ |β−1 ◦ γ| = |γ|,
C(β) + 1 = C(γ ◦ β).

(7.16)

We find the number of such permutations is 1
n+1

(
3n/2
n/2

)
for even n, while it is

(
(3n−1)/2
(n−1)/2

)
for odd n by checking many values explicitly. We will give a compact proof of this for even
n. As a first step, we notice that the two equations above are in fact equivalent to the
condition that the permutation γ ◦ β−1 is non-crossing in γ and γ2. As a second step, we
can count the number of such permutations as follows. Since for even n the permutation
γ2 has two cycles consisting of the even and odd sites, what we are after is the number
of non-crossing permutations where each cycle is entirely contained either in the odd sub-
lattice or the even sub-lattice. In order to count this, we denote by τ the corresponding
partition of the odd sub-lattice. For every such non-crossing partition, there corresponds
a unique non-crossing partition τ̄ of the even sub-lattice [47], where τ̄ is the maximal non-
crossing partition such that the union of τ, τ̄ is a non-crossing partition; see figure 37 for an
example. The even cycles of the partitions we are after must be precisely the non-crossing
sub-partitions of τ̄ . We thus count the number of τ, σ ∈ Sn/2 such that τ is non-crossing
and σ ≤ τ̄ is non-crossing. This is the same as the number of non-crossing σ ≤ τ̄ , which
by definition is the second Fuss-Catalan number FC(2)

n/2 = 1
n+1

(
3n/2
n/2

)
.
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Figure 37. Dual non-crossing partition to another non-crossing partition, also known as the
Kreweras complement. One partition is shown using solid lines, while the other corresponds to
dashed lines.

The moments are thus

tr ρ′n =

N
(1−n)w3+w2 · 1

n+1

(
3n/2
n/2

)
even n

N (1−n)w3
(

(3n−1)/2
(n−1)/2

)
odd n

. (7.17)

From this, we get that the resolvent is

R(λ) = 2N2w3+w2
√

3
sin
[

1
3 arcsin 3

√
3

2Nw3λ

]
+ Nw3
√

3
·

sin
[

2
3 arcsin 3

√
3

2Nw3λ

]
λ
√

1− 27
4N2w3λ2

. (7.18)

Let us denote
x = 3

√
3

2Nw3λ
. (7.19)

In order to get the density of states, we should look for the imaginary part using (1.8).
Both sine terms have an imaginary part for |x| > 1. It can be verified that they do not have
any imaginary parts outside of this range including delta function like terms. However, the
square-root in the second term also has an imaginary part in this range. Therefore, for the
second term we actually need the real part of the sine. Thus, there is no contribution to
the density of states from the second term as well for |x| ≤ 1. We then obtain that the
density of states is

ρN (λ) =



N2w3+w2
2π

[(√
x2 − 1 + x

)1/3
−
(√

x2 − 1 + x
)−1/3

]
+N2w3

6
√

3π
(√x2−1+x)2/3+(√x2−1+x)−2/3

√
1−x−2 0 ≤ λ ≤ 3

√
3

2Nw3

N2w3+w2
2π

[(√
x2 − 1− x

)1/3
−
(√

x2 − 1− x
)−1/3

]
−N2w3

6
√

3π
(√x2−1−x)2/3+(√x2−1−x)−2/3

√
1−x−2 − 3

√
3

2Nw3 ≤ λ ≤ 0 .

(7.20)

– 49 –



J
H
E
P
0
2
(
2
0
2
2
)
0
7
6

This is the closed form result at large-N . A plot of this is shown in figure 38, where this
formula is compared to a simulation of the one-tensor network. The spectrum in (7.20)
indeed satisfies

∫
dλ ρN (λ) = Nw2+w3 and

∫
dλλρN (λ) = 1.

In terms of figure 2 (and ref. [22]) this gives the negativity spectrum for the regime
corresponding to the phase transition between phase II (called the maximally entangled
phase in [22]) with Marchenko-Pastur distribution and phase III (called the entanglement
saturation phase) with a semi-circle distribution.

7.4 Quantum corrections

So far, we have effectively been studying “pure gravity” without quantum fields propagating
on the space. We now generalize these results to when there is a code subspace of states
for each fixed geometry. First consider the case of disjoint regions, A and B, where there
are no bulk quantum fields. In this case, the flow network is (figure 39)

T3

T2 T1

T4 T5

source

sink 1

sink 2

w32

w21

wC

wA

wB

w34
w45

w24 (7.21)

There is a hierarchy of scales wA, wB, wC � w21, w45, w32, w34 � w24. In order to have
nontrivial correlation between A and B, we take w32 +w34 < w21 +w45. For simplicity, we
take the more symmetric case where w32 < w21 and w34 < w45 individually. In this case,
the following augmenting paths disconnect the source from the sinks

T3

T2 T1

T4 T5

source

sink 1

sink 2

w32

w21

wC

wA

wB

w34
w45

w24 ,

(7.22)

leading to residual network

T3

T2 T1

T4 T5

source

sink 1

sink 2

w21 − w32

wC − w32 − w34

wA − w32

wB − w34w45 − w34

w24 .

(7.23)
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In the next step, we must maximize the flow from the first sink to the second sink

T3

T2 T1

T4 T5

source

sink 1

sink 2

w21 − w32

wC − w32 − w34

wA − w32

wB − w34w45 − w34

w24 .

(7.24)

If w24 < w21 − w32, w45 − w34 (not relevant for holography), the residual network is

T3

T2 T1

T4 T5

source

sink 1

sink 2

w21 − w32 − w24

wC − w32 − w34

wA − w32 − w24

wB − w34 − w24w45 − w34 − w24

.

(7.25)

Let us instead choose w21 − w32 = w45 − w34 < w24, in which case the residual network is

T3

T2 T1

T4 T5

source

sink 1

sink 2

wC − w32 − w34

wA − w21

wB − w45

w24 + w32 − w21 .

(7.26)

The dominant permutations are therefore τ2 = τ4 ∈ NC2, τ3 = id, τ1 = γ, τ5 = γ−1.
Consider the exotic single-sided geometry involving two wormholes (figure 40). The

flow network is

T3

T2 T1

T4 T5

source

sink 1

sink 2

T6

T7

w32

w21

wC

wA

wB
w34

w45

w24

w16w26

w75w74

. (7.27)
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-0.010 -0.005 0.000 0.005 0.010

Figure 38. Negativity spectrum at the phase transition when w3 = 2w1 = 2w2 = 4 and N = 2.
The average of 10 realizations (black dots) is compared to (7.20) (gray line).

Figure 39. The bulk geometry for the negativity moments with the random tensor network
overlaid.

Figure 40. A time slice of AdS is shown with large bulk matter. We consider highly entangled
black holes. The entanglement can geometrically be thought of as a wormhole á la ER = EPR [48].
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After the same first step, we have residual network

T3

T2 T1

T4 T5

source

sink 1

sink 2

T6

T7

w21 − w32

wC − w32 − w34

wA − w32

wB − w34w45 − w34

w24

w75w74

w16w26

. (7.28)

We again take an augmenting path through the network

T3

T2 T1

T4 T5

source

sink 1

sink 2

T6

T7

w21 − w32

wC − w32 − w34

wA − w32

wB − w34w45 − w34

w24

w75w74

w16w26

, (7.29)

leading to

T3

T2 T1

T4 T5

source

sink 1

sink 2

T6

T7

wC − w32 − w34

wA − w21

wB − w45

w24 + w32 − w21

w75w74

w16w26

. (7.30)
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Because of the quantum corrections, there is a remaining residual path

T3

T2 T1

T4 T5

source

sink 1

sink 2

T6

T7

wC − w32 − w34

wA − w21

wB − w45

w24 + w32 − w21

w75w74

w16w26

. (7.31)

Depending on the relative sizes, we can have different residual networks. For simplicity, we
take w24 + w32 − w21 := wW to be the smallest flow weight.

T3

T2 T1

T4 T5

source

sink 1

sink 2

T6

T7

wC − w32 − w34

wA − w21 − wW

wB − w45 − wW

w75 − wWw74 − wW

w16 − wWw26 − wW

. (7.32)

With this residual network, there is only a single configuration of dominant permutations,
namely T3 = id, T2 = T6 = T1 = γ, and T4 = T7 = T5 = γ−1. This resembles the
entanglement wedge cross section.
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We can also consider bulk matter in mixed states. A simple way to implement this
geometrically is by having a black hole entangled with another asymptotically AdS region,
but tracing over this other space, leaving a mixed state. In the tensor network, this amounts
to adding a tensor that connects to one of the bulk tensors and to the source. For example,
if we place a mixed state black hole in the entanglement wedge of A, the flow network is
given by

T3

T2 T1

T4 T5

T6

source

sink 1

sink 2

w32

w21

wC

wA

w16
wBH

wB
w34

w45

w24

. (7.33)

Using the same tools, this may also be straightforwardly solved.

7.5 Bit threads

The bit thread formulation of holographic entanglement [49] is highly reminiscent of the
solution of entanglement in random tensor networks using flow networks. Bit threads
are an alternative perspective on the Ryu-Takayanagi formula. Rather than identifying
the minimal extremal surface in the bulk corresponding to a boundary region A, one is
instructed to find the maximal flux of a divergenceless vector field, vµ

S(A) = max
v

∫
A

√
hnµv

µ, |v| ≤ 1
4GN

. (7.34)

This is equivalent to the Ryu-Takayanagi formula by the Riemannian max-flow min-cut
theorem [50]. The analogy to the solution of random tensor networks arises because there
we used the more common network version of max-flow min-cut. In particular, the bit
threads on the graph are identified with augmenting paths. They are divergenceless by
definition. In this identification, only the leading term in the entropy can be found. The
bit threads are agnostic to the O(1) terms. The solution on the graph is

S(A) = wmin-cut log [N ] +O(1). (7.35)

For logarithmic negativity in fixed-area states, we may follow the same logic. The bit
threads, however, are more complicated as we need to consider two distinct flows, a specific
example of a multicommodity flow. For a boundary tripartition into A, B, and C, we first
find a maximal flow, w, from C to A ∪ B. There may be many bit thread configurations
that maximize the flux and we must consider all of them. Next, we must find the maximal
flow of bit threads from A to B. This flow is not independent of the initial bit threads;
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Figure 41. The left figure is the first step involving a maximal bit thread configuration flowing
from C to A ∪ B. The gray lines represent the Ryu-Takayanagi surface. In the second step (right
figure), the old flow w (blue lines) remains and a new flow v (magenta lines) must be constructed
and optimized. It is this flow that computes the logarithmic negativity.

combined, they must not have norm larger than 1
4GN . The logarithmic negativity is given

by the flux of this second flow conditioned on the first flow

E(A,B) = max
v|w

∫
A

√
hnµv

µ, |v|+ |w| ≤ 1
4GN

. (7.36)

The flow must be maximized over all configurations of both bit threads. We outline this
two step bit thread procedure in figure 41.

We note that the union of the v and w flows represents a max thread configuration
from [51]. As noted in [51], the number of threads connecting A and B in a max thread
configuration is given by half the mutual information. Therefore, we confirm the propor-
tionality of negativity and mutual information from bit threads.

8 Islands in mixed state entanglement

In section 6 we discussed negativity in the model of [30] where the entanglement entropy of
Hawking radiation was studied. This raises naturally the question of the analog of an island
formula for negativity.22 Here, we will not give such a formula analogous to the quantum
extremal surface formulas, but instead mention only the semi-classical approximation to it
based on random tensor networks. We will then test it in a very simple example and find
agreement.

8.1 Doubly holographic systems and fixed generalized entropy

In this section, we would like to analyze the negativity in systems that are coupled to gravity
rather than between parts of a holographic system. The main motivation is to consider an
evaporating black hole with Hawking radiation. In particular, we can think about dividing

22We note that different island formulas for the negativity have been proposed in [52].
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R1 R2

Planck brane
y I

B

Figure 42. A system with holographic matter.

the Hawking radiation into two parts and considering the negativity between part of the
radiation and the black hole, as we studied in section 6 for the model of [30]. Here we
would like to learn lessons about more general situations.

In order to get an idea for how the negativity should behave, we will use the doubly-
holographic idea of [31]. Let us consider a matter CFT through which the black hole can
release radiation. That is, we have a gravitational theory where we can have a black hole
coupled to a holographic CFT of large central charge. This system is coupled to the same
CFT on a rigid space without gravity where we can measure the radiation. For convenience
in the discussion, let us take the CFT to be two-dimensional though the analysis holds in
any dimension. Without gravity, the CFT is dual to a three-dimensional gravitational
system with the two-dimensional system on its boundary. In the non-gravitational part,
we have the usual AdS/CFT boundary. In order to implement the 2d gravitational part of
the action, the boundary in that region becomes dynamical, allowing a dynamical induced
metric. This boundary is referred to as the Planck brane. For our purposes, we will divide
the matter theory without gravity into two regions R1 and R2. This setting is shown in
figure 42. Therefore, in the bulk we have a 3d gravitational theory with a Planck brane. If
we think about the boundary dual of this system, it is composed of the non-gravitational
CFT made of R1 and R2 and we can think about the dual of the 2d gravity theory as a
dual quantum mechanics system represented by a heavy quantum dot.

If we consider a subsystem of the boundary including part of the rigid CFT as well as
the quantum mechanical system, its entropy can be calculated by the usual Ryu-Takayanagi
formula in the 3d bulk. The RT surface is allowed to end on the Planck brane. The Planck
brane contributes by the value of the 2d dilaton at that point. Indeed, recalling [31], if
we consider a region in the boundary denoted by B including the quantum system, as
shown in figure 42, and naively apply the quantum extremal surface formula [53] to it, we
will need to extremize over the points y on the 2d gravity dual the generalized entropy
φ(y)
4G(2)

N

+Sbulk(I) where in 2d the RT term is given by the value of the dilaton φ and I is the
entanglement wedge ending on y. Because the CFT has a large central charge, Sbulk(I) is
dominated by the matter entropy, which in the 3d language is the area of the RT surface.
At leading order, we can neglect the 3d bulk entropy.

In this 3d setting, we can find the negativity between R1 and the black hole B. As
we saw in section 5 for random tensor networks, semi-classically the negativity is given by
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R1 R2

Planck brane

Γ1
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Γ3

I1I2

B R1 R2

Planck brane

Γ1

Γ2

Γ3

I1I2

B

γ
γ−1 id

β

Figure 43. Islands in the 3d picture. We show several options for extremal surfaces. On the r.h.s.,
an example of a corresponding tensor network is shown labeled by the permutations (this depends
on what extremal surfaces correspond to each subsystem).

half the holographic mutual information S(B)+S(R1)−S(R2)
2 . Holographically, we saw that

random tensor networks describe fixed-area states. Therefore, we can think about the
situation here as fixing the generalized entropy instead due to the Planck brane. S(B) in
3d is given by the area plus the dilaton value on the Planck brane, which is the 3d value
corresponding to the usual quantum extremal surface prescription in 2d

S(B) = min extγB
(
A[γB]
4GN

+ Seff(Σ)
)

(8.1)

with γB the RT surface and Σ the entanglement wedge having γB on its boundary, where
from now on Newton’s constant is always the 2d one. Seff is the 2d bulk entropy around a
semi-classical geometry [54].

More interestingly, moving on to R1, the RT surface may consist of Γ1 and Γ2 (see
figure 43). Its 3d entanglement wedge ends on an interval island I1 on the Planck brane.
The 3d RT prescription of A[Γ1] +A[Γ2] corresponds in the R1+R2+Planck brane system
to the entanglement entropy of the matter part, which is equivalent to the entanglement
entropy Seff(I1 ∪ R1).23 The sum of the values of the dilaton on the end of Γ1 and Γ2 in
the 2d language is the area of the boundary of the island. Here the island is fully isolated.
We get

S(R1) = min extI1

(
A[∂I1]
4GN

+ Seff(R1 ∪ I1)
)
. (8.2)

With the configuration of R1 in the figure, we may also have Γ3 as its RT surface. This
just corresponds in the discussion above to having no island. In this case, we reduce to the
naive expectation of Seff(R1).

Lastly, R2 may have an island of its own. This happens if in 3d its entanglement wedge
is bounded by a surface such as Γ2 in the figure, and the entanglement wedge ends on an
island I2 on the Planck brane. The area of Γ2 corresponds to the entropy Seff(R2 ∪ I2) and
the dilaton term gives A[∂I2], so in total

S(R2) = min extI2

(
A[∂I2]
4GN

+ Seff(R2 ∪ I2)
)
. (8.3)

23Γ2 corresponds to the leftmost part of the Planck brane together with R2, while Γ1 to the rightmost
part of the Planck brane. The complement of these is I1 ∪R1 because the full system is pure.

– 58 –



J
H
E
P
0
2
(
2
0
2
2
)
0
7
6

We are led to the following formula for the negativity expressing the entanglement
between part R1 of a system coupled to gravity and B, which is given in terms of two
islands

E(R1, B) = 1
2

{
min ext

γB

(
A[γB]
4GN

+ Seff(Σ)
)

+ min ext
I1

(
A[∂I1]
4GN

+ Seff(R1 ∪ I1)
)
−

−min ext
I2

(
A[∂I2]
4GN

+ Seff(R2 ∪ I2)
)}

.

(8.4)

This formula is proportional to the mutual information and captures the semi-classical
negativity. It is not meant to be an exact formula analogous to the quantum extremal
surface prescription. As mentioned, it is based on applying the random tensor network
result to this setting, which we interpret as fixing the generalized entropy. In fact, in
general, when we have an island, this should be the analog of fixed-area states. We cannot
fix only the area term or the bulk entropy term, as these two balance each other. This is
the setup where we expect such a formula to hold semi-classically. If we think about the
entanglement entropy as an operator, it would not even be linear; the situation is much
simpler in descriptions as the one above, where we can fix the extremal combination of the
area and the dilaton value (or another area if we are in higher dimensions).

Fixing the generalized entropy is also necessary to avoid the tricky backreaction that
is present in more honest calculations of holographic Rényi entropy and negativity. We
expect that the final island formula for negativity will only include a global extremization
instead of the linear combination of extremizations because the negativity is evaluated
from a single density matrix, unlike the mutual information. Furthermore, we expect that
in the final formula, the quantum corrections will not be in the form of bulk entropies,
but bulk negativities (or some variant). This was, for example, observed in quantum error
correcting codes in [55]. With these important caveats, we progress.

8.2 Islands from replica wormholes

We have analyzed negativity in JT gravity including wormhole contributions. We shall
now show that the result there matches to the formula (8.4). This provides an argument
for the Euclidean wormhole origin of (8.4) in a gravitational calculation.

Let us consider the three terms in the brackets of (8.4) in JT with EOW branes. The
first term is the entropy of the black hole or equivalently the radiation. In the language of
the radiation, if there is no island, it is given by the entropy of the radiation. The state that
we use is (6.1), where for the purpose of the effective theory we consider the |ψi,a〉B states
to be orthonormal. In this state, Seff(R1) = N1, Seff(R2) = N2, and Seff(B) = N1 + N2.
Therefore, with no island we just get N1 +N2. If there is an island, it includes in particular
the EOW brane, so the bulk entropy vanishes and we just remain with extremization of
the area term, giving S. Together, the first term gives

min ext
γB

(
A[γB]
4GN

+ Seff(Σ)
)

= S(R) = min

N1 +N2 no island
S with island .

(8.5)
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For the second term, if there is no island we just get Seff(R1) = N1, but if there is an island
which then includes the B system, the bulk entropy term is actually N2 but the minimal
area is S. Together,

min ext
I1

(
A[∂I1]
4GN

+ Seff(R1 ∪ I1)
)

= min

N1 no island
S +N2 with island

(8.6)

and similarly

min ext
I2

(
A[∂I2]
4GN

+ Seff(R2 ∪ I2)
)

= min

N2 no island
S +N1 with island .

(8.7)

We should now compare this to the result in figure 30. Let us start with the interme-
diate region where |S−N1| < N2 < S+N1. In this range of parameters, there is an island
only in the first term, giving S+N1−N2

2 just as in figure 30.
In the first region where N2 is smallest, we can consider two cases. If S > N1, the

range is N2 < S − N1; there is no island in either term and we get N1. If, on the other
hand S < N1, then N2 < N1 − S; there is an island in the first two terms and we get S.
Together, these two cases give min(S, N1) as in the figure. Lastly, when N2 > S+N1, there
is no island only in the second term, giving zero. This shows that Euclidean wormholes
are indeed consistent with the formula (8.4).

9 Discussion

In this paper we have studied the negativity spectrum for general random tensor networks
with large bond dimensions. We saw that a three-party flow network is useful in solving for
the negativity spectrum in such networks. There are many possible negativity spectra that
can be obtained using such random tensor networks and we mentioned several examples.

These random tensor networks are useful both in preparing states relevant to con-
densed matter many body systems, as well as in holography. We discussed two holographic
situations described by random tensor networks, which are Jackiw-Teitelboim gravity with
end-of-the-world branes and holographic fixed-area states. We also discussed island pre-
scriptions for finding the negativity in systems coupled to gravity.

A complete holographic formula. Normal holographic states prepared by the Eu-
clidean path integrals such as the vacuum state or thermal state are not fixed-areas states.
Rather, they are superpositions of fixed-areas states with O(

√
GN ) fluctuations in the area.

It would be interesting to analyze this sum over fixed-area states to include backreaction
in the holographic formula for negativity. Due to the large backreaction between replicas
in these normal states, it is not presently clear to us if the same qualitative behavior of
negativity would remain i.e. if proportionality with mutual information at leading order
and the same topology of saddles dominate. This holographic formula would be a necessary
first step to the correct island formula for negativity that incorporates quantum corrections
which is clearly of great interest. We believe this formula may be very intricate because of
the replica symmetry breaking that appears to play an important role at leading order.
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This brings us to a previous proposal for a holographic formula for negativity [55]. In
this proposal, the negativity was dual to the entanglement wedge cross section with backre-
action included. Using 2d CFT arguments of twist operators, the negativity was related to
a Rényi version of the reflected entropy, providing evidence for the proposal [56]. A central
assumption in [56] was that a certain conformal block completely fixed the negativity at
large central charge and that this block was identical to the conformal block for Rényi
reflected entropy. This conformal block preserved replica symmetry and is analogous to
taking τ1 = γ−1 and τ2 = γ in the two-tensor network. From random tensor networks and
fixed-areas states, there is reason to believe that replica symmetry breaking saddles should
be included in the CFT computation, though it is confusing from the boundary perspective
as replica symmetry of the twist operator correlation functions is manifest. Understanding
replica symmetry breaking from the CFT is an important open question that has implica-
tions far beyond negativity. Replica symmetry breaking saddles appear very generally in
gravitational settings whenever there is more than one candidate extremal surface.

Here, we present a heuristic which we admit may be a red herring. The moments of
the partially transposed density matrix for two disjoint intervals (with endpoints (z1, z2)
and (z3, z4)) in the vacuum are given by a four-point function of Zn twist operators, σn [33]

tr
(
ρTA

)n
= 〈σn(z1)σ̄n(z2)σ̄n(z3)σn(z4)〉. (9.1)

If we do the standard conformal block decomposition of the four-point function, when the
intervals are close (z2 ∼ z3), one usually expects the dominant channel to be an exchange
of the double-twist field [33, 57]. This is the conformal block that agrees with the Rényi
reflected entropy and preserves replica symmetry. To break the replica symmetry explicitly,
we take inspiration from the random tensor networks in [29] where the domain walls split
in two at the endpoints of the intervals. In CFT language, this is like a reverse OPE where
the Zn twist field splits into sum of pairs of Sn twist fields

σn(x) ∼ lim
x′→x

∑
τ∈Sn

Cσnτ

|x− x′|∆σn−∆τ−∆σn◦τ−1
(σn ◦ τ−1)(x′)τ(x) + . . . , (9.2)

where the C’s are numerical coefficients and the denominator is needed to absorb the scaling
dimensions of the operators. This changes (9.1) to an eight-point function. What we gain
are new OPE channels that break replica symmetry and resemble the gravitational saddles
that compute negativity in fixed-area states. Of course, the sum over all of these channels
retain replica symmetry just as in the gravitational calculations. It would be interesting
to see if this approach to replica symmetry breaking in CFT could reproduce gravitational
calculations. However, there is a key distinction due to the vanishing prefactor in the
reverse OPE.

CFT dual of fixed-area states. Fixed-area states have played a major role in this paper
and many other papers on holographic entanglement. They vastly simplify gravitational
path integrals and provide direct connections between tensor networks and gravity. One
aspect of fixed-area states that is clearly lacking is their boundary description. How can
we create a state in a CFT with an approximately flat entanglement spectrum and how
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different are these CFT states from their parent states without fixed areas? Recently,
interesting progress has been made in [58, 59] for the case of a single fixed-area surface.
We would like to generalize this to multiple fixed-area surfaces. This is important to
investigate further and we expect it to clarify various issues raised in the previous section.

Entanglement phase transitions. Entanglement phase transitions have gained in-
creasing attention in the condensed matter community. They have been studied in the
context of many-body localization [60, 61], quantum circuits with measurement [62–64],
and random tensor networks [65]. While in this work we have studied certain phase tran-
sitions in random tensor networks, it would be desirable to relate these to these other
studies. This may involve new geometries of tensor networks and a backing away from
the large-N limit in the bond dimensions. We have found the negativity spectrum to be a
robust diagnostic of entanglement phases, so it would be interesting to study it in quantum
circuits and across the many-body localization transition.
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A Loop equations for partial transpose

In this appendix, we show how to use the loop equations method for negativity. We will
do this for the Haar random state, i.e., single tensor network.

Recall that in this case we have a single tensor Xijα with probability distribution

P (X) = Z−1 exp
[
−LALBLCXijαX

∗
ijα

]
, (A.1)

where Z is the partition function, that is, the Gaussian integral over X. For the negativity
between A and B (after tracing over C), we should consider traces of powers of the partially
transposed density matrix, which is the matrix

Hi1j1,i2j2 =
∑
α

Xi1j2αX
∗
i2j1α. (A.2)

We can obtain a loop equation for these moments mk = trHk by considering

Z−1
∫
dXdX

† ∂

∂X∗i2j1α

(
X∗i1j2αH

k
i1j1,i2j2e

−LALBLCXijαX∗ijα
)

= 0. (A.3)

This gives us

− LALBLCtrHk+1 +
k∑
p=1

tr [trB (Hp−1)H trA (Hk−p)] + LCtrHk = 0. (A.4)
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HtrBH
p−1 trAH

k−p

Figure 44. The representation of the mixed trace term in the diagrammatic notation. Dotted lines
represent system A, solid lines stand for system B, and dashed lines are for system C.

contractions here contractions here

Figure 45. A factorized form of figure 44.

The first term is obtained by acting on the exponent, the second term comes from acting
on the Hk, while the last one is just the derivative of the explicit appearance of X∗.

This equation is exact. The first and third terms are just the moments we are interested
in, but the second term is more involved. One could continue and write Schwinger-Dyson
equations for higher traces, such as the one in the second term.

However, this equation is already sufficient in the regime we describe now. In general,
this second term

k∑
p=1

tr [trB (Hp−1)H trA (Hk−p)] (A.5)

is represented in the diagrammatic notation used before as the sum over contractions of
the diagram in figure 44. Contractions are allowed to connect the different traces.

Because of the separation of the different lines, we expect that when the L’s are large,
the averaging factorizes. This should be the case unless one of the system sizes is excessively
larger than the others (e.g., larger than the product of the other two). In such a case, we
would have a higher weight for a specific kind of line and so different diagrams will be
preferred. That is, this should be valid in the bulk of the phase diagram of figure 2, i.e.,
in region III.

In this case, each of the three pieces of the trace are contracted among themselves as
shown in figure 45. Then the (A.5) term is approximated by

k∑
p=1

tr
[
trBHp−1 ·H · trAHk−p

]
= 1
LALB

k∑
p=1

trHp−1 · trHk−p, (A.6)

where the factor of 1/(LALB) enters since the 1/(LALB) propagator of the middle H is
not compensated by free index lines because they are shared with the other traces. Note
that trH = 1, as can be seen for instance in the only diagram with a single H. The traces
on the r.h.s. are in the full AB system.

For the resolvent, we use the convention of [22] in order to compare to their result

G(z) = 1
LALB

∞∑
k=0

LkCmk

zk+1 . (A.7)
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Multiplying (A.4) by (LC/z)k+1 and summing over k, we get24

− LALBLC
∞∑
k=0

mk+1L
k+1
C

zk+1 + 1
LALB

∞∑
k=1

k∑
p=1

mp−1mk−pL
k+1
C

zk+1 + LC

∞∑
k=0

mkL
k+1
C

zk+1 =

= L2
AL

2
BLC − zL2

AL
2
BLCG(z) + 1

LALB

∑
p1,p2≥0

mp1mp2L
p1+p2+2
C

zp1+p2+2 + LALBL
2
CG(z) =

= L2
AL

2
BLC − zL2

AL
2
BLCG(z) + LALBL

2
CG(z)2 + LALBL

2
CG(z) = 0.

(A.8)

Note that in the second term above the sum over k starts at 1 as clearly this term is missing
in the derivation when k = 0. With the definition q = LC/(LALB) this equation is

1− zG(z) + qG(z) + qG(z)2 = 0. (A.9)

This indeed agrees with the Schwinger-Dyson equation (5.13) of [22].

B Phases of the two-tensor network

In this appendix, we will classify the phases of the two-tensor network. In order to do that,
we will use methods that were developed in section 5. We will see that this also provides
us with several non-trivial checks on the results there. The way that tensor networks are
solved there is by finding the maximal flow in a corresponding flow network. In fact, our
approach here will be the reverse. We shall classify the different phases rigorously by
considering all the options for a flow network and determining in which cases such a flow
is a maximal flow.

There are five possible flow lines that go between the three external nodes:

τ1 τ2

id

γ−1 γ

(B.1)

and we should consider all the subsets of them as a flow. We may ignore cases where two
flow lines appear together that go along the same edge in two opposite directions because
this can be replaced by other flows, as explained in figure 19. There is one such pair of
flow lines in this case.

We will assume that all the bond dimensions are non-vanishing and that there are no
special relations between them. Fine-tuned relations correspond to phase boundaries25 like
those analyzed for the one-tensor network in the main text.

24We use m0 = LALB .
25This is the case as long as we verify that on both sides of the transition there are two distinct phases.

We will find several ranges for phase 1 of table 1 and so any value in between them still belongs to the same
phase.
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We can also compare each phase to the phases appearing in the one-tensor network
(figure 2). The idea is that once we find the leading permutations, we know that the
moments are mn = ∏

i L
−|β−1

i ◦βi′ |
i (from section 5). Thus, we can compare this to the

expression that one gets in the one tensor network.26 When reducing to a one-tensor
network, we denote the subsystem that we trace out in the one-tensor network by Cone-tensor
and the remaining two subsystems by Aone-tensor and Bone-tensor. In region I, the negativity
vanishes, so the moments depend only on the product of the two subsystems Aone-tensor
and Bone-tensor. In region II, the moments depend only on the smaller system between
Aone-tensor and Bone-tensor, and on Cone-tensor.

We follow two simple rules in each case. Firstly, each flow should be maximal in the
sense that we cannot add any more flow either in existing flow lines or by adding a new
line. Secondly, there is no flow i→ X → j such that in the residual network X is connected
to k, where {i, j, k} = {id, γ, γ−1} and X is some internal node.

We have the following options for maximal flows:

1. τ1 τ2

id

γ−1 γ

(B.2)

Since τ1 is in a path id → γ−1, it cannot be connected to γ, so wB < wC2 and the
right flow line is of weight wB. The same reasoning holds for the other flow line.
Therefore, this is a maximal flow in the cases where

wA < wC1 ,

wB < wC2 .
(B.3)

In the residual network τ1 and τ2 are in the connected component of id, so τ1 =τ2 = id.
The negativity vanishes, matching phase I of the one-tensor network with

Lone-tensor
A Lone-tensor

B = LALB. The range (B.3) is a special case of (B.16) and (B.17)
below.

2.
τ1 τ2

id

γ−1 γ

(B.4)

The two nodes cannot remain connected to id, so the two flows at the bottom of
the diagram are of weights wC1 and wC2 respectively. In order to allow the flow line
γ−1 → γ, we should have that wEW is less than the remaining weights in wA and wB.
In the other option where this flow line maximizes the remaining weight on wA or
wB, we will violate the second point in the rules above unless both wA and wB are

26In the one-tensor network, the dominant permutation in region I is the identity, in region II it is
the cyclic or anti-cyclic permutation depending on whether A or B is smaller, and in region III the NC2

permutations dominate.
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saturated, but this requires the weights to satisfy a linear relation. So, away from
phase boundaries, this is a maximal flow when

wA > wC1 + wEW ,

wB > wC2 + wEW .
(B.5)

In this case, τ1 = γ−1, τ2 = γ, matching phase II of the one-tensor network with the
smaller subsystem of size LEW and Lone-tensor

C = LC := LC1LC2 .
3.

τ1 τ2

id

γ−1 γ

x3

x4x1 x2

(B.6)

Here, because of the second rule, wC1 and wA must be saturated by the flow and
similarly either wEW or wB should be as well. Let us first consider the case where
wEW is saturated by the flow. This means that

x1 + x3 = wA, x4 + x3 = wEW , x1 + x4 = wC1 (B.7)

and because of the flow γ−1 → γ we must also have x2 = wC2 . The conditions are
then xi > 0 for i = 1, · · · , 4 and that x2 +x3 +x4 < wB. Therefore, this is a maximal
flow when

wEW < wA + wC1

wC1 < wA + wEW

wA < wC1 + wEW

wB > wC2 + wEW

(B.8)

τ1 appears in flows between all the nodes, so it is non-crossing with only 2-cycles (and
a single 1-cycle when n is odd), as found around (5.20), and these permutations are
denoted by NC2. τ2 remains connected to γ. Thus, τ1 ∈ NC2, τ2 = γ.

This matches a rescaled phase III, by LC2 , of the one-tensor network with
Lone-tensor
A = LA, Lone-tensor

B = LEW , and Lone-tensor
C = LC1 .27

4. We have the same flow network with A↔ B (by which we mean exchanging the two
sides, so that also C1 ↔ C2). This gives a maximal flow when

wEW < wB + wC2

wC2 < wB + wEW

wB < wC2 + wEW

wA > wC1 + wEW

(B.9)

27In order to see this, note that the moments are the same as those in the one-tensor network in phase III,
except that there is an additional factor of L−(n−1)

C2
. This factor corresponds to rescaling the negativity

spectrum by ρ′N (λ) = L2
C2ρN (LC2λ).

– 66 –



J
H
E
P
0
2
(
2
0
2
2
)
0
7
6

and in this case τ1 = γ−1, τ2 ∈ NC2.
This matches a rescaled phase III, by LC1 , of the one-tensor network with

Lone-tensor
A = LEW , Lone-tensor

B = LB, and Lone-tensor
C = LC2 .

5. Going back to the flow network (B.6), as mentioned the second case is when wB is
saturated by the flow. In this case the flow is

x1 + x3 = wA, x1 + x4 = wC1 , x2 + x4 + x3 = wB (B.10)

and still x2 = wC2 . The conditions are xi > 0 and x3 + x4 < wEW , which become

|wA − wC1 | < wB − wC2 < wA + wC1

wEW > wB − wC2

(B.11)

and in this case τ1 and τ2 are in their own connected component, so that τ1 =τ2∈NC2.
Since τ1 = τ2, this is just the same as phase III of the one-tensor network with

Lone-tensor
A = LA, Lone-tensor

B = LB, and Lone-tensor
C = LC .

6. Again, we have the same for A↔ B. This happens when

|wB − wC2 | < wA − wC1 < wB + wC2

wEW > wA − wC1

(B.12)

and in this case τ1 = τ2 ∈ NC2.
Again, this is the same as phase III of the one-tensor network with Lone-tensor

A =
LA, Lone-tensor

B = LB, and Lone-tensor
C = LC .

7. τ1 τ2

id

γ−1 γ

x3x1 x2
(B.13)

By the second rule τ1 cannot remain connected to γ−1, so anyway x1 = wA. But
it also cannot be connected to γ in the residual network. So we have two cases
depending on which edge x2, x3 saturate. In the first case x3 = wEW and x2 = wC2 .
Then, this is a valid maximal flow when

wC1 > wA + wEW

wB > wC2 + wEW
(B.14)

and in this case τ1 = id, τ2 = γ.
The negativity here vanishes, and this matches phase I of the one-tensor network

with Lone-tensor
A Lone-tensor

B = LALEWLC2 .
8. The A↔ B of this is

wC2 > wB + wEW

wA > wC1 + wEW
(B.15)

and in this case τ1 = γ−1, τ2 = id.
The negativity here vanishes, and this matches phase I of the one-tensor network

with Lone-tensor
A Lone-tensor

B = LC1LEWLB.
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9. The second option for (B.13) is when τ1 is disconnected from γ because wB is sat-
urated. In this case, x2 + x3 = wB. The constraints are that x1 = wA < wC1 ,
x3 < wEW , wC1 − wA, and x2 < wC2 . This happens when

wA < wC1

wB < wC2 + wEW

wA + wB < wC1 + wC2

(B.16)

and in this case τ1 = τ2 = id.
The negativity here vanishes, and this just matches phase I of the one-tensor

network with Lone-tensor
A Lone-tensor

B = LALB.

10. The A↔ B of this is

wB < wC2

wA < wC1 + wEW

wA + wB < wC1 + wC2

(B.17)

and in this case τ1 = τ2 = id.
Again, the negativity here vanishes, and this matches phase I of the one-tensor

network with Lone-tensor
A Lone-tensor

B = LALB.

11. τ1 τ2

id

γ−1 γ

x2x1
(B.18)

Here again τ1 cannot remain connected to γ−1, γ. So x1 = wA. Note that it cannot
be made disconnected from γ by saturating wEW since then we will have a remaining
possibility for a flow id→ γ by going along wC2 and then wB, and so this would not
be a maximal flow, violating the first rule. Therefore, x2 = wB. The conditions are
then x2 < wEW and x1 + x2 < wC1 . So this happens when

wC1 > wA + wB

wB < wEW
(B.19)

and in this case τ1 = τ2 = id. However we can see that this flow is a special case of
the flow that lead to (B.16). In particular, indeed the conditions (B.19) imply those
of (B.16).

12. The A↔ B of this is

wC2 > wA + wB

wA < wEW
(B.20)

and τ1 = τ2 = id. Again, this is a special case of (B.17).
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13.

τ1 τ2

id

γ−1 γ

x3

x2x1

(B.21)

By the second rule, we must have x2 = wC2 , x1 = wC1 , and x3 = wB that are
uniquely fixed. The conditions are x2 + x3 < wEW and x1 + x2 + x3 < wA, so that

wEW > wB + wC2

wA > wB + wC1 + wC2

(B.22)

and since τ1, τ2 remain in the connected component of γ−1, we have τ1 = τ2 = γ−1.
This matches phase II of the one-tensor network with the smaller subsystem of

size LB and Lone-tensor
C = LC .

14. The A↔ B of this is

wEW > wA + wC1

wB > wA + wC1 + wC2

(B.23)

and then τ1 = τ2 = γ.
This matches phase II of the one-tensor network with the smaller subsystem of

size LA and Lone-tensor
C = LC .

It is immediate to see using the rules above that all the other flows are not possible as
maximal flows. Let us drop the three cases that are special cases of other ones. For any
two cases that give a different result for τ1, τ2, we should get that the ranges where they
apply must not overlap. This is indeed the case, and can be checked explicitly by looking
at the ranges. There are two cases giving τ1 = τ2 ∈ NC2, but actually away from phase
transitions they do not overlap. Therefore, if we group the two cases that give τ1 = τ2 = id
into one, we remain with regimes that are distinct. This analysis provides a non-trivial
check on the methods of section 5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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