
NEGATIVELY SUBSCRIPTED FIBONACCI AND LUCAS
NUMBERS AND THEIR COMPLEX FACTORIZATIONS

E. KILIC1 AND D. TASCI2

Abstract. In this paper, we �nd families of (0;�1; 1)�tridiagonal
matrices whose determinants and permanents equal to the negatively
subscripted Fibonacci and Lucas numbers. Also we give complex fac-
torizations of these numbers by the �rst and second kinds of Cheby-
shev polynomials.

1. Introduction

The well-known Fibonacci sequence, fFng ; is de�ned by the recurrence
relation, for n � 2

Fn+1 = Fn + Fn�1 (1.1)

where F1 = F2 = 1: The Lucas Sequence, fLng ; is de�ned by the recur-
rence relation, for n � 2

Ln+1 = Ln + Ln�1 (1.2)

where L1 = 1; L2 = 3:
Rules (1.1) and (1.2) can be used to extend the sequence backward,

respectively, thus

F�1 = F1 � F0; F�2 = F0 � F�1
L�1 = L1 � L0; L�2 = L0 � L�1; : : : ;

and so on. Clearly

F�n = F�n+2 � F�n+1 = (�1)n+1 Fn; (1.3)

L�n = L�n+2 � L�n+1 = (�1)n Ln: (1.4)

In [9] and [5], the authors give complex factorizations of the Fibonacci
numbers by considering the roots of Fibonacci polynomials as follows

Fn =
n�1Q
k=1

�
1� 2i cos �k

n

�
; n � 2: (1.5)
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In [10] and [11], the authors establish the following forms:

Fn = in�1
sin
�
n cos�1

�
� i
2

��
sin
�
cos�1

�
� i
2

�� ; n � 1 (1.6)

Ln = 2in cos

�
n cos�1

�
� i
2

��
; n � 1:

In [3], the authors prove (1.5) by considering how to the Fibonacci num-
bers can be connected to Chebyshev polynomials by determinants of a
sequence of matrices, and then show that a connection between the Lucas
numbers and Chebyshev polynomials by using a slightly di¤erent sequence
of matrices as follows

Ln =
nQ
k=1

 
1� 2i cos

�
�
k � 1

2

�
n

!
; n � 1:

There are many connections between permanents or determinants of
tridiagonal matrices and the Fibonacci and Lucas numbers. For example,
Minc [12] de�nes a n � n super diagonal matrix F (n; k) for n > k � 2;
and shows that the permanent of F (n; k) equals the generalized order-
k Fibonacci numbers. In [14], the author gives the same result of Minc
by the same matrix F (n; k) and using di¤erent a computing method of
permanent, contraction. In particular, when k = 2; the matrix F (n; k) is
reduced to the tridiagonal toeplitz matrix

F (n; 2) =

266664
1 1 0

1 1
. . .

. . .
. . . 1

0 1 1

377775
and perF (n; 2) = Fn+1:
In [15], Lehmer proves a very general result on permanents of tridiagonal

matrices whose main diagonal and super-diagonal elements are ones and
whose subdiagonal entries are somewhat arbitrary.
Also in [16] and [17], the authors de�ne the n � n tridiagonal matrix

Mn and show that the determinant ofM (n) is the Fibonacci number F2n+2.
In [2] and [3], the authors de�ne the n � n tridiagonal matrix H (n) and
show that the determinant ofH (n) is the Fibonacci number Fn: In a similar
family of matrices, the (1; 1) element of H (n) is replaced with a 3, thus the
determinants, [18], now generate the Lucas sequence Ln:
Recently, in [7], the authors �nd families of square matrices such that (i)

each matrix is the adjacency matrix of a bipartite graph; and (ii) the per-
manent of the matrix is a sum of consecutive Fibonacci or Lucas numbers.�
Also, in [8], the authors de�ne two tridiagonal matrices and then give the
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relationships between the permanents and determinants of these matrices,
and the terms of second order linear recurrences.
In this paper, we consider negatively subscripted Fibonacci and Lucas

numbers and �nd associated families of tridiagonal matrices whose deter-
minants or permanents equal to these numbers. Then we give the complex
factorizations of these numbers by Chebyshev polynomial.
The permanent of an n-square matrix A = (aij) is de�ned by

perA =
X
�2Sn

nY
i=1

ai�(i)

where the summation extends over all permutations � of the symmetric
group Sn:
Also one can �nd more applications of permanents in [13].
A matrix is said to be a (�1; 0; 1)-matrix if each of its entries are �1; 0

or 1:
Let A = [aij ] be an m � n real matrix row vectors �1; �2; : : : ; �m: We

say A is contractible on column (resp. row:) k if column (resp. row:) k
contains exactly two nonzero entries. Suppose A is contractible on column
k with aik 6= 0 6= ajk and i 6= j: Then the (m� 1) � (n� 1) matrix Aij:k
obtained from A by replacing row i with ajk�i + aik�j and deleting row j
and column k is called the contraction of A on column k relative to rows
i and j: If A is contractible on row k with aki 6= 0 6= akj and i 6= j; then the

matrix Ak:ij =
h
ATij:k

iT
is called the contraction of A on row k relative

to columns i and j: Every contraction used in this paper will be on the �rst
column using the �rst and second rows. We say that A can be contracted
to a matrix B if either B = A or exist matrices A0; A1; : : : At (t � 1) such
that A0 = A; At = B; and Ar is a contraction of Ar�1 for r = 1; 2; : : : ; t:
Let we consider the following result (see [1]): Let A be a nonnegative

integral matrix of order n > 1 and let B be a contraction of A. Then

perA = perB: (1.7)

2. Negatively Subscripted Fibonacci and Lucas numbers

In this section, we de�ne families of tridiagonal matrices and then show
that the determinants and permanents of these matrices equal to the neg-
atively subscripted Fibonacci and Lucas numbers.
We start with negatively subscripted Fibonacci numbers. Now we de�ne

a n� n tridiagonal toeplitz (0;�1; 1)�matrix An = [aij ] with aii = �1 for
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1 � i � n; ai;i+1 = ai+1;i = 1 for 1 � i � n� 1 and 0 otherwise. That is,

An =

266664
�1 1 0

1 �1 . . .
. . .

. . . 1
0 1 �1

377775 : (2.1)

Then we give following Theorem.

Theorem 1. Let the matrix An have the form (2.1). Then, for n � 1
perAn = F�(n+1)

where F�n is the nth negatively subscripted Fibonacci number.

Proof. If n = 1; then perA1 = per [�1] = F�2 = �1:
If n = 2; then

A2 =

�
�1 1
1 �1

�
and hence perA2 = F�3 = 2:
Let Apn be pth contraction of An; 1 � p � n� 2: From the de�nition of

An; the matrix An can be contracted on column 1 so that

A1n =

26666664

2 �1
1 �1 1

1 �1 . . .
. . .

. . . 1
1 �1

37777775 :

Since the matrix A1n can be contracted on column 1 and F�4 = �3; F�3 =
2;

A2n =

26666664

�3 2
1 �1 1

1 �1 . . .
. . .

. . . 1
1 �1

37777775 =
26666664

F�4 F�3
1 �1 1

1 �1 . . .
. . .

. . . 1
1 �1

37777775 :

Continuing this process, we obtain

Arn =

26666664

F�(r+2) F�(r+1)
1 �1 1

1 �1 . . .
. . .

. . . 1
1 �1

37777775
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for 3 � r � n� 4: Hence,

An�3n =

24 F�(n�1) F�(n�2) 0
1 �1 1
0 1 �1

35
which, by contraction of An�4n on column 1, gives

An�2n =

�
F�(n�2) � F�(n�1) F�(n�1)

1 �1

�
=

�
F�n F�(n�1)
1 �1

�
:

By the Eq. (1.7) and the de�nition of the negatively subscripted Fibonacci
numbers, we obtain

perAn = perA
n�2
n = F�(n�1) � F�n = F�(n+1):

So the proof is complete. �

Second, we de�ne a n� n tridiagonal (0;�1; 1)�matrix Bn = [bij ] with
bii = �1 for 2 � i � n; bi;i+1 = bi+1;i = 1 for 1 � i � n� 1; b11 = � 1

2 and
0 otherwise. That is,

Bn =

266664
� 1
2 1 0

1 �1 . . .
. . .

. . . 1
0 1 �1

377775 : (2.2)

Now we give following Theorem.

Theorem 2. Let the matrix Bn has the form (2.2). Then

perBn =
L�n
2

where L�n is the nth negatively subscripted Lucas number.

Proof. If n = 1; then

perB1 = per

�
�1
2

�
= L�1=2 = �1=2:

If n = 2; then

B2 =

�
� 1
2 1
1 �1

�
and hence perB2 = L�2=2 = 3=2:
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Let Bpn be pth contraction of Bn; 1 � p � n� 2: From the de�nition of
Bn; the matrix Bn can be contracted on column 1 so that

B1n =

26666664

3
2 � 1

2 0
1 �1 1

1 �1 . . .
. . .

. . . 1
0 1 �1

37777775 :

Since the matrix B1n can be contracted on column 1 and L�3 = �4; L�2 =
3;

B2n =

26666664

� 4
2

3
2

1 �1 1

1 �1 . . .
. . .

. . . 1
1 �1

37777775 =
26666664

L�3
2

L�2
2

1 �1 1

1 �1 . . .
. . .

. . . 1
1 �1

37777775 :

Continuing this process, we obtain

Brn =

26666664

L�(r+1)
2

L�r
2

1 �1 1

1 �1 . . .
. . .

. . . 1
1 �1

37777775
for 3 � r � n� 4: Hence,

Bn�3n =

24 L�(n�2)=2 L�(n�3)=2 0
1 �1 1
0 1 �1

35
which, by contraction of Bn�4n on column 1, gives

Bn�2n =

� �
L�(n�3) � L�(n�2)

�
=2 L�(n�2)=2

1 �1

�
=

�
L�(n�1)=2 L�(n�2)=2

1 �1

�
:

By the Eq. (1.7) and the de�nition of the negatively subscripted Lucas
numbers, we obtain

perBn = perB
n�2
n =

�
L�(n�2) � L�(n�1)

�
=2 = L�n=2:

So the proof is complete. �

A matrix A is called convertible if there is an n� n (1;�1)�matrix H
such that perA = det (A �H) ; where A�H denotes the Hadamard product
of A and H: Such a matrix H is called a converter of A:
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Let S be a (1;�1)�matrix of order n, de�ned by

S =

2666664
1 1 : : : 1 1

�1 1 : : : 1 1
1 �1 : : : 1 1
...

...
...
...

1 1 : : : �1 1

3777775 :

Then we have that F�(n+1) = det (An � S) and L�n=2 = det (Bn � S) where
F�n and L�n are the nth negatively subscripted Fibonacci and Lucas num-
ber, respectively.
Let we denote the matrices An�S and Bn�S by Cn andDn; respectively.

Thus

Cn =

266664
�1 1 0

�1 �1 . . .
. . .

. . . 1
0 �1 �1

377775
and

Dn =

266664
� 1
2 1 0

�1 �1 . . .
. . .

. . . 1
0 �1 �1

377775
Also it is clear that the value of following determinant is independent of

x : (see p.105, [19]) ����������
a x 0

1
x a

. . .
. . .

. . . x
0 1

x a

����������
:

Using the above result and considering the following matrices

Ĉn =

266664
�1 �

p
1 0

p
1 �1 . . .

. . .
. . . �

p
1

0
p
1 �1

377775
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and

D̂n =

266664
� 1
2 �

p
1 0

p
1 �1 . . .

. . .
. . . �

p
1

0
p
1 �1

377775 ;
we can write that

det Ĉn = detCn = perAn = F�(n+1);

det D̂n = detDn = perBn = L�n=2:

Furthermore, from [13]; we have that let A be a tridiagonal matrix, and
let �A = (�aij) be de�ned by �ast = iast if s 6= t and �ass = ass; for all s and t�
i =

p
�1
�
: Then we have

per (A) = det
�
�A
�
:

Also let we de�ne the following matrices;

�Cn =

266664
�1 i 0

i �1 . . .
. . .

. . . i
0 i �1

377775 (2.3)

and

�Dn =

266664
� 1
2 i 0

i �1 . . .
. . .

. . . i
0 i �1

377775 : (2.4)

Thus we have following Corollaries without proof.

Corollary 1. Let the n � n tridiagonal toeplitz matrix �Cn as in (2.3).
Then, for n � 1

det �Cn = F�(n+1):

Corollary 2. Let the n � n tridiagonal matrix �Dn be as in (2.4). Then,
for n � 1

det �Dn = L�n=2:
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3. Complex Factorization of the negatively subscripted
Fibonacci numbers

In [3], the authors consider the relationships between the certain tridi-
agonal determinants, and, the usual Fibonacci and Lucas numbers. Then
using the eigenvalues of these tridiagonal matrices, the authors give the
complex factorizations of the usual Fibonacci and Lucas numbers. Follow-
ing the method of [3], we �nd the eigenvalues of the two tridiagonal matrices
whose determinants associated with the negatively subscripted Fibonacci
and Lucas numbers. Therefore, we give the complex factorizations of the
negatively subscripted Fibonacci and Lucas numbers.
There are variety of ways of computing matrix determinants (see [4] and

[6] for more details). In addition to the method of cofactor expansion,
the determinant of a matrix can be found by taking the product of its
eigenvalues. Therefore, we will compute the spectrum of �Cn to �nd an
alternative representation of det �Cn:
Now we de�ne another n� n tridiagonal toeplitz matrix Vn = [vij ] with

vii = 0 for 1 � i � n and vi;i�1 = vi�1;i = 1 for 2 � i � n and 0 otherwise.
Clearly

Vn =

266664
0 1 0

1 0
. . .

. . .
. . . 1

0 1 0

377775 : (3.1)

So it is clear that �Cn = �I + iVn: Then we give following Theorem.

Theorem 3. Let F�n be the nth negatively subscripted Fibonacci number.
Then, for n � 1

F�(n+1) =
nQ
j=1

�
�1� 2i cos

�
�j

n+ 1

��
:

Proof. Let �j ; j = 1; 2; : : : ; n; be the eigenvalues of Vn with respect to
eigenvectors xi: Then, for all j

�Cnxj = (�I + iVn)xj = �Ixj + iVnxj = �xj + i�jxj = (�1 + i�j)xj :
(3.2)

Therefore, �j = �1+ i�j ; j = 1; 2; : : : ; n; are the eigenvalues of �Cn: Hence,
for n � 1

det �Cn =
nQ
j=1

(�1 + i�j) : (3.3)

To compute the �j �s, we recall that each �j is a zero of the characteris-
tic polynomial pn (�) = jVn � �Ij : Since Vn � �I is a tridiagonal toeplitz
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matrix, i.e.,

Vn � �I =

0BBBB@
�� 1

1 �� . . .
. . .

. . . 1
1 ��

1CCCCA ; (3.4)

we can establish a recursive formula for the characteristic polynomials Vn :

p1 (�) = ��;
p2 (�) = �2 � 1; (3.5)

pn (�) = ��pn�1 (�)� pn�2 (�) :

This family of characteristic polynomials can be transformed into another
family fUn (x) ; n � 1g by taking � � �2x :

U1 (x) = 2x;

U2 (x) = 4x2 � 1; (3.6)

Un (x) = 2xUn�1 (x)� Un�2 (x) :

The family fUn (x) ; n � 1g is the set of Chebyshev polynomials of second
kind. It is a well-known fact (see [10]) that de�ning x � cos � allows the
Chebyshev polynomials of the second kind to be written as:

Un (x) =
sin [(n+ 1) �]

sin �
: (3.7)

From (3.7), we can see that the roots of Un (x) = 0 are given by �k =
�k
n+1 ; k = 1; 2; : : : ; n; or xk = cos �k = cos �k

n+1 ; k = 1; 2; : : : ; n: Applying
the transformation � � �2x; we have the eigenvalues of Vn :

�k = �2 cos
�
�k

n+ 1

�
; k = 1; 2; : : : ; n: (3.8)

Considering Corollary 1, the Eqs. (3.3) and (3.8), we obtain

F�(n+1) = det �Cn =
nQ
j=1

�
�1� 2i cos

�
�j

n+ 1

��
which is desired. �

Theorem 4. Let F�n be nth negatively subscripted Fibonacci number.
Then, for n � 1

F�(n+1) = i
n sin

�
(n+ 1) cos�1

�
i
2

��
sin
�
cos�1

�
i
2

�� :
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Proof. From (3.4), we can think of Chebyshev polynomials of the second
kind as being generated by determinants of successive matrices of the form

Kn (x) =

266664
2x 1

1 2x
. . .

. . .
. . . 1
1 2x

377775 ; (3.9)

where Kn (x) is n� n: If we denote that �Cn = iKn

�
i
2

�
; then we obtain:

det �Cn = i
n detKn

�
i

2

�
= inUn

�
i

2

�
: (3.10)

Combining the result of Corollary 1, the Eqs. (3.7) and (3.10) yields, for
n � 1

F�(n+1) = i
n sin

�
(n+ 1) cos�1

�
i
2

��
sin
�
cos�1

�
i
2

�� :

So the proof is complete. �

Theorem 5. Let L�n be nth negatively subscripted Lucas number. Then,
for n � 1

L�n =
nQ
k=1

 
�1� 2i cos

�
�
k � 1

2

�
n

!
:

Proof. From Corollary 2, we have that 2 det �Dn = L�n: We will not com-
pute the spectrum of �Dn directly. Instead, we will note that the following:
(det

�
I + e1e

T
1

�
= 2)

det �Dn =
1

2
det
��
I + e1e

T
1

�
�Dn
�
; (3.11)

where ej is the jth column of the identity matrix. Thus we can write that
the right-side of (3.11) as follows

1

2
det
��
I + e1e

T
1

�
�Dn
�
=
1

2
det
�
�I + i

�
Vn + e1e

T
2

��
(3.12)

where the matrix Vn is given by (3.1). Let j ; j = 1; 2; : : : ; n; be the
eigenvalues of Vn + e1eT2 with respect to eigenvectors yj : Then, for all j�
�I + i

�
Vn + e1e

T
2

��
yj = �Iyj+i

�
Vn + e1e

T
2

�
yj = �yj+ijyj =

�
�1 + ij

�
yj :

Thus
1

2
det
�
�I + i

�
Vn + e1e

T
2

��
=
1

2

nQ
k=1

�
�1 + ij

�
: (3.13)
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To compute the j�s, we recall that all  is a zero of the characteristic
polynomial tn () = det

�
Vn + e1e

T
2 � I

�
: Since det

�
I � 1

2e1e
T
1

�
= 1

2 ; we
can alternately write the characteristic polynomial as

tn () = 2 det
��
I � 1

2e1e
T
1

� �
Vn + e1e

T
2 � I

��
: (3.14)

Since tn () is twice the determinant of a tridiagonal matrix, that is,

tn () = 2 det

266664
�
2 1

1 � . . .
. . .

. . . 1
1 �

377775 ; (3.15)

one can derive a recursive formula for tn()
2 :

t1()
2 = �

2

t2()
2 = 2

2 � 1
tn()
2 = �tn�1 ()� tn�2 () :

This family of polynomials can be transformed into another family fTn (x) ; n � 1g
by taking  � �2x :

T1 (x) = x;

T2 (x) = 2x2 � 1;
Tn (x) = 2xTn�1 (x)� Tn�2 (x) :

The family fTn (x) ; n � 1g is the set of Chebyshev polynomials of �rst
kind. In [10], Rivlin presents that de�ning x � cos � allows the Chebyshev
polynomials of the �rst kind to be written as

Tn (x) = cosn�: (3.16)

From the Eq. (3.16), one can see that the roots of Tn (x) = 0 are given by

�k =
�
�
k � 1

2

�
n

or xk = cos �k = cos
�
�
k � 1

2

�
n

for k = 1; 2; : : : ; n:

Applying the transformation  � �2x and considering the roots of the
(3.14) are also roots of det

�
Vn + e1e

T
2 � I

�
= 0; we have the eigenvalues

of Vn + e1eT2 :

k = �2 cos
�
�
k � 1

2

�
n

for k = 1; 2; : : : ; n: (3.17)

From Corollary 2, the Eqs. (3.17) and (3.13), we obtain

L�n =
nQ
k=1

 
�1� 2i cos

�
�
k � 1

2

�
n

!
:

So the proof is complete. �
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Theorem 6. Let L�n be nth negatively subscripted Lucas number. Then,
for n � 1

L�n = 2i
n cos

�
n cos�1

�
i

2

��
:

Proof. From (3.15), we think of Chebyshev polynomials of the �rst kind as
being generated by determinants of successive matrices of the form

Gn (x) =

266664
x 1

1 2x
. . .

. . .
. . . 1
1 2x

377775
n�n

:

We note that det �Dn = iGn
�
i
2

�
; thus

det �Dn = i
n detGn

�
i

2

�
= inTn

�
i

2

�
: (3.18)

From Corollary 2, the Eqs. (3.16) and (3.18), we obtain

L�n = 2i
n cos

�
n cos�1

�
i

2

��
:

So the proof is complete. �
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