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Recent mobile brain/body imaging (MoBI) techniques based on active electrode

scalp electroencephalogram (EEG) allow the acquisition and real-time analysis of

brain dynamics during active unrestrained motor behavior involving whole body

movements such as treadmill walking, over-ground walking and other locomotive

and non-locomotive tasks. Unfortunately, MoBI protocols are prone to physiological

and non-physiological artifacts, including motion artifacts that may contaminate the

EEG recordings. A few attempts have been made to quantify these artifacts during

locomotion tasks but with inconclusive results due in part to methodological pitfalls.

In this paper, we investigate the potential contributions of motion artifacts in scalp

EEG during treadmill walking at three different speeds (1.5, 3.0, and 4.5 km/h) using

a wireless 64 channel active EEG system and a wireless inertial sensor attached

to the subject’s head. The experimental setup was designed according to good

measurement practices using state-of-the-art commercially available instruments, and

the measurements were analyzed using Fourier analysis and wavelet coherence

approaches. Contrary to prior claims, the subjects’ motion did not significantly affect

their EEG during treadmill walking although precaution should be taken when gait

speeds approach 4.5 km/h. Overall, these findings suggest how MoBI methods may

be safely deployed in neural, cognitive, and rehabilitation engineering applications.

Keywords: electroencephalography, EEG, artifacts, walking

INTRODUCTION

The development of non-invasive mobile brain/body imaging (MoBI) techniques based on active

electroencephalography (EEG) synchronized with motion sensing (Makeig et al., 2009; Gramann
et al., 2014) and advanced signal processing methods to identify and remove physiological and
non-physiological artifacts (Rong and Contreras-Vidal, 2006; Velu and de Sa, 2013; Lau et al., 2014;

Urigüen and Garcia-Zapirain, 2015) promise to allow neuroscientists and engineers to investigate
the neural dynamics in brain networks during natural (i.e., unconstrained environments) cognition

and action.
Recent advances in non-invasive EEG to detect brain activation patterns signaling movement

intent during locomotive and non-locomotive tasks (Presacco et al., 2011, 2012; Severens et al.,
2012; Bulea et al., 2014; Kline et al., 2014) and during assisted walking using in lower extremity
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wearable exoskeletons (Wagner et al., 2012; Do et al., 2013;

Kilicarslan et al., 2013; He et al., 2014; Seeber et al., 2014) offer
the potential to elucidate the cortical contributions to gait and the

harnessing of such gait-related neural activity for brain-machine
interfaces (BMI) to wearable robots for assistive and therapeutic

applications (Venkatakrishnan et al., 2014).
However, little is known about the motor circuits for

walking in humans. It is generally agreed that central pattern
generators are important in the control of walking; however,

supraspinal networks, including the cortex, must be critical
as a result of the complexity of locomotive and non-

locomotive tasks in activities of daily living. Several studies
have shown electrocortical activity coupled to gait cycle phase

during treadmill walking (Gwin et al., 2011; Severens et al.,
2012), and robotic-assisted treadmill walking (Wagner et al.,

2012). That primary motor cortex carries information about
bipedal locomotion has been directly proven by the work of
Fitzsimmons et al. (2009), who demonstrated that chronic

recordings from ensembles of cortical neurons in primary
motor (M1) and primary somatosensory (S1) cortices can be

used to predict the kinematics of bipedal walking in rhesus
macaques.

Neural decoding studies based on scalp EEG have shown
that linear and angular kinematics (Presacco et al., 2011, 2012;

He et al., 2014) and surface electromyography (EMG) activity
can be inferred from scalp EEG during treadmill or robot-

assisted walking (He et al., 2014). Moreover, recent studies have
deployed neural classifiers based on scalp EEG signals to detect

cortical involvement immediately before gait (e.g., gait intention
detection; Velu and de Sa, 2013; Jiang et al., 2015) or non-

locomotion tasks such as sit-to-stand and stand-to-sit (Bulea
et al., 2014). Closed-loop BMI based on EEG have shown the

feasibility of using brain waves to control powered exoskeleton
for over ground in individuals with spinal cord injury (Kilicarslan

et al., 2013) and in robotic-assisted treadmill walking (Do et al.,
2013).

Unfortunately, EEG signals are susceptible to physiological

and non-physiological artifacts, including motion artifacts,
which may compromise the decoding of gait and the

interpretation of the neural signals relevant to bipedal
locomotion. Methods have been developed to identify and

remove such artifacts from the EEG signals (Gwin et al., 2010;
Kline et al., 2015; Urigüen and Garcia-Zapirain, 2015), but

the efficacy of such methods has been questioned recently
(Castermans et al., 2014; Kline et al., 2015). Given that

brain activity and the level of artifactual components may
vary with walking speed, experimental setup, quality of the

instrumentation, tasks, and expertise of the experimenters,
published data remains inconclusive. Thus, the purpose

of this study was to examine the potential contributions
of motion artifacts in scalp EEG during treadmill walking

at three different speeds, as in Castermans et al. (2014).
The experimental setup was designed according to good

measurement practices using state-of-the-art commercial off-
the-shelf instruments, and the measurements were analyzed

using time-frequency analysis and non-parametric spectral
estimation approaches.

METHODS

Participants
Three able-bodied males and one able-bodied female (ages
26–33) participated in this study. All participants provided
voluntary informed consent and performed study procedures

that were approved by the Institutional Review Board at the
University of Houston.

Experimental Procedure and Data
Acquisition
The experimental protocol followed closely to that reported in

Castermans et al. (2014). Participants were instructed to walk
on a treadmill at three fixed speeds of 1.5, 3.0, and 4.5 km/h

for a minimum of 3-min sessions for each speed. Whole scalp
active 64-channel EEG data were collected (battery-operated
BrainAmpDC amplifiers with actiCap system, Brain Products

GmbH, Munich, Germany) and labeled in accordance with the
extended 10–20 international system. EEG data were online

referenced to channel FCZ, while electrode impedances were
maintained below 10 k�. A wireless interface (MOVE system,

Brain Products GmbH) transmitted the data to the amplifier,
which applied low-pass analog filters set from DC-1000 Hz, and

the EEG signals were digitized at 1 kHz using a BrainAmp DC
amplifier linked to BrainVision Recorder software version 1.10.

A light-weight wireless Magnetic, Angular Rate, and
Gravitational (MARG) sensor (Opal IMU sensors; APDM, Inc.;

Portland, OR) was placed on the forehead to record triaxial
magnetic, gyroscopic, and acceleration data at a sampling

rate of 1280 Hz with an output rate of 128 Hz at 14 bits
resolution (bandwidth of 50 Hz) during treadmill walking. The

MARG sensor specifications were: weight (<22 g with battery),
dimensions (48.4 L × 36.1 W × 13.4 H mm), latency (30 ms),

accelerometer range and noise (±6 g; 0.0012 m/s2/
√
Hz),

gyroscope range and noise (±2000 deg/s; 0.05 deg/s/
√
Hz),

magnetometer range and noise (±6 Gauss; 0.5 mGauss/
√
Hz).

Figure 1A shows a photo of the experimental setup with
the subject wearing the EEG cap and Opal sensor. Careful

placement of the MARG sensor on the participant’s forehead,
as in Kline et al. (2015), ensured no physical interference with

the EEG electrodes that could potentially lead to perturbation
or distortions of the EEG signals. For comparison, Figure 1B

depicts the experimental setup used by Castermans et al. (2014)
(reproduced here with permissions from the author and original

publisher), which may have potentially interfered with the EEG
electrode recordings and affected the inertial mass properties of

the subject’s head (note that mass of the accelerometer and other
technical specifications of this custom setup were not provided

in their published manuscript). Flexible contact switches were
placed on the heel and toe of both feet to be used as footswitches

(FS4 Contact Switch Assembly with DataLOG, Biometrics
Ltd., Cwmfelinfach, Gwent, UK), to identify the timing of the

heel-strike and toe-off phases of gait at a sampling rate of 1 kHz.
EEG, MARG, and footswitch data were time-locked using an

external trigger circuit to mark the start and stop of the walking
periods. The trigger signal was transmitted wirelessly using
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FIGURE 1 | (A) Photos of subject and experimental setup showing active EEG cap and triaxial MARG inertial sensor mounted on the forehead (left) and of (B) subject

and experimental setup from similar protocol in Castermans et al. (2014), reproduced here with permissions from the author and publisher. (C) Sample raw EEG and

Accelerometer data for three gait cycles for all four subjects and all three speeds. The x-, y-, and z-axes for the accelerometer represent the vertical, mediolateral,

and anterior–posterior directions respectively. Traces with red labels indicate channels chosen for further analyses. Blue traces are EEG channels after processing

with ASR. Vertical black lines indicate onset of Right Heel Strikes (RHS). (D) Flowchart illustrating steps and processes from recording signals to generating ERSPs.

the Pololu Wixel RF transmitter/receiver (Pololu Corporation,
Las Vegas, NV, USA). Figure 1C shows representative raster

plots depicting recorded raw EEG (midline channels FZ,
CZ, PZ, and OZ as well as channels C1, C2, and T8), and

gravity-compensated components of the 3D acceleration (x:
gravity; y: toward subject’s left shoulder; z: direction of walking)

for the four participants walking in the treadmill at 1.5, 3.0, and
4.5 km/h.
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Signal Processing and Spectrotemporal
Analysis
Pre-processing

The magnetic, acceleration, and gyroscopic data from the MARG
sensor were transformed from the sensor’s reference frame to

Earth-fixed frame, and were then used to produce a gravity-
compensated acceleration output signal (Noureldin et al., 2013).

The corrected acceleration was then resampled to 1 kHz to match
the sampling rates of the EEG and footswitch data. Subsequent

analysis of EEG signals focused on the CZ, OZ, and T8 channel
locations, which cover a broad area of the scalp as in Castermans

et al. (2014), and on the vertical (corresponding to our x-axis in
Figure 1) head acceleration, which was shown to have the highest

correlation with EEG signals during walking (Kline et al., 2015).

Spectral Analysis

The spectra of the three EEG signals and the adjusted (normalized
magnitude) acceleration were analyzed by performing a fast

Fourier transform (FFT command inMatlab). Default parameters
were used (i.e., FFT length was set to the length of the signal

rounded up to the next power of 2). The single-sided spectra
were analyzed for each channel for each speed and for each

subject. These methods were adopted to facilitate comparison
with findings from Castermans et al. (2014).

Event-Related Spectral Perturbation Analysis

The average deviation from baseline spectral power during the
gait cycle, i.e., the ERSP (Makeig, 1993), was computed for each

EEG channel and acceleration following the methodology in
Gwin et al. (2011). All channels were detrended and a time-

frequency analysis was performed on the whole time-series
(SPECTROGRAM command in Matlab); a window length of

500 ms was used with an incremental moving window shift
of 10ms. The footswitch data was used to segment the full

spectrogram into individual gait cycles, marking the times of the
right heel strike (RHS), the left toe off (LTO), the left heel strike
(LHS), and the right toe off (RTO). The spectrogram for each gait

cycle was compared to the time-corresponding raw EEG data;
individual epochs that contained large obvious eye or muscle

artifacts (based on visual inspection) were rejected (Castermans
et al., 2014). The average number of rejected gait cycles for each

subject for the 1.5, 3.0, and 4.5 km/h walking speeds were 63,
103, and 88 respectively, out of 145, 184, and 170 total gait cycles;

each subject had at least 80 usable gait cycles per walking speed.
These remaining gait cycle spectrograms were then interpolated

using splines along the time axis to the average gait cycle length
for the corresponding subject and speed. With each spectrogram

at a common length, the ensemble average time-frequency data
were generated by averaging across all gait cycles. The ERSP was

computed by subtracting the average log power spectrum for the
averaged gait cycle from the log spectrogram at each time point.

All steps from pre-processing to ERSP generation are outlined in
the flowchart in Figure 1D.

Wavelet Coherence Analysis

We measured the coherence via a wavelet analysis to analyze
frequency correlation between each EEG channel and the

acceleration measured by the head-mounted MARG sensor. The

raw EEG and acceleration data were similarly detrended, but the
time-frequency analysis was performed with the Crosswavelet

and Wavelet Coherence package (Grinsted et al., 2004). We
used the Morlet wavelet for the mother wavelet and default

parameters set to 12 sub-octaves per scale, a minimum scale of
twice the sampling interval (2ms) with a maximum scale of one-

sixth the signal length times the minimum scale. A Monte Carlo
significance test was carried out using 100 iterations.

Artifact Subspace Reconstruction

As an ancillary analysis, we repeated the above steps after

performing an automated artifact rejection process known as
Artifact Subspace Reconstruction (ASR) (Mullen et al., 2013)

prior to all other pre-processing steps (see dotted box in
Figure 1D). ASR is most effective at removing transient,

high-amplitude artifacts from eye blinks, muscle bursts, and
movement (Bulea et al., 2014); given an input of clean baseline

data collected from a minute of standing still, it identifies
regions of clean EEG within the data from which it computes

an un-mixing matrix based on the geometric median. Principal
component analysis is applied to the EEG data in sliding

windows, decomposing the data into subspaces, and those
subspaces, which deviate from baseline are reconstructed with

the un-mixing matrix. ASR can alternatively operate without
a separate calibration dataset and automatically search for

segments of clean EEG to be used as baseline, but this paper will
focus only on the former method. ASR is available as a plug-in

for EEGLAB (Delorme and Makeig, 2004), which we used with
non-default parameters of a sliding window length of 500 ms,
a threshold of three standard deviations for identification of

corrupted subspaces (more conservative than the default of five),
and without any channel rejection.

RESULTS

Frequency Spectra of EEG and
Accelerometer
Single-sided spectra computed using the fast Fourier transform
are shown in Figure 2 for subject S3 for the three EEG channels

(CZ, OZ, and T8), and for the x-axis (pointing in the direction
of gravity) of vertical head acceleration at three speeds of 1.5, 3.0,

and 4.5 km/h. (Sample traces for three full gait cycles for the raw
and ASR-processed EEG and acceleration channels are shown

in Figure 1C). Plots for the other three subjects are included as
Supplementary Material as the data is representative across all

subjects. The spectra of the EEG channels in our study exhibit
commonly found 1/f properties, but absent are large amplitude

spikes dominating the spectra which correspond to the stepping
frequency of walking (0.47 Hz for 1.5 km/h, 0.76 Hz for 3.0 km/h,

0.93 Hz for 4.5 km/h) or any harmonics thereof, contrary to
the findings reported in Figure 1 of Castermans et al. (2014).

These spikes are still captured by the accelerometer mounted to
the forehead and continue up to 7 Hz, but are only prominent

at the two faster speeds. These spikes, albeit greatly reduced in
amplitude to the extent that they do not dominate the spectrum,
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FIGURE 2 | Fast fourier transform (FFT) of EEG channels and downward acceleration showing frequency spectra for subject S3 at each speed; tick

marks on top of plots indicate harmonics of the fundamental stepping frequency.

are present in the EEG at the two faster speeds for at least the
fundamental harmonic, but are only present at higher harmonics
for the fastest speed in OZ and T8, as well as for even harmonics

in T8 at the medium speed. The high amplitude spikes do not
appear beyond 8 Hz.

Event-Related Spectral Perturbation
Analysis
Average deviations in spectral power throughout the normalized

gait cycle are shown in the ERSP plots in Figure 3 for
one individual subject (S3) and for grouped subject data.

Individual plots for the other subjects are included as
SupplementaryMaterial. The x-axis vertical acceleration channel,

oriented toward gravity, shows striking intra-stride broadband
oscillations, particularly for the two faster speeds (3.0 and

4.5 km/h), spanning continuously (except for an interruption
around 60 Hz, likely due to electrical noise) from 20 Hz up to

at least 80 Hz. For the individual subject data from S3, we see a
decrease in power after the heel strikes followed by a rise during

the swing phase (after RTO and LTO). This pattern gets shifted
or reversed when averaged across all subjects at 3.0 km/h (and

in some cases of other individual subjects at other speeds, see
Supplementary Material) with the decrease in power occurring

after the swing phases. The oscillations coinciding with gait phase
still remain a consistent feature of the acceleration ERSP, but

such features are generally absent when comparing with the
EEG ERSPs, even when notably reducing the scale of the color
bar. Individually, S3 shows some oscillations in power at low

frequencies (less than 10 Hz), but these are not seen in the group
averaged data.

The above analysis was repeated after applying ASR to the raw
EEG data (see Figure 3B), with the acceleration ERSPs remaining

unchanged. In the group-averaged data, ASR attenuated the
changes in spectral power seen in the temporal channels, as

alternating regions of dark blue and dark red became negligible.
This reduction was not evident in the individual data (S3), and

some frequencies showed increased power changes after ASR,
particularly in EEG channels at 4.5 km/h.

Wavelet Coherence Between EEG and
Accelerometer Signals
We computed the wavelet coherence between the three EEG

channels (CZ, OZ, and T8) and the accelerometer, and display
continuous time data for one subject (S3, Figure 4) and group-

averaged data averaged for all gait cycles (Figure 5). The
Crosswavelet and Wavelet Coherence package (Grinsted et al.,

2004) provides not only a time-frequency wavelet analysis,
but also gives phase direction and significance levels against

Brownian noise (shown as black contour lines). Phase direction is
indicated on the figures as red arrows (only shown for coherence
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FIGURE 3 | (A) Event-related spectral perturbations (ERSPs) of EEG channels

and magnitude acceleration averaged across all gait cycles for one subject

(S3) and all subjects’ averaged data at each speed. (B) ERSP plots of EEG

channels and acceleration after processing EEG with Artifact Subspace

Reduction.

values greater than 0.5): arrows pointing right mean completely

in-phase relationship between EEG and acceleration with left
meaning out-of-phase; upward means a 90◦ lag of acceleration

leading EEG and downward means EEG leading acceleration by
90◦. We focus on the slow cortical potentials in the delta band

frequencies of EEG (0.1–4 Hz), as these are of primary interest for
the decoding of gait kinematics (e.g., Presacco et al., 2011, 2012;
Do et al., 2013; Bulea et al., 2014) and display the coherence values
for these frequencies on a logarithmic scale.

In the individual subject data (S3 shown in Figure 4;
additional subjects are included in the Supplementary Materials),

regions of significant coherence (at the 5% level determined
using Monte Carlo generated noise, marked by thick black

boundaries) generally do not span across the gait cycles on a
consistent basis, but appear sparsely in small blots. At speeds of

4.5 km/h, long regions of significant coherence span continuously
across multiple gait cycles in channels CZ and OZ for S3 with
phase angles close to −180◦ around 0.17–0.27 Hz. Consistent

generalizations are hard to discern for all of the subjects, but with
the exception of S4 (see Supplementary Materials), significant

coherence tends to be seen only at the two faster speeds.
In the group- and gait cycle-averaged data (Figure 5),

coherence does not seem to vary significantly with time within the
averaged gait cycle. The magnitude of coherence in the delta band

exceeds 0.5 only at speeds greater than 1.5 km/h. At 3.0 km/h,
there is strong coherence (i.e., greater than 0.5) in the CZ and T8

channels between the narrow band of 0.68–0.89 Hz with phase
angles varying from 23.9 to 43.4◦ (mean 33.9◦); this band is

centered around the stepping frequency for this speed (0.76 Hz),
and is likely an artifactual component, especially with the positive

phasic relationship. Each channel shows strong coherence at
4.5 km/h between the frequencies of 1.57–2.32 Hz, and also

between 0.83 and 1.11 Hz for T8, similar to the coherence at
3.0 km/h; the phase angles were all mostly positive but close to

zero for CZ and OZ, calculated to range from −13.6 to 32.7◦ and
−4.3 to 21.9◦ for the bands in CZ and OZ respectively; for T8, the
lower band had positive phase angles between 39.9 and 64.6◦ and
the upper band had negative phase angles toward the end of the
gait cycle after the RTO phase from (−28.8)-(−2.02)◦ .

When ASR was applied, any evidence of delta band coherence
disappeared in the averaged group data (Figure 5B) except at

4.5 km/h for CZ at the same frequency ranges with the phase
angles mostly unaltered. The effects of ASR are quite varied on

an individual subject basis: Figure 4B shows fewer and smaller
regions of significant coherence in S3 after ASR for speeds of

3.0 km/h or slower, except for some low frequency regions below
0.1 Hz, while the opposite effect is seen at the fast walking speed.

The rest of the individual subject data and group-averaged data
for ASR are included in Supplementary Figures S3 and S4.

DISCUSSION

Negligible Effects of Head Motion on
EEG Signals During Treadmill Walking
The main finding of this study is that head motion unlikely
contaminated the EEG recordings at treadmill gait speeds of 1.5,
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FIGURE 4 | Wavelet coherence of EEG channels with x-axis of acceleration for sample 10 s of walking data for subject S3 at each speed, (A) before

and (B) after processing with Artifact Subspace Reduction. Frequency is scaled logarithmically on the y-axis and is limited to the delta band range of EEG (up

to 4 Hz). Vertical black lines indicate onset of RHS; horizontal black lines indicate the frequency of stepping. The arrows indicate the relative phase relationship

(in-phase pointing right, anti-phase pointing left, and EEG leading acceleration by 90◦ pointing straight down), and are only shown for regions with coherence greater

than 0.5. Thick black contour lines indicate regions are significant against red noise at the 5% level.

3.0, and 4.5 km/hr. This finding is in contrast with a recent study

by Castermans et al. (2014), which reported strong harmonics
of the frequency of stepping in the Fourier spectra of the EEG
(compare Figure 1 from their paper with Figure 2 in this study).

Some harmonics were present in the spectrum of our acceleration

data at walking speeds of 3.0 and 4.5 km/h, but the spectra of the
data from active EEG generally do not contain these harmonics
to the same extent (with possible exception for channel T8 at
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FIGURE 5 | Wavelet coherence of delta band EEG with x-axis of acceleration averaged across all subjects’ gait cycles at each speed (A) before and

(B) after processing with Artifact Subspace Reduction. Vertical black lines indicate onset of gait cycle phase; horizontal black lines indicate the frequency of

stepping. The arrows indicate the relative phase relationship (in-phase pointing right, anti-phase pointing left, and EEG leading acceleration by 90◦ pointing straight

down), and are only shown for regions with coherence greater than 0.5.

4.5 km/h; T8 and other temporal and peripheral channels are

often rejected in EEG decoding studies; Presacco et al., 2011;
Bulea et al., 2014; He et al., 2014) while still maintaining the

characteristic 1/f power spectrum. The ERSP analyses, which
measure the amount of deviation from baseline spectral power

during the course of the gait cycle, do not seem to support the

claim that motion artifacts are dominant in EEG during walking.

If head motion were to affect EEG measurements, one would
expect motion-contaminated brain data to show similar ERSP

patterns for both the EEG and acceleration data at corresponding
walking speeds. Here the acceleration ERSP plots show power

oscillations of increasing magnitude during treadmill walking
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that reached the gamma band (30–100 Hz). These oscillations are,

however, of smaller magnitude that those reported in Castermans
et al. (2014), and more consistent with those reported by Kline

et al. (2015) using a similar accelerometer setup. However, in the
present study, these oscillations did not appear in the EEG ERSP

plots, even with the reduced amplitude scale of −2.5 to 2.5 dB,
thus arguing against motion artifacts in the EEG data.

Several discrepancies in the experimental setup and
recording techniques may explain these discrepancies. First,

it is likely that the experimental setup used in Castermans
et al. (2014), reproduced in Figure 1B here, distorted the

EEG measurements. Specifically, inappropriate setup of the
custom accelerometer, may have allowed the accelerometer

to transmit shocks to the EEG channels via direct physical
contact with the EEG cap and its electrodes. It is widely

recognized that most non-physiological artifacts can be reduced
by ensuring proper attachment of electrodes or measuring
devices (Urigüen and Garcia-Zapirain, 2015). Second, the

large inertial mass of the custom accelerometers used in the
Castermans study may have contributed to unrealistic and

excessive motion (and probably pulling) of the EEG cap and
sensors. Moreover, active electrodes used in our study ensure

reduced noise from cable movements due to high input and
low output impedance, pre-amplification at the scalp level,

and cable shielding from electrical noise (Reis et al., 2014).
Unfortunately, other technical specifications of the setup, such

as mass of the accelerometer and impedances of the EEG
electrodes, were not provided in their study, and thus some

measurement errors cannot be quantified. Future studies should
always include detailed specifications of the sensor and the

sensor setup according to good recommended measurement
practices in terms of set-up techniques and instrumentation.

In particular, care should be taken to minimize interaction
between the EEG electrode cap and the connection circuit by

isolating the acceleration sensor from the cap. In addition,
the weight of the measurement device should be kept as
low as is practicable in keeping with current engineering

technologies
A recent study by Kline et al. (2015) isolated motion artifact

from EEG electrodes during walking by recording the electrical
signals picked up after blocking the neural activity with a

silicone cap. Their protocol also closely followed that of the
present study, including the use of active EEG and an OPAL

sensor to monitor head acceleration. The authors were able to
characterize pure motion artifact from the electrodes, which

they found to have low correlation with the acceleration from
the head MARG sensor. Their results lead them to suggest

that motion artifact signals are more likely due to electrode
cable movement relative to the head as opposed to movement

of the head itself. Securing cable motion can be accomplished
by using Velcro straps (or similar) to secure cable bundles

to the user to minimize cable motion. Cable movements can
also be suppressed during MoBI experiments to reduce artifacts

by applying a stretchable mesh cap over the electrodes or
using a double-layer cap, in which the electrode cables are

sandwiched between two layers of fabric (Reis et al., 2014).
The Kline study did not, however, include analogous results of

recorded EEG data from their setup (except for activity from

a mastoid electrode). The present study thus provides valuable
information about the potential effects of head motion on EEG

recordings.
We extended our analysis to focus on the potential effects

of motion artifacts within the delta band (0.1–4 Hz) of EEG,
given that this range has been practically used in decoding

studies (Presacco et al., 2011, 2012; Do et al., 2013; Bulea
et al., 2014; He et al., 2014), based on analysis of wavelet

coherence. Coherence has been found between EEG and lower-
limb EMGduring walking (Petersen et al., 2012) and at delta band

frequencies during seated voluntary foot movements (Raethjen
et al., 2008). In this situation, high negative-phase coherence

(i.e., EEG leading EMG) would support cortical mechanisms for
walking; however, high in-phase coherence between the EEG

and the accelerometer would suggest mechanical coupling of the
electrode leads dominating the EEG signal. However, individual
subject data do not show consistent and continuous regions

of significant coherence (Figure 4, Supplemental Figure S3),
particularly at lower walking speeds (with the exception of

S4). Moreover, because treadmill walking involves continuous
and consistent gait motion, we would expect to see the same

amount of coherence from one stride to the next if the motion
of the EEG setup (e.g., cables going to the amplifiers) affected

the EEG signals. The group-averaged data in the current study
showed bands of strong coherence (>0.5) for speeds of 3.0 and

4.5 km/h, with phase arrows indicating that the acceleration
is leading the EEG signal. At 3.0 km/h, the bands peak at

the stepping frequency (∼0.8 Hz) in channels CZ and T8. At
4.5 km/h, there are two bands of strong coherence at 0.97 Hz

(average stepping frequency calculated to be 0.93 Hz) and at
1.86 Hz in channels CZ and T8, but only one band for the

latter frequency in OZ. Bands of coherence are present at
the stepping frequencies at the slowest walking speed but are

rather weak in amplitude (∼0.4). This trend is consistent with
the individual subject data shown in Supplement Figure S4.
This could be indicative of artifactual contamination, which

would provide some support to previous reports (Gwin et al.,
2010; Castermans et al., 2014) of finding motion artifacts

at speeds greater than 2.9 km/h. Thus, if the experimenter
would like to err on the conservative side, future studies

should take special care with cable and electrode motion
and electrode impedance to minimize the effects of artifactual

components during gait speeds above 3.0 km/h. Prior gait
decoding studies have typically measured treadmill gait at rates

below 3.0 km/h; the self-selected preferred walking speed of
subjects from Presacco et al. (2011) did not exceed 2.4 km/h,

and the subjects in this study reported walking at 4.5 km/h
to be slightly strenuous. This is in contrast, however, with

claims of preferred walking speeds of 1.4 m/s (about 5 km/h)
reported in Browning et al. (2006), which was the basis for

in-depth artifact analysis of faster walking speeds (1.2 m/s or
4.5 km/h) by Kline et al. (2015). Clinical applications may

also be a reason to dictate slower gait speeds for non-able
bodied persons. Use of a suitable head accelerometer should

likely help to analyze potential motion artifacts in future
studies.

Frontiers in Human Neuroscience | www.frontiersin.org 9 January 2016 | Volume 9 | Article 708

http://www.frontiersin.org/Human_Neuroscience/
http://www.frontiersin.org/
http://www.frontiersin.org/Human_Neuroscience/archive


Nathan and Contreras-Vidal Negligible Motion Artifacts in EEG During Walking

Artifact Subspace Reduction and Other
Means of Removing Artifacts
While the main purpose of this study was to understand the
extent to which motion artifacts can contaminate raw EEG

signals during walking without any processing, we performed our
analysis of the EEG data both with and without an automated

artifact rejection algorithm known as the ASR method. Mullen
et al. (2013) demonstrated that ASR can clean EEG contaminated

with eye blink and muscle artifacts without distorting the ERP
in an Eriksen Flanker task. Bulea et al. (2014) reported that

ASR does not affect decoding from pre-movement epochs (and
therefore, free of motion artifacts) of EEG recorded during

sit-to-stand transitions, but saw an increase in classification
accuracy when decoding from the post-movement epochs

when ASR was not used; suggesting that motion artifacts may
have been present during these epochs, which contributed to

higher decoding accuracies without removing neural signals
containing movement-related information. In our analysis, ASR

was performed after calibration on motion artifact-free EEG
recorded while the subject was standing at rest prior to walking.

The algorithm would thereby statistically interpolate any high-
variance signal components exceeding a threshold of three
standard deviations from the covariance of the calibration data;

motion artifacts increasing the variance of the signal would
be identified for removal via interpolation (Figure 1C). By

default, the ASR algorithm uses five standard deviations for the
threshold, so our choice of three was a more aggressive criterion.

If the algorithm were not given calibration data, it would try to
identify clean segments of data within the walking EEG to use

for calibration, but this may make it more difficult to identify
motion artifacts since their statistics would be too similar to the

calibration data.
We found ASR to be most beneficial in attenuating the large

amplitude deviations of the ERSP at speeds of 4.5 km/h (Figure 3)
and in reducing regions of significant coherence (Figure 5) at

speeds greater than 3.0 km/h; the artifact content at slower
walking speeds seems negligible enough to not require additional

processing for artifact removal.We note also that sit-to-stand and
stand-to-sit actions are likely to bemore prone tomotion artifacts

due to excessive gross movement during these actions. Kline et al.
(2015) used artifact removal methods involving a moving average

subtraction method and another using Daubechies wavelets; they
report similar results in that their methods do not completely
clean the signals of artifacts, but do attenuate the peak amplitudes

of the ERSP somewhat for the slower walking speeds.
For other MoBI applications that involve excessivemovement,

including fast treadmill walking or running, there may a stronger
tendency for motion artifact to be introduced into the EEG,

thereby necessitating optimized artifact removal algorithms
to minimize these effects and salvage the EEG signal. Gwin

et al. (2010) designed a channel- and component-based artifact
removal algorithm that allows for successful performance in

a visual oddball discrimination task even while running on
a treadmill up to speeds of 6.8 km/h. Their algorithm uses

channel-based template regression to remove stride phase-locked
artifact followed by an adaptive mixture independent component

analysis model (AMICA) to decompose the template-subtracted

EEG into spatially static components. Nolan et al. (2010) devised

the FASTER algorithm (Fully Automated Statistical Thresholding
for EEG artifact Rejection), which detects and removes outliers

in various data parameters for EEG time series and independent
components. FASTER computes various statistical properties and

features for channel data, epoch data, independent components,
channels in epoch data, and grand averaged data and removes

outliers based on a three z-score threshold. FASTER can also
detect outlier datasets among aggregated event-related potentials,

resulting in a lower baseline variance compared to other
supervised methods. Furthermore, O’Regan and Marnane (2013)

propose a method to detect artifact contamination using features
from both EEG and head-mounted gyroscopes, similar to the

setup in this study, which can be used to verify whether or not
additional processing is necessary. And while such an algorithm

has yet to be tested, Kline et al. (2015) propose a promising
method using an EEG cap with certain channels blocked off from
electrocortical signals, and using these motion artifact channels

to create a template for real-time subtraction. Despite all these
concerns over artifacts, Debener et al. (2012) and De Vos et al.

(2014) demonstrated that the P300 signal can still be recovered
in an auditory oddball task while the subject was walking in

a noisy and natural environment, all while using consumer-
grade passive EEG equipment. This lends support to the idea

that cortical signal is still salvageable even in an ambulatory
subject.

This study focused on the possible mechanical artifacts
induced in the EEG by the movement of cables due to head

motion during treadmill walking. This is not to disregard other
potential contributors to artifacts that are not movement-related,

but to emphasize that non-physiological artifacts can generally
be accounted for and minimized with proper instrumentation

and measuring practices (Fatourechi et al., 2007; Urigüen
and Garcia-Zapirain, 2015); extraneous sources of noise in

non-clinical or laboratory settings can also contribute to
artifacts (see review by Sweeney et al., 2012). Physiological
sources of artifacts can originate from eye movements and

blinks, causing high amplitude deflections (Lins et al., 1993;
Croft and Barry, 2000); high frequency electromyographic

activity of low and high amplitudes (Willis et al., 1993;
Goncharova et al., 2003); electrocardiographic signals producing

low amplitude rhythmic spikes (Fisch and Spehlmann, 1999;
Sörnmo and Laguna, 2005); and skin perspiration altering

electrode impedances causing slow waves in certain channels
(Barlow, 1986; Fisch and Spehlmann, 1999). Methods of

avoidance, automatic and manual rejection, and removal of these
types of artifacts have been extensively reviewed in previous

literature (Fatourechi et al., 2007; Urigüen and Garcia-Zapirain,
2015).

CONCLUSION

In this study, we analyzed head acceleration data from a forehead-

mounted inertial sensor along with active EEG recordings during
treadmill walking at three different fixed gait rates. To assess

for the potential effects of head motion-related artifacts on the
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signal quality of the EEG, we analyzed the spectral content of the

EEG and acceleration data to inspect for common harmonics in
the spectra and computed the ERSPs to measure the deviations

from baseline in spectral power across the average gait cycle. We
found that the patterns in these measurements are not similar

between individual EEG channels and the acceleration, in that
strong harmonics in the Fourier spectra and strong spectral

gait-synced spectral deviations were found for acceleration but
these harmonics were generally absent or negligible in the

scalp EEG at gait speeds no faster than 3.0 km/h with minor
evidence of motion artifacts in the 4.5 km/h condition in

the case of peripheral electrodes. Additional wavelet coherence
analysis focusing on the delta band frequency range (0.1–4 Hz)

showed a lack of continuous and consistent periods of significant
coherence between the head motion and the EEG. Furthermore,

comparisons of these findings with results from ASR-cleaned
EEG signals suggest that motion artifacts did not likely affect
the EEG signals. We primarily found ASR to reduce peak

values of spectral deviations in the ERSPs and remove regions
of strong coherence for speeds up to 3.0 km/h for the group

data. For experiments involving faster walking speeds, ASR
may be useful to help mitigate the contamination of motion

artifacts. While Kline et al. (2014) demonstrated that moving
EEG electrodes certainly create an artifact signal on their own,

this study serves to more accurately quantify the extent to which
these artifacts may contaminate the EEG signal, with the results

showing that they are not as dominant relative to the actual
cortical signal recorded by the EEG at slow to moderate walking

speeds. Overall, these findings suggest how mobile brain/body
neuroimaging techniques methods may be safely deployed, but

with caution in regard to appropriate set-ups and common
measuring practices, in neural, cognitive, and rehabilitation

engineering applications.
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FIGURE S1 | Fast fourier transform (FFT) of EEG channels and downward

acceleration showing frequency spectra for each subject at each speed.

FIGURE S2 | (A) Event-related spectral perturbations (ERSPs) of EEG channels

and magnitude acceleration averaged across all gait cycles for each subject at

each speed. (B) ERSP plots of EEG channels and acceleration after processing

EEG with Artifact Subspace Reduction.

FIGURE S3 | Wavelet coherence of EEG channels with x-axis of

acceleration for sample 10 s of walking data for each subject at each

speed, (A) before and (B) after processing with Artifact Subspace

Reduction. Frequency is scaled logarithmically on the y-axis and is limited to the

delta band range of EEG (up to 4 Hz). Vertical black lines indicate onset of Right

Heel Strikes (RHS); horizontal black lines indicate the frequency of stepping. The

arrows indicate the relative phase relationship (in-phase pointing right, anti-phase

pointing left, and EEG leading acceleration by 90◦ pointing straight down), and are

only shown for regions with coherence greater than 0.5. Thick black contour lines

indicate regions are significant against Brownian noise at the 5% level.

FIGURE S4 | Wavelet coherence of delta band EEG with x-axis of

acceleration averaged across all gait cycles for each subject at each

speed (A) before and (B) after processing with Artifact Subspace

Reduction. Vertical black lines indicate gait cycle phase; horizontal black lines

indicate the frequency of stepping. The arrows indicate the relative phase

relationship (in-phase pointing right, anti-phase pointing left, and EEG leading

acceleration by 90◦ pointing straight down), and are only shown for regions with

coherence greater than 0.5.
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