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Negotiating Context
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Aware Systems
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In a pervasive environment, a wide range of devices and resources use heterogeneous

networks to perform the tasks involved in spontaneous ad hoc communication. The

environment’s infrastructure must therefore make available a rich set of computing capa-

bilities and services at all times and in all locations in a transparent, integrated, and 

convenient way.1 Context provides perceptual infor-
mation about the location and status of the people,
places, and other devices in the environment.2

The design and development of context-aware
applications introduce requirements and challenges
not found in traditional applications. First, the
dynamic, adaptive provisioning of context informa-
tion requires negotiating context features (location,
identity, and activity), engagement (conditions, events,
and actions), and dependency. Next, agents and con-
text-aware applications must be able to effectively and
reliably use context information during negotiation.
So, context-aware systems require these components:

• Context ontology and inference to facilitate the
sharing, management, and inference of a given
context

• Context-level negotiation to agree on levels of con-
text that can be provided and enable personal con-
text provisioning

• Context management to store, retrieve, query, and
modify context information

These characteristics elevate context from an
ambiguous concept to a value-added service that tai-
lors levels of context information representation and
quality to user needs.

We’ve developed the context-level negotiation
protocol to facilitate development of context-aware,
personalized applications and an ontology model for
representing context and negotiation information.
Our context-based conferencing environment dem-
onstrates our approach’s effectiveness.

Context and context-level agreement
Pervasive-computing research shows that a user’s

environment is dynamic, adaptive, and interactive.
It contains sensors, wireless devices, and personal
and service agents operating autonomously with the
aid of context. By context, we mean information
about physical characteristics (such as location and
network elements), the system (such as applications
running and available services), and the user (such as
privacy and presence). The environment becomes
context-aware when it can capture, interpret, and
reason about this information. The vast quantity
and diverse quality of context, in addition to the
fact that no user is interested in all available con-
text, led us to the concept of context-level agree-
ment, in which entities negotiate context specifi-
cations using an ontology-based model. CLA’s
advantages include

• A declarative method with which users state their
context requirements and context providers offer
dynamic customized context-based service infor-
mation

• Protection against unexpected performance degra-
dation because context providers know users’
needs and can thus better manage their resources

• Seamless context-based services across domains
in a large environment

• An easy mechanism with which context providers
can intelligently supply and monitor context
resources

We define three broad types of CLA:

Context-aware

environments must

allow adaptive and

autonomous access to

context information.
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make the environment
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personalized at

runtime and adapted

and managed at

provisioning time.



• Passive context. Each user’s context spec-
ifications are simple, requiring little or 
no complex operation from the context
provider.

• Active context. Users’context specifications
result from complex content provider oper-
ations such as filtering, merging, compos-
ing, and monitoring. Negotiation at this
level aims to achieve common understand-
ing of the context’s meaning and format.

• Spontaneous context. Context manage-
ment and inference must be able to cope
with the uncertainty and vagueness inher-
ent at higher context levels. Negotiation at
this level lets a personalized group of con-
text providers manage user context re-
quirements such as information persis-
tence, delivery methods, remote access,
and inference on each user’s context.

For CLA to be dynamic, automated, and
extensible, it must provide a framework for
negotiating context specifications and an
ontology that provides standard and exten-
sible constructs of context and negotiation
performatives.

Context-aware system
architecture

Figure 1 shows our distributed multiagent
system architecture. Agents are lightweight
and expected to operate in pervasive environ-
ments in which resources and computing
nodes have limited capabilities. We implement
system agents (such as the context-manage-
ment agent and the inference agent) in hosts
with moderate computing power. Other agents
(such as user and service agents) reside in user
nodes that can support any available light-
weight-agent platform, such as the Light-
weight Extensible Agent Platform (LEAP),
which is based on the Java Agent Develop-
ment Framework (JADE, http://jade.tilab.
com). In addition, the inference agent and
knowledge base repositories span several nodes
to decrease bottlenecks and increase scalabil-
ity and robustness against failure. Agents per-
form negotiation, query, and service invoca-
tion through agent message passing.

Agent types
Five main agent types perform the func-

tions required for context negotiation and pro-
visioning. We group these functions into three
modules, as Figure 2 shows. The context rep-
resentation module gathers context from the
surrounding area and provides it in an ontol-
ogy-based representation that facilitates inter-

pretation and inference. The context commu-
nication module governs communication
between agents using a registration process as
well as the negotiation protocol. The context
management module provides methods for
querying and storing context information.

User and service agents. User agents repre-
sent users in the environment, negotiating on
their behalf to set both the required context
specifications and the methods of context rep-
resentation and delivery. They maintain user
profiles consisting of user activities, schedul-
ing, and associated devices, as well as context
parameters such as identity, location repre-
sentation, and personal context information.

Service agents represent services in the envi-
ronment. They maintain service profiles, which
define service capabilities and the knowledge
required to negotiate each service’s optimal
performance according to context. 

Context management agent. The context
management agent is the system administra-
tor. The CMA negotiates with user agents to
achieve CLA and with context provider agents
(which we describe later) to schedule and
guarantee the required context. After negoti-
ating the context, the CMA monitors ongoing
context-based sessions and manages environ-
mental resources. The CMA can also cancel,
modify, or renegotiate context specifications
because of environmental changes or because
agents violate their CLA-negotiated tasks.

Registering with the CMA lets agents pro-
ject their presence to other environmental enti-
ties and obtain the authorization needed to use
and negotiate context information. The CMA
stores relevant information in a knowledge
base repository for inference, consistency, and
knowledge sharing. The multiagent system

uses this repository to track entities’ informa-
tion and store temporal session information.

Inference agent. The inference agent inte-
grates reasoning, conflict resolution, and coor-
dination. Algorithms from AI, semantic knowl-
edge, and fuzzy logic make the inference
process powerful, extensible, and adaptable.
The inference agent manages the engagement
and inference processes shown in Figure 2. It
uses context captured from sensors and user
and service profiles as facts in the context infer-
ence process, using these facts to build a sys-
tem knowledge base repository for deducing
new context information. The inference agent
uses logic-reasoning mechanisms to ensure
that captured context instances are consistent
with each other and with arguments defined in
the context ontology. This also lets us construct
an inferred hierarchy of context information
based on the designed ontology classes and
resolve inconsistencies that can arise from fir-
ing rules and triggering actions.

Ontology agent. The ontology agent pro-
vides the semantic functionalities that other
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agents can use to represent and share context
in the system. At negotiation time, it com-
bines context specifications from agent
requests and profiles according to the de-
signed ontology’s constructs, axioms, and
rules of composition, which it then provides
to the CMA. It also provides searching and
browsing interfaces so that registered agents
can look up and use available ontologies.

Context provider agents. The system wraps
each context source with a CPA responsible
for capturing the raw data from the source
and interpreting it so that it’s understandable
by other agents using the lookup service that
the ontology agent provides. The CPA nego-
tiates context specifications that are captured
and acquired by the context source under its
control.

The context ontology model
Context-aware applications require a uni-

fied context model that is flexible, extensible,
and declarative to accommodate a wide variety
of context features and dependency relations.
Research in context-aware applications3 (see
also the “Related Work” sidebar) defines mod-
els based on a top-down architecture in which
context is modeled according to the applica-
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Few approaches in the context awareness field explicitly
focus on context modeling in widely deployed pervasive-com-
puting systems. Rather, most current research concentrates on
frameworks and toolkits to support ad hoc context representa-
tion, and thus limits the interoperability and ease of integra-
tion necessary for providing smart pervasive environments.1

The Gaia metaoperating system recognizes the need for
context information in a context service component.2 Its con-
text service lets applications query and register for particular
context information, which helps them adapt to their environ-
ment. Applications can search a registry of available context
providers for providers of their desired context. This approach
uses a first-order logic to model context, allowing the system
to write rules describing context information. However, this
approach doesn’t support negotiation between applications
and context providers, which could provide flexible context
provisioning. Applications can use only the context providers
in the registry. Additional application instances will introduce
scalability issues such as temporary failure or inability to pro-
vide context information because of access overloading.

Wai Yip Lum and Francis Lau propose a context-aware deci-
sion engine for content negotiation.3 They use a proxy server
for content modification based on certain context decisions.
However, they limit the context definition to quality of service,
a significantly more narrow definition than ours, which consid-
ers context to be any information affecting an entity (such as
location and presence). Because the context definition is lim-
ited, the adapted content might still lack context awareness.

Reconfigurable Context-Sensitive Middleware provides the
adaptive object container (ADC) for runtime context acquisi-
tion.4 The RCSM interface definition language (IDL) compiler
tailors ADCs to particular context-sensitive objects. The con-
text-sensitive interface lists the contexts the applications use,
the actions they provide, and a mapping between the con-
texts and the actions that clearly indicates the values at which
an action should be completed.

Our multiagent system outperforms RCSM in two situations.
First, our ability to negotiate context using the multiattribute
utility function lets us use a just-in-time range of context val-
ues when an action is to be performed or completed. The ne-
gotiation gives us the flexibility and extensibility to add new
context information and modify existing information during
runtime. Second, the RCSM has no clear method for compos-
ing context semantically or for reasoning with the composed
context information.

Other researchers describe a framework that uses composite
capabilities/preferences profiles to enable communication and
negotiation of device capabilities and user preferences in the

context of a Web session.5,6 They use the framework to assert
metadata information about Web elements. This approach
depends on a negotiation protocol in which intermediate
proxies can adapt content to the device profile in advance. In a
pervasive environment, nothing can be statically configured. A
negotiation mechanism such as ours dynamically sets context
information at runtime. Moreover, CC/PP is based on the re-
source definition framework, whose small set of constructs for
representing metadata limits the information that can be pre-
sented and inferred. In contrast, our proposed model presents
context ontologies in much richer semantic languages, such as
DAML+OIL and OWL.

Cobra also uses OWL to define ontologies for pervasive envi-
ronments.7 However, our design objective is a straightforward
generic ontology for context representation that developers
can apply while using the negotiation mechanism to set and
modify context specifications. We also provide a powerful in-
ference engine based not only on logic reasoning (as in Cobra)
but also on fuzzy and inductive reasoning. We chose this over
a Bayesian approach8 because fuzzy reasoning provides a nat-
ural extension to our context ontology through its use of lin-
guistic terms and linguistic hedges.
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tion-layer objectives and functional intentions.
These models are ad hoc and have limited
extensibility and interoperability with other
context-based systems. Ad hoc modeling also
limits the use of the multiagent system across
domains because not all agents can understand
and use context information. Our context-
modeling approach is therefore ontology based
and represents the generic context types
needed in pervasive computing. The ontology
is motivated by the need to share knowledge
about actors, locations, and schedules so that
context-aware applications can trigger actions
and infer outcomes.

In our ontology, the root class ContextView
provides an organizational point of reference
for declaring context information. At least
one instance of ContextView exists for each dis-
tinct entity in the environment. Its proper-
ties are contains and invokes, with the classes
ContextFeature and ContextEngagement as the prop-
erties’ respective ranges. Each ContextView
instance contains at least one subclass of
ContextFeature, associated with one or more
ContextDependency classes and invoked by Con-
textEngagement.

ContextFeature consists of classes related to
the physical environment (such as location),
the system (such as services), individuals (such
as users), and the underlying network (such
as network characteristics).

The Location class interprets an entity’s loca-
tion information as detected by embedded
location sensors. The ontology associates
location with such concepts as university, com-
pany, and generic place. The location class also
includes meta-information fields such as
location-updating rate, services in the cur-
rent location, and types of network the loca-
tion supports.

The Actor class provides information inter-
preted by identity context providers such as
the radio frequency tag system. It has two
main subclasses:

• Person has person-related properties de-
tected by the sensors.

• Agent represents the system’s software
agents.

Information provided includes an ID
value, the entity type detected (such as
infrared model or RF tag), the entity’s role
(such as printer agent or student), detection
time, and reference to the actor’s personal
profile for further context acquisition.

The Network class identifies resources, pro-
tocols, and topology configurations. We limit

our scope to wireless networks, especially
802.11 and Bluetooth. A network profile class
containing the resource’s capabilities and pref-
erences represents each network resource,
such as a gateway server or an access point.

The Service class identifies services discov-
ered in the environment. It includes the ser-
vice profile (such as a printer profile), ser-
vice parameters, applications engaging the
service, and the service’s complexity type.

The Action class represents activities in a
user’s current location that involve other users
or other services detected and projected to the
user’s ContextView. Activities currently defined
in the ontology relate to our proposed imple-
mentation scenario and include audio- and
videoconferencing, local or remote presenta-

tion-based meetings, and regular activities
such as emailing, chatting, and file sharing.

Figure 3 shows a partial representation of
the ontology, with classes represented by 
bullets and properties given between brack-
ets. The complete ontology is available at
www.daml.org/ontologies/397 and at www.
schemaweb.info/schema/SchemaDetails.
aspx?id=181.

Context-level negotiation
protocol

CLNP is a multiattribute-based negotia-
tion protocol that allows automated context
identification and complex decision making
according to user needs—functions tradi-
tionally performed manually. User or service
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Figure 3. A partial representation of the context ontology showing the ontology
classes and their properties.

• Context Feature ()
❍ ActionProfile (actionprofileName, actionStartTime, actionEndTime, actionExpectedDuration,

hasInvolvingAgents, hasInvolvingPersons, hasInvolvingServices)
❍ Network (hasNetworkProfile, nDomain, nName)

■ NetworkResource (hasServiceProfile)
• Laptop ()
• PDA ()
• Phone ()
• Printer ()

❍ NetworkTopology ()
■ Wireless (hasAccessPoint, hasAccessPointAddress)

• 802.11 (modeOfOperation)
• Bluetooth (modeOfOperation)

❍ NetworkProfile ()
■ NetworkProtocol (hasProtocolChar, protocolName)
■ NetworkParameter (nParameterName, nParameterValue)
■ ProtocolCharacteristic (pValue)

❍ Physical ()
■ Actors (actorID, actorLocation, actorName, actorRole, hasCurrentAction, usesCurrentService)

• Agent (hasCommunicationLanguage, hasPlatformType)
• Person (hasPersonalProfile)

■ Location (altitude, degree, direction, hasCurrentAgents, hasCurrentPersons, 
hasLoadedServices, hasLocationRange, hasNetworkSupport, hasRestrictedActions, 
latitude, longitude, placeName)

❍ ServiceCategory ()
■ Application (aName, effect, input, output, precondition)
■ Resource (effect, input, output, precondition, rName)
■ ServiceParameter (sParameterCondition, sParameterName, sParameterValue)

• ServiceProfile (hasNetworkSupport, hasServiceCategory, hasServiceLocation,
hasServiceParameter, hasServiceProfileName, hasServiceActor)

❍ Social ()
■ Action (actionLocation, actionName, hasActionProfile, hasCurrentAgents, hasCurrentPersons, 

hasNetworkSupport)
• Conference ()
• AudioConference (usesCurrentService)
• VideoConference (usesCurrentService)
• Meeting (usesCurrentService)

❍ Role ()
■ AgentRole (agentName, agentRole, hasRestrictedActions)
■ PersonRole (hasRestrictedActions, personName, personRole)



agents send CLA requests to the CMA, which
maps the CLA to context specification para-
meters and issues a negotiation request to
available CPAs. The CPAs evaluate the pro-
posed specifications and either accept or
repropose. Negotiation continues until the
agents reach an agreement based on the util-
ity function calculation (described in the next
section).

CLNP aims to

• Set the context specifications between user
and service agents and CPAs explicitly and
declaratively

• Authorize the CMA to register and reserve
resources and services implicitly and
decide how the CPA will deliver and mon-
itor context

• Set alternatives for unexpected situations
implicitly

• Let CPAs schedule context-based tasks
implicitly and minimize overloading

Negotiation uses our ontology model. It
involves context exchange and specification,
a utility function for decision-making, and a
procedure for message flow between agents
to set context specification values.

The utility function
Quantifying the negotiation process

requires normalizing each context specifica-
tion’s range. We then use a multiattribute util-
ity function to model each negotiated context
specification. The utility function, which we
adopted from the work of Antony Richards
and his colleagues,4 has these characteristics:

• A lower bound on x (the normalized nego-
tiated context parameter), below which
user satisfaction is negligible and approx-
imated to zero

• An upper bound on x, above which any
gain in user satisfaction is negligible and
approximated to one

• Between these two bounds, a satisfaction
factor that’s a monotonically increasing
function of x

• A sensitivity parameter p for projecting
user satisfaction 

The logarithmic function matches these
requirements. We can therefore represent the
utility function as a logarithmic function in
the form of

(1)

(2)

(3)

, (4)

where U(x) is the utility function, x is the
context parameter values in negotiation, p is
the user sensitivity parameter, Ao is the
expected context sensitivity, A is the mini-
mum context parameter value, and R is the
maximum context parameter value.

The utility function depends on the sensi-
tivity parameter p. For every value of p, agents

project their interest in a context specification
according to the utility function shape. For
example, for p values smaller than Ao, the user
is more sensitive to large context parameter
values than small values, such as location
information in outdoor applications. For p val-
ues larger than Ao, the user is more sensitive to
small context values than to large values, such
as delay in emergency notification.

The CMA uses the negotiation process
(discussed in the next section) to determine
the working utility curve. To find the optimal
utility curve, the CMA applies the following
decision equation on the initial context para-
meter value AL requested by the user or ser-
vice agent:

(5)

If U(AL) << U(R) for AL < R and AL > [A +
R/2], then p < Ao, the agent is more sensitive
to large context values, and the CMA uses p
from Equation 2 to satisfy Equation 5.

If U(AL) >> U(A) for AL > A and AL < [A +
R/2], then p > Ao, the agent is more sensitive
to small context values, and the CMA chooses
p from Equation 2 to satisfy Equation 5.

After deciding the utility function curve
for each context parameter, the CMA assigns
a weighted priority value for each context
parameter indicating its importance (as per-
ceived by the user) in the overall negotiation.
The CPAs and CMA use the priority values
to differentiate the levels of context repre-
sentation and delivery to the user.

The weighted priority value takes the form
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Figure 4. The context-level negotiation protocol from three perspectives: (a) the user agent; (b) the context management agent; 
(c) the context provider agent. Processes in each part follow and precede processes in the other parts.



,

where i = 1 … N and N is the total number of
context parameters. The total satisfaction
value will equal

.

The CMA uses this value to decide whether
the agents have reached agreement or the
negotiation should continue. 

The negotiation process
and message flow

The user or service agent starts the nego-
tiation by sending the CMA a CLA_Negotiation
message with the initial context specification
((1) in Figure 4a)—that is, the context spec-
ifications defined according to the ontology
model. The user or service agent sets speci-
fications, such as location and availability
information, and adds an expected deadline
for the negotiation. 

When the CMA receives the CLA_Negotiation
message, it builds a template from the context
specifications fed to it by the CPAs. The CMA
assigns the utility function parameters {a, b, c,
Ao, R, A} that match user context specifica-

tions using Equations 1 through 4 and the
decision functions in Equation 5. After deter-
mining the best utility function to use, the
CMA builds a composite context template
reflecting the user or service agent ContextView.
The CMA creates the composite context at
runtime using a relation-based binding process
containing eight main relationships:

• Consists_of relates the environment with the
places under the CMA’s management.

• Occupied_by relates the environment with the
users currently detected by the sensors.

• Contains associates the environment with the
discovered services.

• Composed_of defines subservices composing
services.

• Loaded_with relates the places under the
CMA’s management with the service at
those places.

• Member_of identifies the group the user
belongs to (for example, administrators or
visitors).

• Essential defines requirements that the user
can’t negotiate or modify.

• OverLoaded lists interdependent requirements
that can overload other requirements.

• Overridden defines requirements that will be
preempted by essential or high-priority
requirements.

Every user or service agent provides an
initial profile with its requirements and pref-
erences. The CMA uses the profile to set rela-
tionships and assembles the different
instances into one composite component.

After composition, the CMA responds to
the user or service agent with a CLS_Proposal
((2) in Figure 4b). The CLS_Proposal contains
the template most closely matching the sat-
isfaction criteria. If the agent accepts the
CMA’s proposed context specifications, it
sends a CLS_Agree message ((6) in Figure 4a).
If not, it reallocates the satisfaction point on
the utility curve and sends a CLS_Repropose ((3)
in Figure 4a) with the modified context para-
meters. The CMA then engages nearby CPAs
and negotiates the new proposed context
specifications by sending them a CLS_Request
((4) in Figure 4b). The CPAs collaborate to
maximize the utility function satisfaction
point. When they succeed, they send the new
context parameters to the CMA through a
CLS_Offer message ((5) in Figure 4c). The
CMA responds by reproposing to the user or
service, and the negotiation continues until
they reach an agreement.

The agreement decision depends on one
or both of these factors:

• The proposed context specifications max-

U x Wi i
i

( ).∑

W
A A

R Ai
Li=
−

−
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services on the fly, depending on the input context source.



imize the total gain in the utility function
and can be provided by the CPAs.

• The negotiation deadline expires (in this
case, the most recently negotiated context
parameters are used). 

Implementation
Our context-based conferencing environ-

ment customizes conference services using
captured context and attendee and service
profiles defined according to our context
ontology. Defining CLAs for attendees using
the negotiation protocol between CPAs and
user agents greatly reduces the complexity
of customizing the conference operation.

Figure 5 shows the services and agents in
the conference environment. We divide avail-

able services into two categories:

• Services in advance, such as hotel book-
ing, scheduling, and entertainment, take
input context from attendee profiles pro-
vided during conference registration.

• Services on the fly, such as map and loca-
tion, weather, and printing services, take
input context from attendees’physical and
logical contexts.

We implement agents using JADE, modi-
fying the agent communication language
(ACL) package to include our negotiation
performatives while preserving JADE’s FIPA
(Foundation for Intelligent Physical Agents)
compatibility for legacy applications.

The CMA provides APIs for registration,
service selection, context specification, noti-
fication, and event-based triggering methods.
The ontology agent provides APIs for brows-
ing, navigation, searching, and validating
ontology-based instances stored in a persis-
tence repository and managed by the system
knowledge base agent. The inference agent
provides APIs for ontology-based inference
such as subsumption, equivalence, similarity,
and consistency checking. Moreover, it pro-
vides a fuzzy-based inference mechanism to
support vagueness and uncertainty in context
information such as location proximity, pres-
ence range, and service selection.

Our default deployment strategy is to
install one CMA at each domain. Domains
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Figure 6. Message exchange between agents for registration and for negotiating context information.



can be physical, such as a building, or logi-
cal, such as a network domain. We also
deploy an inference agent at each domain,
allowing it to clone itself on nearby hosts and
form a federation in case of overloads.

Customizing a conference 
environment

Customizing the conference environment
involves two phases corresponding to the two
service categories. For services in advance,
attendees log in to a Web page where they
specify their context-based services require-
ments, such as hotel location, price, and
length of stay. As Figure 6 shows, the user
agent sends this information with the user
profile to the CMA as a CLA_Negotiation mes-
sage. The CMA registers the user and sends
the user profile to the ontology agent, which
validates it against the ontology constructs
and rules. The ontology agent sends the pro-
file to the system knowledge base agent,
which adds it to the conference repository for
further access and manipulation.

After registration and validation, the CMA
sends the user’s specifications to registered
context providers to find matching services in
advance. The CPAs reply with a CLS_Offer that
shows available services. The CMA sends
these results to the inference agent to find the
closest match maximizing the user’s utility
function. Finally, after receiving the results
from the inference agent, the CMA sends a
CLS_Agree message to the user that includes the
selected service.

The second phase—services on the fly—
has the same message flow but, because the
services are dynamic, shared, and distributed
across the conference domain, agents can
renegotiate context specifications, request
available services, and infer received results
at runtime. (In Figure 6, this process begins
with the user agent’s service request until the
end of the message sequence diagram) Invok-
ing services on the fly depends on current user
context. Examples include invoking the
printer that’s nearest to the user’s location and
has the least load, and invoking a mapping ser-
vice to provide directions, with the user spec-
ifying update rate and notification delay as the
contextual specifications to be negotiated.

Experimental results
To evaluate our approach’s feasibility, we

deployed the agent system and conference
application, interconnected via 802.11 wire-
less connections, at several locations in the
University of Ottawa’s Multimedia and

Mobile Agent Research Laboratory. Confer-
ence participants mainly used laptops, PDAs,
and stationary computers to access the sys-
tem, which included a wide range of services,
activities, and context requirements. The con-
ference environment had one repository. We
considered each physical location a separate
domain and gave each domain one CMA, one
ontology agent, and several inference, user,
and service agents. Implemented agents were
of moderate size to make them lightweight
and easy to deploy in currently available hand-
held devices. User agents were 14 Kbytes, ser-
vice agents were 16 Kbytes, CMAs were 21
Kbytes, and inference agents were 18 Kbytes.

We conducted several experiments to eval-
uate the effectiveness of negotiating context.
Effectiveness refers to the system runtime
performance as the number of entities habit-
uating the environment increases and re-
sources remain constant. We measure this
effectiveness by averaging both the delay in
reaching an agreement to users’ requests and
the number of exchanged messages.

We used a range of context providers with
different context parameters and service
classes. For example, some context providers
gave location and location-based informa-
tion with parameters such as location granu-
larity, update rate, and notification delay.

The number of conference attendees
ranged from five to 100. Varying the number
of users when calculating the average delay
for negotiating context information let us
measure the system’s scalability. The aver-
age delay for 10 attendees was 861.75 mil-
liseconds. Of this delay, 309.92 ms were for
inferring and matching user requests and 243
ms were for subscription, repository access,
and querying. We also counted the number
of messages exchanged during the negotia-
tion as indicating the overhead imposed by
CLNP. We used these measurements as we
expect these measures will be directly pro-

portional to user satisfaction when the sys-
tem is widely deployed.

Table 1 shows a typical context negotia-
tion required by a conference attendee,
including the initial preferred values and the
alternative values if the system can’t provide
the exact requirements. Figure 7 is the actual
negotiation message in OWL using the con-
structs defined in our ontology. It shows a
negotiation for location, including the delay
in providing location-based information. The
message also includes the rule the user agent
used to decide whether the CMA-provided
value is acceptable: If the delay is between 
5 and 10 ms, renegotiate.

Experimental results showed that the aver-
age delay in negotiating context is linear with
a moderate number of users (about 60 per-
cent of the system’s expected capacity),
becoming nearly constant as the number of
users increases. CPAs tend not to renegoti-
ate their proposed context specifications
when they approach capacity, which reduces
the number of messages exchanged and
makes the average delay nearly constant. We
found the same results with the number of
messages exchanged, because the number of
exchanged messages is directly proportional
to average delay. The average number of
messages exchanged at saturation point was
eight, representing two round trips in the
negotiation process.

We’re extending the context ontology
with fuzzy inference constructs to let

agents reason with the uncertainty in captured
context and to provide actions not explicitly
defined in the context specifications. We’re
also adding an automated context-based induc-
tive-fuzzy-inference mechanism to the infer-
ence agent. The mechanism will provide a
dynamic CLA feature letting the CMA modify
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Table 1. Context specifications used in negotiation.

Context specification Preferred choice Alterative choice

User location Type: GPS → place name Type: GPS → location address
Delivery delay:5 ms Delivery delay: 10 ms
Update rate: location changes Update rate: every 30 minutes

User availability Available at: room name Available at: hotel name
Update rate: location changes Update rate: periodic

Services (printing) Location: within 5 meters Location: at most 20 meters
Availability: least loaded Availability: medium
Capability: color, 10 pages per minute Capability: 10 pages per minute

Media (wireless) Availability: 75 percent Availability: 70 percent
Capability: 1 Mbps, 5 ms delay Capability: 20 ms delay 



some user requirements autonomously. Agents
will no longer have to renegotiate when a given
situation is similar but operates at a different

location or time. One remaining challenge is to
provide a communications mechanism span-
ning different agent domain platforms. Such a

mechanism would provide a seamless, per-
sonalized, and completely context-aware per-
vasive environment.
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Figure 7. OWL representation of the negotiation message exchanged between UA 
and CMA.

<CLNP:CLNP rdf:ID=”CLNP_khedr”>
<CLNP:hasRequester>

<CLNP:UA rdf:ID=”khedrAgent”/>
</CLNP:hasRequester>
<CLNP:hasContextSpec>

<CLNP:ContextSpecification rdf:ID=”Location”
CLNP:hasContextElement=”Location”>
<CLNP:hasContextParameter rdf:resource=”#DeliveryDelay”/>

</CLNP:ContextSpecification>
</CLNP:hasContextSpec>
<CLNP:hasProcess>

<CLNP:NegotiationMessage rdf:ID=”CLS_Proposal”
CLNP:messageType=”CLS_Proposal”
CLNP:TimeToLive=”20ms”>
<CLNP:hasRule>

<CLNP:NegotiationRules rdf:ID=”Rule1”>
<CLNP:hasOperand rdf:resource=”#and”/>

</CLNP:NegotiationRules>
</CLNP:hasRule>

</CLNP:NegotiationMessage>
</CLNP:hasProcess>

</CLNP:CLNP>
<CLNP:RuleOperand rdf:ID=”and”

CLNP:operandName=”And”>
<CLNP:hasAntecedent>

<CLNP:Antecedent rdf:ID=”bigger_than”
CLNP:hasValue=”5ms”>
<CLNP:hasContextParameter>

<CLNP:ContextParameter rdf:ID=”DeliveryDelay”>
<CLNP:usedByUtilityFn>

<CLNP:UtilityFunction rdf:ID=”LogUF”
CLNP:hasSensitivityparameter=”5”>
<CLNP:hasContextParameter rdf:resource=”#DeliveryDelay”/>

</CLNP:UtilityFunction>
</CLNP:usedByUtilityFn>

</CLNP:ContextParameter>
</CLNP:hasContextParameter>

</CLNP:Antecedent>
</CLNP:hasAntecedent>
<CLNP:hasAntecedent>

<CLNP:Antecedent rdf:ID=”less_than”
CLNP:hasValue=”10ms”>

<CLNP:hasContextParameter rdf:resource=”#DeliveryDelay”/>
</CLNP:Antecedent>

</CLNP:hasAntecedent>
<CLNP:hasConsequent>

<CLNP:Consequent rdf:ID=”Renegotiate”>
<CLNP:hasContextParameter rdf:resource=”#DeliveryDelay”/>

</CLNP:Consequent>
</CLNP:hasConsequent>

</CLNP:RuleOperand>


