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Negotiation and honesty in artificial
intelligence methods for the board game
of Diplomacy
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Mateusz Malinowski1, Thore Graepel2 & Yoram Bachrach 1

The success of human civilization is rooted in our ability to cooperate by
communicating andmaking joint plans.We study how artificial agentsmay use
communication to better cooperate in Diplomacy, a long-standing AI chal-
lenge. We propose negotiation algorithms allowing agents to agree on con-
tracts regarding joint plans, and show they outperform agents lacking this
ability. For humans, misleading others about our intentions forms a barrier to
cooperation. Diplomacy requires reasoning about our opponents’ future
plans, enabling us to study broken commitments between agents and the
conditions for honest cooperation. We find that artificial agents face a similar
problem as humans: communities of communicating agents are susceptible to
peers who deviate from agreements. To defend against this, we show that the
inclination to sanction peers who break contracts dramatically reduces the
advantage of such deviators. Hence, sanctioning helps foster mostly truthful
communication, despite conditions that initially favor deviations from
agreements.

Coordination, cooperation and negotiation play a key role in our
everyday lives, from small-scale problems such as safely driving on
roads and scheduling meetings to large-scale efforts such as interna-
tional trade or mediating peace. A key driver to the success of humans
as a species is our ability to cooperate with others1,2. Systems based on
artificial intelligence (AI) control a growing part of our lives, from
personal assistants to high-stake decisions such as authorizing loans or
automated job market screening3,4. Cooperation and negotiation are
central to AI5–11, and AI systems already affect human trade and nego-
tiation through algorithmic trading and bidding10,12–16. It is thus
imperative that we endow our AI systems with the tools to coordinate
and negotiate with others3,7,11,17,18.

Game playing has been a focus area of AI since its inception.
Progress on search, reinforcement learning, and game theory9,19–21 led
to successes in Chess22, Go23, Poker24, control25, and video games26,27.
However, the majority of such work deals with two-player games that
are fully competitive (zero-sum), which are mathematically easier to
analyze18,28, but cannot capture alliance formation and negotiation.

Similarly, work on gameswhere agent goals are fully aligned29,30, or two
teams of agents engaged in a competition27,31,32, lacks the need to
negotiate. In contrast, many real-life domains require negotiation as
the goals of participants only partially align. These domains exhibit
tensions between cooperation and competition7,33–35, making them
harder to tackle using AI agents21,36,37. Communication has a key role in
such settings as it enables us to share beliefs, goals and intents with
others, allowing us to negotiate, form alliances and find mutually
beneficial agreements10.

Diplomacy38 is a prominent 7-player board game that focuses on
communication, cooperation and negotiation. An introduction to the
rules of Diplomacy is given in Supplementary Note 1. Diplomacy is
played on a map of Europe partitioned into provinces, some of which
are special andmarked as SupplyCenters. Eachplayer attempts to own
themajority of the supply centers, and controls multiple units (armies
or fleets). A unit may support another unit (owned by the same or
another player), allowing it to overcome resistance by other units. Due
to the inter-dependencies between units, players stand to gain by
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negotiating and coordinating moves with others. Hence, while ulti-
mately a competitive game, making progress in Diplomacy requires
teaming up with others. In each round, every player decides on the
actions taken by each of its units, and these moves are executed
simultaneously. This yields an enormous action space of 1021 to 1064

legal actions per turn, and an immense game tree size of 1090039; for
comparison, Chess has fewer than 100 legal actions per turn, with a
game tree size of 10123. The heart ofDiplomacy is the negotiation phase
occurring before entering moves, where players communicate trying
to agree on the moves they are about to execute.

These properties make Diplomacy a key AI challenge domain for
negotiation and alliance formation in a large-scale realistic mixed-
motive setting. AI approaches for Diplomacy have been researched
since the 1980s40,41. The standard version is Press Diplomacy, which
includes a negotiation phase prior to each move phase. In human
games this takes place through conversations in natural language:
players may converse privately by stepping into another room, or
through aprivate chat channelwhenplaying online. For AI, researchers
have proposed computer-friendly negotiation protocols42, sometimes
called Restricted-Press.

A much simpler version is No-Press Diplomacy, where direct
communication between players is not allowed, eliminating the
negotiation phase. We contrast No-Press and Press Diplomacy in Fig. 1.

Many AI approaches for Diplomacy were proposed through the
years, mostly relying on hand-crafted protocols and rule-based
systems42–46, and falling far behind human performance (both with
and without communication). Paquette et al. achieved a breakthrough
in game performance47, training a neural network called DipNet to
imitate human behavior based on a dataset of human games. While
DipNet has defeated previous state-of-the-art agents by a widemargin,
it only handles No-Press Diplomacy, employing no communication or
negotiation. Recent work improved the performance of such agents
using deep reinforcement learning39 or deep regret matching48,49, but
still without communication or negotiation. Our Contribution: We
leverage Diplomacy as an abstract analog to real-world negotiation,
providing methods for AI agents to negotiate and coordinate their
moves in complex environments. Using Diplomacy we also investigate
the conditions that promote trustworthy communication and team-
work between agents, offering insight into potential risks that emerge

from having complex agents that may misrepresent intentions or
mislead others regarding their future plans.

We consider No-Press Diplomacy agents trained to imitate human
gameplay and improved using reinforcement learning39, and augment
them to play Restricted-Press Diplomacy by endowing them with a
communication protocol for negotiating a joint plan of action, for-
malized in terms of binding contracts. Our algorithms agree on con-
tracts by simulating whatmight occur under possible agreements, and
allow agents to win up to 2.5 times more often than the unaugmented
baseline agents that cannot communicate with others. Human coop-
eration is impeded by the potential impact of breaking agreements or
misleading others about future plans50,51. We use Diplomacy as a
sandbox to study how the ability to break past commitments erodes
trust and cooperation, focusing on ways to mitigate this problem and
identifying the conditions for honest cooperation. We find that artifi-
cial agents face a similar problem as humans regarding breaches of
trust: communities of communicating agents are susceptible to peers
thatmaydeviate fromagreements.When agreements are non-binding,
an agent may agree on one course of action in a turn but choose an
action violating this agreement in the next turn. We refer to such
agents as deviators, and show that even deviators that select their
actions using simple algorithms win almost three times as often as
peers that never break their contracts. To defend against this, we
endow agents with the inclination to retaliate when agreements are
violated, and find that this sanctioning behavior dramatically reduces
the advantage of deviators. When the majority of the agents sanction
peers that break agreements, simple deviatorswin less frequently than
agents that always abide by their contracts.

Finally, we consider how a deviator may optimize its behavior
when playing against a population of agents that sanction peers
that break agreements, and find that the deviator is best-off
adapting its behavior to very rarely break its agreements. Such
sanctioning behavior thus helps foster mostly-truthful commu-
nication among AI agents, despite conditions that initially favor
deviations from agreements. However, sanctioning is not an
ironclad defense: the optimized deviator does gain a slight
advantage over the sanctioning agents, and sanctioning is costly
when peers break agreements, so the population of sanctioning
agents is not completely stable under learning.

Fig. 1 | Contrasting No-Press Diplomacy and Press Diplomacy. Left: In No-Press
Diplomacy, players may not directly communicate to coordinate a joint plan. AI
agents each select actions on their own. Right: In Press Diplomacy players directly
communicate with each other to decide on a joint course of action. Agent algo-
rithms determine how they agree on a joint plan. We express such plans using a
contract regarding futureactions. Themovephase is identical in Press andNo-Press
Diplomacy, and the next board state depends only on the actions chosen by the

players in the move phase. Negotiation in Press Diplomacy only affects how the
game progresses if it results in players selecting different actions in the move
phase. As players are free to choose any legal action regardless of what they say
during the negotiation phase, Press and No-Press Diplomacy are exactly the same
game except for the ability of participants to communicate. Background image by
rawpixel.com on Freepik.
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We view our results as a step towards evolving flexible commu-
nication mechanisms in artificial agents, and enabling agents to mix
and adapt their strategies to their environment and peers. Our work
offers two high-level insights. Firstly, algorithms that reason about the
intents of others and employ game-theoretic solutions allow commu-
nicating agents to outperform peers through better coordination,
even under simple interaction protocols. Secondly, the ability of par-
ticipants to break from prior agreements is a barrier hindering coop-
eration between AI agents; however, even in complex environments,
simple principles such as negatively responding to the breach of
agreements help promote truthful communication and cooperation.

Results
Negotiating with binding agreements
Our proposed method takes non-communicating agents trained for
No-Press Diplomacy, and augments them with mechanisms for nego-
tiating a joint plan of action with peers. To obtain the initial non-
communicating agents we use existing reinforcement learning
agents39, discussed in the section “The sampled best responses pro-
cedure”. This method constructs neural networks capturing a policy
whichmaps the board state to the game action to be taken, and a value
networkwhichpredicts thewin probabilities of the agents.We provide
these agents with a protocol for negotiating bilateral agreements
regarding the actions they would take.

We first consider binding agreements, where agents who agree on
a joint plan cannot deviate from it later. We view a contract as a
restriction over the actions each of the agents may take in the future.
For simplicity we focus only on contracts relating to the upcoming
timestep. Given two agentspi, pjwhomust act in a state s, we denoteby
Ai(s),Aj(s) the respective sets of actions the agents may take. A
potential contract D is a pair D = (Ri,Rj) where Ri⊆Ai is the restricted
subset of actions each side may take under the contract; an action
a∈Ai⧹Ri is one that violates the contract D. One type of contract
D = (Ri,Rj) is whereRi consists of a single action:Ri = {ai} whereai∈Ai(s),
meaning that agent pi commits to taking the action ai next turn. Two
contracts D1 = ðR1

i ,R
1
j Þ,D2 = ðR2

i ,R
2
j Þ are identical if R1

i =R
2
i and R1

j =R
2
j ,

denoted as D1 =D2. Figure 2 illustrates these concepts.

Protocols. A protocol is a set of negotiation actions through which
agentsmay communicate and agree on contracts.We consider a set of
n agents P = {p1,…,pn} about to take simultaneous actions. We consider
two general protocols for reaching pairwise agreements regarding
future actions. TheMutual Proposal protocol places restrictions on the

actions both sides may take. The Propose-Choose protocol enables
both sides to agree on each taking a specific move.

Mutual Proposal protocol. Under this protocol every pair of agents
pi, pj∈ P has only a single possible contract between them, depending
on the state; we call the specification of this the contract type. Each
agent pi∈ P may propose, to each of the remaining agents, to enter
into the contract specified by the contract type. We denote the pro-
posal of agent pi to pj as Di→j: if pi does not propose to enter into a
contract with pj, this is denoted as Di!j = ;. Two agents agree to a
contract if andonly if theybothpropose the contract to one another so
Di!j =Dj!i ≠ ;. If either side does not make an offer, i.e., Di!j = ; or
Dj!i = ;, no agreement is reached, and neither side is restricted in its
actions. For Diplomacy we use a Peace contract type. An action by
agent pi violates the peacewith agent pj if one of the pi’s units attempts
tomove into a province occupied by pjor enter or hold a supply center
owned by pj, or to assist another unit to do so. The Peace Contract
D = (Ri,Rj) between pi and pj is defined by Ri and Rj containing only the
actions that do not violate the peace between pi and pj.

Propose-Choose protocol. This protocol consists of two stages: a
Propose phase where each agent may propose a single contract to
each other agent, and a Choose phase where each agent selects one of
the contracts involving them (one they proposed, or one proposed to
them). We refer to contracts proposed in the first phase as contracts
On The Table. We denote the contract that pi proposes to pj asDi→j. We
say a contractD involves agent pi ifD is either a contractD =Di→j that pi
proposed to another agent pj or if D is a contract D =Dj→i that some
other agent pj proposed to pi. In the choose phase, each agent pi may
choose only one contract D that involves them out of all the contracts
on the table. Denote the contract chosen by pi as D

*
i . In this protocol,

two agents only reach an agreement if they choose exactly the same
contract, i.e., D*

i =D
*
j (e.g., both pi and pj choose Di→j or both choose

Dj→i). In our experiments we enhance the protocol slightly, allowing
each player pi in the Choose phase to either only choose a contractDi→j

orDj→i for some pj, or to optionally also indicate that they are willing to
accept either of Di→j, Dj→i; when both pi, pj indicate that they are willing
to accept both Di→j, Dj→i but rank these two contracts in a different
order, we select one of the two contracts randomly. We use the
Propose-Choose protocol with contracts that completely specify what
each unit of each side would do the next turn, i.e., a contract
D = ({ai},{aj}). Each agent could potentially propose n − 1 contracts and
could potentially receive n − 1 contracts, so an agent pi who wishes to

Fig. 2 | Diplomacy contracts. Left: a part of the Diplomacy board with three
players. Middle: a restriction allowing only certain actions RRed to be taken by the
Red player; in this example, the unit in Ruhr may not move to Burgundy, while the
unit in Piedmont must move to Marseilles. The set RRed consists only of the actions

that fulfill these restrictions. Right: a contract D = (Rred,RGreen) consists of a
restriction for both players; in this example, Red’s actions are restricted as in the
middle, while Green is restricted to actions where the unit in Brest moves to Gas-
cony. Background image by kjpargeter on Freepik.
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reach an agreementwith pj is competingwith the other agents to get pj
to choose their contract. If an agent proposes a contract that is mostly
beneficial to itself, the other agent is unlikely to choose that contract.
Hence, agents must reason about which contracts others are likely to
accept.

Overview of the Negotiation Algorithms. We summarize the nego-
tiation algorithms, with full details in the “Methods” section. We pro-
pose a method called Restriction Simulation Sampling (RSS) for the
Mutual Proposal protocol, and a method called Mutually Beneficial
Deal Sampling (MBDS) for Propose-Choose. We evaluate these on
Diplomacyusing Peace contracts for RSS and contracts fully specifying
the next turn moves for MBDS, but our methods generalize to other
contract types (see Supplementary Note 6).

Ourmethods identifymutually beneficial deals by simulating how
the game might unfold under various contracts. We use the Nash
Bargaining Solution (NBS) from game theory52 as a principled foun-
dation for identifying high quality agreements. NBS fulfills appealing
negotiation and fairness axioms53 and takes into account the utility of
the agents when no deal is reached, called the no-deal baseline or
BATNA—Best Alternative To aNegotiatedAgreement54. Intuitively, NBS
strikes a balance between the benefits that either side obtains. We
justify the use of the NBS in the “Mutually beneficial deal sampling
(MBDS)” section.

Unfortunately, directly calculating expected utilities through
game simulation and finding the optimal NBS contract are computa-
tionally intractable: the gamemay unfold in many ways as playersmay

takemany possible actions, and theremay be a vast space of potential
contracts to search through. We address these difficulties through a
Monte-Carlo simulation, sampling from the space of potential future
states using policy and value functions, which are commonmachinery
in the AI literature55. Multiple approaches have been proposed for
constructing policy and value functions for Diplomacy, such as imita-
tion learning47 or regret minimization48; we use functions trained via
reinforcement learning39. Following this training, these functions are
held fixed throughout the experiments (colloquially, we freeze the
learning). Our methods simulate what might occur in the next turn by
sampling fromvarious policies, such as theunconstrainedpolicyof the
underlying No-Press Diplomacy agent, or a constrained policy that
agent pi must follow after agreeing to a contract D = (Ri,Rj). This
approach is illustrated in Fig. 3.

Negotiators outperform non-communicating agents
We show that augmenting agents with our negotiation mechanism
allows them to outperform baseline non-communicating agents lack-
ing this mechanism. Both the negotiators and the baseline use the
same policy function obtained using reinforcement learning39, and
select actions from it using the same algorithm (the Sampled Best
Response procedure39 described in the “The sampled best responses
procedure”) section. However, only the negotiators are able to com-
municate: negotiators interact via the RSS method in the Mutual Pro-
posal protocol, or via MBDS in the Propose-Choose protocol (see the
“Baseline Negotiator algorithms” section). Diplomacy has seven play-
ers, so we consider k communicating agents and 7 − k non-

Fig. 3 | Simulating possible next states given agreed contracts. Left: current
state in a part of the board, and a contract D = (Ri,Rj) agreed between the Red and
Green players (same as in Fig. 2). Right: multiple possible next states; the actions of
Red and Green are sampled from the restricted policies πRi ,πRj allowing only

certain actions as specified by the contract, and the actions of the Blue player
sampled from the unrestricted policy. Background image by rawpixel.com and
kjpargeter on Freepik.
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communicators for k∈ {1,2,…,6}. Figure 4 shows the advantage our
communicating agents have over the non-communicating baseline:
communicators win up to 2.49 times more often than non-
communicators (or 56% more often for the Mutual-Proposal proto-
col), highlighting the advantage agents gain through cooperation.

Negotiating with non-binding agreements
A key limitation of our results in the “Negotiating with binding
agreements” section is the implicit assumption that agreements are
binding—once an agent has agreed to a contract, they do not deviate
from it. We now lift this assumption, and consider agents who may
agree to a contract in one turn and deviate from it the next. This serves
multiple purposes. First, a key feature of the rules of Diplomacy is that
agreements made during the negotiation phase are not binding38 (i.e.,
communication is cheap talk56). Muchmore importantly, in many real-
life settings we can also not assume that agreements are binding—
people may agree to act in a certain way, then fail to meet their

commitments later on. To enable cooperation between AI agents, or
between agents and humans, we must examine the potential pitfall of
agents strategically deviating from agreements, and ways to remedy
this problem. Diplomacy is a board game that can serve as a sandbox,
i.e., an abstract analog to real world domains, enabling us to explore
this topic.

Our results ondeviation fromcontracts considermultiple types of
communicating agents, shown in Fig. 5 (in contrast to No-Press
Diplomacy agents47–49 such as the non-communicating baseline39). We
call the agents of the section “Negotiating with binding agreements”
Baseline Negotiators as they operate assuming agreements are bind-
ing. We consider Deviator Agents which overcome Baseline Negotia-
tors by deviating from agreed contracts. The “Baseline negotiatiors are
defeated by deviators who break contracts” section discusses Simple
Deviators and Conditional Deviators, and shows they outperform the
BaselineNegotiators. The “Mitigating thedeviationproblem:defensive
agents” section considers Defensive Agents, such as the Binary Nego-
tiators and Sanctioning Agents, which deter Deviators from breaking
contracts while retaining the advantages stemming from commu-
nication. It also describes the Learned Deviator, a Deviator optimized
against a population of Defensive Agents, showing that it learns to
rarely break its contracts. The full algorithms appear in the “Methods”
section). Our Defensive Agents reproduce humanbehaviors of ceasing
to trust peers who break promises or sanctioning such deviations,
inspired bywork on the Evolution of Cooperation57 (see comparison in
Supplementary Note 7, as well as a discussion of differences between
Diplomacy and repeated games). We examine the conditions for
honest cooperation in the large-scale temporally extended setting of
Diplomacy, complementing work on cooperation in repeated games,
where multiple players repeatedly interact by playing an identical
simple stage game with one another.

Baseline negotiatiors are defeated by deviators who break
contracts
We first show the advantage that Deviator Agents obtain by breaking
contracts. SimpleDeviatorsbehave as if no contractwas accepted even
when agreements are reached.When a contractD = (Ri,Rj) is reached, a
Baseline Negotiator pi only selects actions in Ri, which do not violate
the contract. In contrast, the Simple Deviator forgets the contract, and
always samples actions from the unconstrained policy (possibly

Fig. 4 | Baseline Negotiators outperform non-communicating agents. Left:
Mutual Proposal protocol. Right: Propose-Choose protocol. The x axis is the
number of communicating agents, and the y axis is the winrate advantage of the
communicating agent over the baseline, expressed as a ratio WC

WN
, where WC is the

average winrate of the communicating agents and WN of the non-communicating
agents, measured over 10,000 games. The advantage each communicating agent
enjoys grows as there are more communicating peers to make agreements with.

The Propose-Choose protocol, where agents agree on an exact fully specified joint
action next turn, results in a larger advantage for communicator agents over the
non-communicating baseline (though a contract type other than Peace could
potentially allow for stronger agent performance in theMutual-Proposal protocol).
Note that for Propose-Choose, the communicating agents exclude the non-
communicating agents from consideration to prevent themselves from wastefully
choosing contracts that cannot be agreed on.

Fig. 5 | Communicating agents considered in thiswork. Eachblueblock relates to
a specific agent algorithm, while each green block relates to a group of agent
algorithms.
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selecting ones that violate the contract). Conditional Deviators are
more sophisticated, and optimize their actions assuming that peers
who accepted a contract would act according to it. Similarly to Simple
Deviators, when no deal has been agreed, a Conditional Deviator pi
selects actions from the unconstrained policy. However, when a deal
D = (Ri,Rj) is agreed onwith another player pj, the Conditional Deviator
considers multiple actions it might take (these are sampled from its
policy, and likely include candidate actions a∉Ri that violate the
contract). For each such action, it performsmultiple simulations of the
next turn, by sampling actions forpj from thepolicy constrained by the
contract, reflecting the assumption that pjwould honor the agreement
and thus refrain from taking an action a∉Rj. The Conditional Deviator
uses its average value in the sample to estimate the expected next turn
utility for each candidate action, selecting the action that maximizes
this expected value. The Deviator agents are fully described in the
section “Deviator Agent algorithms”.

We evaluate the relative performance of Baseline Negotiators and
Deviators. Figure 6 shows the winrate ratio in games with k Deviator
agents playing against 7−k Baseline Negotiators, for k∈ {1,2,…,6}. Fig-
ure 6 shows that even the Simple Deviator significantly outperforms
the Baseline Negotiator, and that the Conditional Deviator over-
whelmingly outperforms Baseline Negotiators (winning twice or three
times more frequently).

Mitigating the deviation problem: defensive agents
Communication allows Baseline Negotiators to outperform non-com-
municators, but the section “Baseline negotiatiors are defeated by
deviators who break contracts” shows they are vulnerable to Deviators
who gain the upper hand by breaking contracts. We overcome this
problem using Defensive Agents that respond adversely to deviations.
We consider Binary Negotiators that cease to communicate with
agents who have deviated, and Sanctioning Agents who modify their
goal to actively attempt to lower the deviator’s value.We also consider
Learned Deviators, which learn when to activate the deviator behavior
mode (behaving identically to Baseline Negotiators until that
moment); these agents learn to break agreements very rarely, making
the vast majority of communication in the game truthful.

Defensive Agents deter deviations by negatively responding to
them. Defensive agents initially act identically to the Baseline Negotia-
tors, but when a defensive agent pi accepts a deal D = (Ri,Rj) with a
counterpart agent pj, they examine the move that pj executes the next
turn. If pj deviates from the agreement (i.e., takes an action aj∉Rj), they
modify their behavior for the remainder of the game. We consider two
responses to deviations: Binary Negotiators and Sanctioning Agents.

Binary Negotiators respond to a peer pj who deviates from an
agreement by ignoring any communication from themuntil the end of
the game. Following a deviation, a Binary Negotiator stopsmaking any

proposals to the deviator, and declines all proposals from the deviator
(colloquially, they cease to trust the deviator).

A Sanctioning Agent pi responds to a deviation by a peer pj by
selecting actions so as to lower the deviator pj’s reward. A Baseline
Negotiator pi evaluates actions sampled from the policy π by per-
forming simulations yielding possible future states s0, ranking actions
by the expected future value Viðs0Þ. A Sanctioning Agent considers
both its own value Viðs0Þ and the deviator’s value Vjðs0Þ to rank actions.
It maximizes the metric Viðs0Þ � αVjðs0Þ, which consists of both
improving its own probability of winning Viðs0Þ and lowering pj’s
probability of winning Vjðs0Þ. The parameter α ≥0 controls the relative
importance placed on the two goals, with α = 0 reflecting no sanc-
tioning (equivalent to Baseline Negotiators) and α = 1 reflecting equal
importanceon lowering theDeviator’s utility. Asα→∞, the Sanctioning
Agent focuses solely on making the deviator lose the game, without
regard to its own odds of winning the game (we use α = 1, see Sup-
plementary Note 10). Note that Sanctioning Agents themselves do not
deviate from their contracts.

Sanctioning dramatically reduces the advantage of deviation
We evaluate how a population of Defensive agents performs against
Deviator agents. We consider games with k Deviators playing against
7 − k Defensive agents, for k∈ {1,2,…,6}, presented in Fig. 7. The figure
shows that Binary Negotiators either outperform Deviators or least
significantly reduce their advantage, and that Sanctioning Agents offer
an even stronger defense, significantly outperforming deviators when
the majority of the players are Sanctioning Agents. Defensive agents
behave identically to Baseline Negotiators when playing with Baseline
Negotiators, thus retaining the advantages of communication.

Hence, negatively responding to broken contracts allows agents
to benefit from increased cooperation while resisting deviations.
However, Deviators may adapt their behavior trying to render this
defense less effective. For instance, a Simple or Conditional Deviator
attempts to exploit others at every turn, selecting actions violating
agreed contracts whenever they deem that doing so offers even a
slight advantage, triggering the adverse response of Defensive agents
early in the game. Hence, we consider Learned Deviators, whose
parameters are optimized to best decide when to deviate in games
against a population of Sanctioning agents.

A LearnedDeviator pi considers two features of the current state s
and a contract D = (Ri,Rj) agreed to with another player pj: the
approximate immediate deviation gain ϕi(s) reflecting the immediate
improvement in value pi can gain by deviating from D, and the
remaining opponent strength ψi(s) reflecting the ability of the other
agents to retaliate against pi should pi deviate from a contract. Given
the state and the contracts agreed to by pi, both of these features can
be computed using the value and policy functions.

Fig. 6 | Deviator agents playing versus Baseline Negotiator agents. Left: Mutual
Proposal protocol. Right: Propose-Choose protocol. The x axis is the number of
Deviator agents, and the y axis is the winrate advantage of the deviator agent over

the Baseline Negotiators, expressed as a ratio WD
WC

, whereWD is the average winrate
of the Deviator agents and WC of the Baseline Negotiator agents, measured over
10,000 games.
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A Learned Deviator waits until a turn where the immediate gains
from deviation are high enough and the ability of the other agent to
retaliate is low enough, and only then deviates from an agreement. Such
agents are parametrized by two thresholds tϕ, tψ. They behave as a
Baseline Negotiator, respecting all agreed contracts, until the first turn
where the state s is one such that ϕ(s) > tϕ and ψ(s) < tψ. Then, they
switch their behavior to that of the Conditional Deviator. Any two
thresholds tϕ, tψ result in different Deviator behavior andwinrate against
a population of 6 Sanctioning agents. Full details regarding how the
features ϕ(s),ψ(s) are computed and tuned to maximize the winrate
against Sanctioning agents are given in the section “Learned Deviator”.
Figure 8 shows thewinrate advantage of the Deviator for several choices
of the two thresholds.

Even under the strongest parameter settings for the Learned
Deviator, it only has a slight advantage, winning 1.7% more often than
the Sanctioning agents with the Mutual Proposal protocol (1.0% for
Propose-Choose). The average turn in which the Learned Deviator
indeed deviates from an agreed contract is 82 (respectively, 93), while
the average number of turns in gameswhere deviations occurred is 101
(respectively, 110 for Propose-Choose). This indicates that the Learned
Deviator adapts to break contracts quite late in the game. In the few
games where the Learned Deviator does break its agreements, it often

wins: 53.1% of the time for Mutual Proposal and 52.6% for Propose-
Choose (see Supplementary Note 9 for further behavioral analysis).

Overall across games, the Learned Deviator honors 99.8% (or
99.7% for Propose-Choose) of the contracts it had agreed to; by opti-
mizing its behavior against a population of Sanctioning agents it
adapts to honor the vast majority of its contracts, making the com-
munication in these games almost entirely truthful.

Discussion
We consider mechanisms enabling agents to negotiate alliances and
joint plans. Similarly to recent work25,27,31,58, we consider agents working
in teams, each trying to counter the strategies of other teams. We take
agents trained using reinforcement learning and augment them with a
protocol for agreeing future moves. Our agents identify mutually ben-
eficial deals by simulating future game states under possible contracts.

In terms of broader impact, Diplomacy38 is a decades-long AI
challenge, and we hope that this work will inspire future research on
problems of cooperation. Diplomacy makes an exceptional testbed: it
has simple rules but high emergent complexity, and an immense
action space40,43 which has recently been tackled using deep
learning39,47,48 (future work could of course uncover other successful
approaches). Communication adds another important layer of

Fig. 8 | Impact of the Learned Deviator parameters (tϕ,tψ) on the ratio Wdev
Wsan

between theDeviator’swinrateWdev and the SanctioningAgent’swinrateWsan,
when playing against a population of 6 Sanctioning agents. We call this the
Deviator advantage. The cells are arranged along a horizontal tψ axis and a vertical
tϕ axis. The color of each cell indicates the Deviator advantage: blue indicates the
advantage is >1 and, i.e., the LearnedDeviator outperforms the Sanctioning Agents,

and red indicates the opposite. The colors of the top and bottom circles in each cell
indicate the endpoints of a 95% confidence interval. These are evaluated with
halved hyperparameters M and N relative to the earlier results. Left: Mutual Pro-
posal protocol. Right: Propose-Choose protocol. Each cell is the result of over
40,000 games (with one Deviator using the given parameters, and 6 Sanctioning
agents).

Fig. 7 | Non-deviator agents (Baseline Negotiators, Binary Negotiators, and
Sanctioning Agents) playing against Conditional Deviators. Left: Mutual Pro-
posal protocol. Right: Propose-Choose protocol.We considermultiple games, each
with agents of exactly two types: either k Deviators and 7 − k Baseline Negotiators,
or k Deviators and 7 − k Binary Negotiators, or k Deviators and 7 − k Sanctioning
Agents. The y-axis is the ratio Wdev

Wdef
between the average winrate Wdev of a Condi-

tional Deviator and the average winrateWdef of a Defensive agent (so values lower
than 1 indicate a Defensive agent outperforms a Deviator agent). In both protocols,

a population of Binary Negotiators significantly lowers the advantage of Deviators,
as compared to a population of Baseline Negotiators. While Deviators may still win
more often than BinaryNegotiatorswhen there are few Binary Negotiators, the gap
ismuch smaller than theone arisingwithBaselineNegotiators. Further, Sanctioning
Agents offer a much stronger defense against Deviators. When there are more
Sanctioning agents than Deviators, a Deviator wins the game much less frequently
than a Sanctioning agent.
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complexity. Game theory offers powerful tools for analyzing games
such as Diplomacy and for constructing agents. In particular, solving
for a subgame perfect equilibriumor applying repeated gameanalysis7

could be useful for building capable agents. However, the large action
space in Diplomacy results in an incredibly large game tree size, which
impedes game theoretic analysis (see Supplementary Note 8).We thus
combine reinforcement learning methods with game theoretic solu-
tions (the Nash Bargaining Solution52), and address computational
barriers using a Monte-Carlo simulation of potential future game
trajectories.

Our results highlight the difficulty in establishing cooperation due
to deviation from agreements. For humans, the potential to break
promises or mislead others hinders cooperation, requiring people to
decide whether they can trust others50,51. Similarly for AI agents in
Diplomacy, when agreements are non-binding, an agent may promise
to act one way during negotiation but act in a different way later. Our
objective was to understand the conditions that foster truthful coop-
eration between artificial agents, and our results offer insight into
some of the risks that arise with complex agents that canmisrepresent
intentions. We find that similarly to humans, cooperation is jeo-
pardized by the ability of agents to break prior agreements. The
“Baseline negotiatiors are defeated by deviators who break contracts”
section shows that while Baseline Negotiators outperform silent
agents due to increased cooperation, they are susceptible topeerswho
make false promises regarding future actions. We mitigate this risk by
endowing agents with the inclination to retaliate against such
deviations.

Strong Diplomacy AI gameplay may differ from human play59 and
different people may have different expectations regarding the beha-
vior of artificial Diplomacy agents60. Recent methods recover human-
like play through regularization61. We have not incorporated such
regularization: after the policy network is learned from imitating
human play, further training is based entirely on reinforcement
learning.

Humans playing Diplomacy sometimes employ a strategy of
keeping promises until a crucial deviation late in the game62. It’s
striking thatour LearnedDeviators followa similar strategy: they adapt
to typically follow through on their promises for long periods of time,
breaking agreements only when the gains are high enough and when
their opponents are left less capable of retaliating for the deviation.We
strived to create a rich representation of the Diplomacy game,
recreating its dilemmas relating to strategic communication. One
possible cause for the strategic similarity is that Diplomacy was
designed such that deviating from agreements can be beneficial when
the opponent would find it difficult to respond. In other words,
Diplomacy, even under the restricted communication protocols we
considered, has a strategy space where such a behavior can be an
effective way to win, so both humans and our Learned Deviator
exhibit it.

The “Sanctioning dramatically reduces the advantage of devia-
tion” section shows that when a population of agents are inclined to
sanction broken agreements, they are resistant to deviators; when the
proportion of retaliating agents is high enough, constant deviations
from agreements are not beneficial as the long term negative con-
sequences of the retaliation outweigh the immediate gains from the
deviation. Even Learned Deviators, who optimize their choice of when
to deviate against Defensive agents, rarely deviate from agreements.
Hence, sanctioning peerswhobreak contracts can fostermore truthful
communication among AI agents.

Learned Deviators do gain a slight advantage against Defensive
agents, and when many agents deviate from agreements sanctioning
deviations becomes more costly. Hence, Sanctioning agents may
themselves start deviating from agreements, and if the sanctioning
behavior proves to be costly, the Sanctioning agents may cease sanc-
tioning deviators. In Supplementary Note 11 we probe the potential

learning dynamics of an agent population with regards to sanctioning
anddeviation: we consider Sanctioning agentswho themselves deviate
from agreements, and the incentive to cease sanctioning peers when
this sanctioning behavior is costly. We find that a population of sanc-
tioning agents is only at a near-equilibrium (in contrast to simple
repeated games such as Iterated Prisoner’s Dilemmawhich may admit
a fully stable cooperative equilibrium57).

Such issues have been studied in the literature on the evolution of
cooperation, and for simpler games researchers noted that additional
mechanisms might be required to support sustained cooperation,
suchashaving repeated interaction. Similarly forDiplomacy, to avoida
population of learning agents gradually becoming less cooperative
one might need to employ additional mechanisms. Repeating the
interaction and playingmultiple games of Diplomacy against the same
opponents could increase the incentives for cooperative behavior.
Further, we focused on sanctioning, but humans rely on diverse solu-
tions to deter deviating from agreements such as employing trust and
reputation systems63,64, or relying on a judicial system to provide
remedies for the breach of contracts65. Future work could investigate
how to implement such mechanisms for AI agents, similarly to earlier
work on deterring deviations in dynamic coalition formation settings,
for instance keeping track of peer behavior over multiple interactions
or leveraging indirect reciprocity and tagging66–68.

One limitationof ourmethods is thatwe took initial agents trained
for No-Press Diplomacy, then augmented them with negotiation
algorithms. This means that the action strategy, coming from the base
agent, was designed separately from the communication and nego-
tiation strategies. Future work might build stronger agents through
better methods for co-evolving the action and communication stra-
tegies, allowing the agent’s play to capture even more of the strategic
richness that arises in human play. Our work has further limitations
(discussed in depth in Supplementary Note 3), such as assuming a
knowndeterministicmodel of the environment, holding thepolicy and
value functions fixed following the initial reinforcement learning step,
and using simple communication protocols rather than more elabo-
rate ones or natural language. Further, many questions remain open
for future research. Could one design more intricate protocols, con-
sidering more than two agents, or communicating knowledge or
goals? How could one handle imperfect information? Finally, what
other mechanisms could deter deviations from agreements?

Methods
We present the algorithms for the agents of the sections “Negotiating
with binding agreements” (Baseline Negotiator) and “Negotiating with
non-binding agreements” (Simple, Conditional and Learned Deviators,
Binary Negotiators and Sanctioning Agents).

Simulation building blocks
Ourmethods use policies πi: S ×Ai→ [0,1] mapping any game state to a
distribution over actions, with the probability of taking action a∈Ai in
state s denoted as πi(s,a), and a state-value function V : S ! Rn which
maps any state to the expected reward of all the agents (for Diplomacy
this can be viewed as estimated win probabilities). We use π to refer to
policies πi for each player pi. Various methods were proposed for
constructing policy and value functions in Diplomacy47–49. Our
experiments in “Results” use policy and value networks trained by first
imitating human gameplay on a dataset of human Diplomacy games,
then applying reinforcement learning to improve agent policies39

(available at https://github.com/deepmind/diplomacy). Hence, the
value and policy functions we use are based on both learning from
human data and applying reinforcement learning, but our algorithms
can work with any such functions. We denote sampling an action a in
state s for agent pi from the policy πi as a ~πi(s). Given a contract
D = (Ri,Rj) we can restrict the policies πi,πj to respect the limitations
expressed in the contract, yielding a policy πRi

i (also written as πD
i ) for

Article https://doi.org/10.1038/s41467-022-34473-5

Nature Communications |         (2022) 13:7214 8

https://github.com/deepmind/diplomacy


pi where the probability of pi taking action a in state s is:

πRi
i ðs,aÞ=

πiðs,aÞP

a02Ri

πiða0 ,sÞ , fora 2 Ri

0, fora =2Ri

8
><

>:
ð1Þ

Note that given a neural network capturing a policy πi and a
restricted action set Ri (resulting from pi agreeing to a contract
D = (Ri,Rj)), one can sample an action ai from πRi

i ðsÞ by masking the
logits of all actions not in Ri (i.e., setting the weight of all actions not in
Ri to zero before applying the final softmax layer). Similarly, we denote
by π

Rj

j , or πD
j , the policy for pj which respects the contract’s restric-

tion Rj.

Estimating values using a sample of simulations
A key building block in ourmethods is to simulate whatmight occur in
the next turn when players follow various policies, such as the
unconstrained policy πi or a constrained policy πRi

i . Let a be a vector of
agent actions a = ðaiÞni= 1, and let T(s,a) be the transition function of the
game, taking the current state s and the action profile a and returning
the resulting next game state. Finally, let VðsÞ= ðViðsÞÞni = 1 be a state
value function, denoting the expected reward (or probability of win-
ning) of the players in a given state. We can combine these to obtain a
joint action value function: Q(s,a) =V(T(s,a)).

Consider a player pi trying to select an action in a state s and
playing with agents P−i = {p1,…,pi−1,pi+1,…,pn} who follow the respective
policies π−i = (π1,…,πi−1,πi+1,…,πn). Each policy in π−i may be for
instance the unconstrained policy π or alternatively πj may be a policy
π
Rj

j that is constrained by some contract D = (Rj,Rk) that agent pj had
agreed with some agent pk. By a−i ~π−i we denote sampling actions for
the players P−i from these respective policies π−i. We denote the full
action profile combining the action ai for pi and the actions a−i for the
players P−i as (ai,a−i). By applying the joint action value function
Q(s,(ai,a−i)) we arrive at an estimate of eachplayer’s value if pi takes the
action ai; we can consider this as a conditional action value func-
tion Qa�i ðs,aiÞ=Qðs,ðai,a�iÞÞ.

We can also extend this to two players: we denote the action
profile combining ai for pi and aj for pj as (ai,aj,a−{i, j}), and the
resulting pairwise conditional action value function
as Qa�fi,jg ðs,ðai,ajÞÞ=Qðs,ðai,aj ,a�fi,jgÞÞ=VðTðs,ðai,aj ,a�fi,jgÞÞÞ.

Given a value function Vi, we can estimate pi’s value for taking an
action ai as the expected value pi in the next game state, with the
expectation taken over the actions of the other agents sampled from
their respective policies π−i:

iðs,aiÞ=Ea�i ∼π�i
V iðTðs,ðai,a�iÞÞÞ=Ea�i ∼π�i

Qa�i
i ðs,aiÞ ð2Þ

Simulation action value estimation (SAVE). Consider sampling a list
of M partial action profiles a1�i,…,aM�i ∼π�i. We denote this sample as

A�i = ða1�i,…,aM�iÞ (where each individual element am�i is a partial action
profile that consists of actions for all players except pi). We use the
sample A−i to get a Monte-Carlo estimate for agent pi’s expected value

when taking action ai, by calculating Q̂
A�i

i ðs,aiÞ= 1
M

PM
m= 1 Q

aj�i
i ðs,aiÞ. We

refer to this as Simulation Action Value Estimation (SAVE).Wemay also
estimate a different player pj’s value Vj(T(s,(ai,a−i))) when pi takes an

action ai in a similar way. We use the notation Q̂
A�i

j ðs,aiÞ. The same is

true for the STAVE method which is introduced later.

Simulation value estimation (SVE). Consider a player pi considering a
contract D = (Ri,Rj). When pi, pj select actions under this contract they
use the respective policies πD

i =πRi
i and πD

j =π
Rj

j . Assuming all other
agents follow the unrestricted policy π, we consider the policy profile
πD = ðπD

1 ,…,πD
n Þ where πD

i =πRi
i and πD

j =π
Rj

j , and for any k∉ {i,j} we

have πD
k =πk . Under these assumptions, we can estimate pi’s value by

taking the expected value in the next game state, with the expectation
taken over all agents’ actions when sampled from their respective
policies in πD:

D
i ðsÞ=Ea∼πDV iðTðs,aÞÞ=Ea∼πDQiðs,aÞ ð3Þ

We can obtain a Monte-Carlo estimate of the agents’ values. We
take a sample A of full action profiles a1,…,aM ~πD (where each am is a
full action profile, consisting of actions for all the agents). Averaging
over these, we obtain the value estimate V̂

A
i ðsÞ= 1

M

PM
m= 1 Qiðs,amÞ. We

refer to this method as Simulation value estimation (SVE).

Simulation two-action value estimation (STAVE). We use a similar
calculation for the Propose-Choose protocol, when considering the
combined effect of an action ai for player pi and an action aj for player
pj, for example in order to evaluate a contract D = ({ai},{aj}). In such
situations, wemay evaluate pi’s value by taking their expected value in
the next game state, over the actions of the other agents as sampled
from their respective policies π−{i, j}. This yields the following value:

iðs,ðai,ajÞÞ=Ea�fi,jg ∼π�fi,jg
ViðTðs,ðai,aj ,a�fi,jgÞÞÞ=Ea∼πDQ

a�fi,jg
i ðs,ðai,ajÞÞ

ð4Þ
This expectation is taken over many actions, so we approximate

this using a Monte-Carlo simulation. We consider a sample A−{i, j}

consisting of actions for all players except {pi,pj}:
A�fi,jg = ða1�fi,jg,a

2
�fi,jg,…,aM�fi,jgÞ where each element am�fi,jg contains the

actions of all players except pi, pj. Given an action ai for agent pi and an
action aj for pj, each such element am�fi,jg can be completed into a full

action profile ðai,aj,a
m
�fi,jgÞ, and used to evaluate the next state value.

Average over the sampleweget: Q̂
A
i ðs,ðai,ajÞÞ= 1

M

PM
m= 1 Q

am�fi,jg
i ðs,ðai,ajÞÞ.

We call this method Simulation two-action value estimation (STAVE).

The sampled best responses procedure
A recent method for constructing No-Press Diplomacy agents starts
with a policy whichmimics human gameplay (imitation learning), then
gradually improves this policy using a neural policy iteration process39.
In the “Negotiators outperform non-communicating agents” section,
we use agents produced under this approach as our baseline non-
communicating agents. The neural policy iteration works by taking a
current behavior policy network π, and applying an improvement
operator aimed at generating actions that are better than those in this
underlying policy. Many game trajectories are then generated using
this improved policy. Given these games a new policy neural network
π0 is distilled via supervised learning. Theprocess is repeated, resulting
in stronger and stronger policies.

We briefly describe the improvement operator used for No-Press
Diplomacy39, called Sampled Best Response (SBR for short), as we use
it as a building block for our negotiating agents (see the recent paper39

for further details about SBR and using it to derive Diplomacy RL
agents). SBR selects the action of player i in state s as follows. SBR first
samples many candidate actions fcjgCj = 1 for the target player i from the
policy πc

i (the current policy which SBR aims to improve upon). SBR
then uses a policy πb to produce the actions of the other agents, either
using the same network as πc or a previous generation policy.

To evaluate the quality of cj, SBR simulates the possible behavior
of other players by taking a sample A of partial action profiles
A= a1�i,…,aM�i ∼πb

�i, then evaluating the estimated future reward (akin
to the SAVE procedure of the section “Simulation building blocks”):

Q̂
A�i

i ðs,cjÞ= 1
M

XM

m= 1

Q
am�i
i ðs,cjÞ= 1

M

XM

m= 1

ViðTðs,ðcj,am�iÞÞÞ ð5Þ
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The actionmaximizing this estimated value under these simulations is
returned by SBR. The SBR procedure39 is given in Algorithm 1.

Algorithm 1 Sampled Best Response.

Baseline Negotiator algorithms
In the following sections, we describe the algorithms for the Baseline
Negotiator of the section “Negotiating with binding agreements”,
including RSS andMBDS.We first describe the action phase, as it is the
same for both protocols. If no agreement has been reached during the
negotiation phase in state s, the BaselineNegotiatorpi is free to choose
any legal action from its unconstrained policy πc

i , and has no con-
straining information about other players’ moves. It thus selects an
action by applying the Sampled Best Response (SBR) method descri-
bed in Algorithm 1, selecting the action ai = SBRðs,i,πb

�i,π
c
i ,Vi,M,NÞ.

If a contract Di,j = (Ri,Rj) was agreed, it places a restriction Ri that
the Baseline Negotiator respects. If Ri contains only a single action that
pi may take under the contract, the Baseline Negotiator simply selects
that action. If multiple actions are allowed under Ri, the Baseline
Negotiator selects an action by applying SBR on a restricted policy πRi

and assuming that pj would also respect the agreement and select
actions from the restricted policy πRj . If there are multiple agreed

contracts Di,j1
= ðRj1

i ,Rj1
Þ,…,Di,jk

= ðRjk
i ,Rjk

Þ (as permitted by the Mutual

Proposal protocol) then Ri =R
j1
i \ � � � \ Rjk

i is the intersection of the
constraints. The negotiator then selects an

action ai = SBRðs,i,ðπRj1
,b

j1
,…,π

Rjk
,b

jk
,πb

�fi,j1 ,…,jk gÞ,π
Ri ,c
i ,Vi,M,NÞ.

Restriction simulation sampling (RSS)
Our negotiation algorithm for the Mutual Proposal protocol, called
RSS, is based on applying SVE to contrast what might occur when a
contract is agreed and when it is not agreed.

We consider the case where there is a single contract Di,j = (Ri,Rj)
an agent may propose to another, such as a Peace contract in Diplo-
macy. Under the Mutual Proposal protocol an agent pi must decide
whether to extend an offer to each of the other agents.When deciding
whether agent pi would make a proposal Di,j to agent pj, RSS uses SVE
to estimate the expected value to pi in two cases: (1) assuming that pi
does not reach an agreement with pj, and (2) assuming pi and pj agree
on the contractDi,j = (Ri,Rj). The full RSSmethod, given in Algorithm 2,
compares agent utilities between these cases.

Algorithm 2 Restriction Simulation Sampling.

For the first case, where no agreement is reached, both pi and pj
are free to select any action, so we use the unrestricted policies πi and

πj for pi and pj. RSS makes the simplifying assumption that no other
agent would reach any agreements (i.e no agent in the set P⧹{pi,pj}
would reach an agreement with another agent), so we also use the
unrestricted policies π for all the other agents. Hence, the case of not
having an agreement is evaluated by applying SVE with the policy
profile π, so actions for all players p1,…, pn are sampled from their
respective unconstrained policies π1,…,πn.

In the second case, where an agreement Di,j = (Ri,Rj) is reached
between pi, pj, both pi, pj may only choose actions in the respective
action sets Ri, Rj, so we use the restricted policies πRi

i ,π
Rj

j for pi and pj
respectively. Similarly to the no agreement case, we make the simpli-
fying assumption that no further contracts between other agents have
been agreed, sowe can reuse the actions for the other players P⧹{i,j} as
used in the SVE procedure for the no-agreement.

To estimate values in the case of reaching an agreement we also
require samples from πRi

i and π
Rj

j for pi and pj; to get these, we reuse
the constraint-satisfying actions from the no-agreement SVE, resam-
pling only those actions which fall outside ofRi and Rj. For instance, for
a Peace contract, the resampling for pi, pj is done by rejecting actions
that violate the peace. We do so to reduce the variance in the estimate
of the difference between values in the agreement and non-
agreement case.

We denote by V̂
B
i ðsÞ the SVE value estimate for pi in the case of no

agreement, and by V̂
B0

i ðsÞ the SVE estimate for pi in the case of an

agreement D = (Ri,Rj). If V̂
B0

i ðsÞ>V̂B
i ðsÞ then pi expects to achieve more

utility when the contract is agreed, so they propose it to pj, and
otherwise they refrain from proposing it.

Mutually beneficial deal sampling (MBDS)
Our negotiation algorithm for the Propose-Choose protocol is MBDS.
It decides which contracts to propose during the Propose phase, and
which contracts to choose during the Choose phase. It generates and
selects contracts seeking mutually beneficial deals. In order to
choose between possible contracts, we used the Nash Bargaining
Solution (NBS) from game theory52,53. Given a space S � R2 of fea-
sible agreements (with a point s = (d1,d2) in S yielding respective
utilities d1,d2), and a disagreement outcome d0 = ðd0

1 ,d
0
2 Þ (with

respective utilities d0
1 ,d

0
2 ), the NBS is the feasible agreement max-

imizing the product of utilities over the disagreement base-
line: argmax ðd1 ,d2Þ2Sðd1 � d0

1 Þ
+ ðd2 � d0

2 Þ
+
.

NBS is the only bargaining solution concept that satisfies certain
fair bargaining axioms, producing a negotiation outcome that’s
mutually advantageous relative to the no-agreement outcome52.

NBS guarantees Pareto optimality, meaning negotiators never
select a contract if they can find an alternative contract that guarantees
both sides higher utility than the chosen agreement, independence of
units of measure, meaning switching to an equivalent utility repre-
sentation other thanwinrates does not result in a change in the chosen
contracts, and symmetry, meaning that if the space of possible con-
tracts is symmetric in the winrates it allows, then the chosen agree-
ment would yield both sides the same winrate.

These properties of the NBS are important for our Diplomacy
agents, as they guarantee that agreements are chosen so as to max-
imize thewinprobabilities of both sides and provide robustness to our
choice ofmeasuring utility in terms of winrate improvements. Further,
these properties mean that negotiators attempt to choose balanced
contracts that both sidesmay agree on, rather than choosing contracts
that prefer one side over the other, whichwouldmake it more difficult
to agree.

Approximating the Nash Bargaining Solution (NBS): When
applying NBS to the Propose-Choose setting, one reasonable inter-
pretation is to consider the disagreement utility as the win prob-
ability of the sides assuming no contract is agreed (with both sides
selecting actions from their unconstrained policy), and to consider
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the utility under a contract as the win probabilities of the sides
assuming the contract is signed (with both sides selecting actions
from the constrained policies under the contract).

However, Diplomacy has more than two agents and combinato-
rially large action spaces, and agent policies are stochastic. Diplomacy
has an enormous action space of 1021 to 1064 legal actions per turn39, and
the space of possible contracts grows quadratically in the size of the
legal actions set (any combination of a legal action for one side and a
legal action for the other side makes a possible contract). Hence, it is
intractable to exhaustively search through the space of contracts, or to
exactly compute expected win probabilities under a contract. In addi-
tion, the interpretation of disagreement utility as assuming no contract
is signed by either side is flawed: either side may instead sign a contract
with a different peer. We overcome these difficulties using a sampling
approach, and by simulating the negotiation process of other agents.

During the propose phase, MBDS generates multiple candidate
contracts which agent pi could offer to pj. The candidate contractsDi,j

are created by generating sets of candidate actions Ci for pi and Cj for
pj, and looking at theCartesianproductCi ×Cj = {(ci,cj): ci∈Ci, cj∈Cj} of
these actions, i.e., all possible combinations of the candidate actions
for the two sides. The candidate actions for the sides are generated by
sampling many actions c1i ,…,cN1 and c1j ,…,cNj from policies πc

i and πc
j ,

and selecting the top K ranked by ametric that combines both pi’s and
pj’s expected utility under the actions (making the simplifying
assumption that all remaining agents simply select an action using the
unrestricted policy profile πb

�fi,jg). This unrestricted policy is repre-
sented using a list of samples b1,…,bM ~πb.

We consider these action profiles B = (b1,…,bM), and an additional

scaling factor
q0i,j
q0j,i
. Given these, the combined metric for an action ci is a

weighted sum of pi’s utility and pj’s utility: Q̂
B�i

i ðs,ciÞ+β
q0i,j
q0j,i

Q̂
B�i

j ðs,ciÞ.
The parameter 0 < β < 1 reflects the degree of emphasis on the utility of
the partner to whom the contract is offered; low values of β reflect
emphasizing actions that lead to a high utility for the proposer, and
high values of β emphasize actions that lead to a high utility for the
proposee.

The scaling factor
q0i,j
q0j,i

adjusts the utilities to be on the same
scale, facilitating deal-making between players with high versus
low estimated values. It is computed by sampling a set B of M
action profiles for all players from πb, and using SAVE to select
selfishly-best actions c*i from among c1i ,…,cNi and c*j from among

c1j ,…,cNj . c
*
i and c*j are then combined using STAVE to estimate pi’s

and pj’s values in the case where no deal is made:

q0
i,j = Q̂

�b�fi,jg
i ðs,ðci,cjÞÞ and similarly for q0j,i.

When deciding about which of the contracts in Di,j to propose to
pj, the proposer pi must consider and balance two factors relating to
the resulting agent utilities (winrates): (1) the value that pi stands to
gain should the contract be agreed on, and (2) the likelihood of pj
agreeing to the contract, which is determined by the value pj stands to
gain should the contract be agreed.

We combine these two factors by using the Nash Bargaining
Solution52, which reflects reasonable bargaining axioms69.We compute
the Nash Bargaining Score in Algorithm 3, which relies on qi, qj which
are used as estimates of the no-deal baseline values that the gains are
relative to. The values qi, qj indicatewhat values pi and pjmay expect to
obtain in the absence of a deal between them.

Algorithm 3 Nash Bargaining Score.

When there is no agreement, both pi and pj are free to choose
any legal action. Hence, we assume they would choose the best

actions c*i and c*j that they can from among samples from the
policy πc. As in SBR, we take the simplifying assumption that that
the remaining agents P⧹{pi,pj} would not form agreements
amongst themselves, and hence would simply choose actions
from their policy πb. Seeking to estimate the next state values for
this case, we use the STAVE algorithm described earlier, defining
q0
i,j = Q̂

B�fi,jg
i ðs,ðci,cjÞÞ and q0

j,i = Q̂
B�fi,jg
j ðs,ðci,cjÞÞ. We refer to these values

as the initial no-deal value estimates.
The initial no-deal estimates may not fully represent the values pi

and pj can reach without a deal between them, as either side may be
able to dobetter bymaking a deal with another player. To estimate this
we use an iterative approach akin to other iterative negotiation
methods70 and described in Algorithm 4.

Algorithm 4 BATNA Update by Internal Dynamic Bargaining
Simulation.

Algorithm 4 simulates an iterative process of updating beliefs
regarding the contracts that might be agreed between all agents,
and the resulting estimates of the values all agents might obtain.
In each iteration, we examine each pair of players, and assume the
deal they would select is the one with the highest Nash Bargaining
Score over the current baseline estimates. Further, the update
assumes that when each player pi considers their action with
regard to each partner pj, it contrasts its no-deal baseline with pj

with the best alternative deal from among the remaining players
P⧹{pi,pj}. We apply a damping factor κ to avoid oscillations in
partner choice. Using the updated baselines, MBDS proposes to
each partner the deal with the highest score. The full procedure
for the Proposal phase is given in Algorithm 5.

Algorithm 5 Mutually Beneficial Deal Sampling Proposal.

MBDS applies the same ranking during the Choose phase. In this
phase, each agent must choose from amongst the contracts that are
On The Table for them, selecting a single partner to agree a contract
with.MDBS for a target agentpi examines the set of contracts involving
pi, and computes the Nash Bargaining score for each one using the
baseline values from the Proposal phase. If some Nash Bargaining
scores are positive, it considers the partners with whom such deals are
possible, selecting the partner with whom the highest-score deal is
most favorable to itself. If not, it simply selects the deal most favorable
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to itself from among those that are estimated to be preferable to the
no-deal baseline with their respective counterpart.

Lastly, for the chosen deal,MBDS evaluates and indicates whether
both deals with the chosen counterpart would be acceptable, by
comparing their estimated values with the no-deal BATNA. The full
MBDS method for the Choose phase is given in algorithm 6.

Algorithm 6 Mutually Beneficial Deal Sampling Choice.

Deviator Agent algorithms
Deviators are agents who may deviate from deals they have agreed
to. In the following sections, we fully describe the Simple Deviators
and Conditional Deviators of the section “Negotiating with non-
binding agreements”. Simple Deviators enter into deals in a way that
is identical to the Baseline Negotiators, but even when a deal is
agreed on they select their action directly from the unconstrained
SBR policy, as if no deal was agreed. Conditional Deviators also
enter into deals identically to Baseline Negotiators, but when
selecting their action in turns when a deal has been reached, they
attempt to maximize their reward under the assumption that the
other side would honor the deal.

Simple Deviators
During the negotiation phase, Simple Deviators behave identically to
the Baseline Negotiator. Simple Deviators only behave differently to
Baseline Negotiators during the action phase.

During the actionphase in state s, if no deal hasbeen reached for a
Baseline Negotiator pi, this Baseline Negotiator selects an action ai =
SBRðs,i,πb

�i,π
c
i ,Vi,M,NÞ using the unconstrained policy πc

i . However, if

the Baseline Negotiator pi agreed to deals Di,j = ðRj
i,RjÞ with players

j1,…,jk then the Baseline Negotiator pi selects an action ai =

SBRðs,i,ðπRj1
,b

j1
,…,π

Rjk
,b

jk
,πb

�fi,j1 ,…,jk gÞ,π
R
j1
i \���\R

jk
i ,c

i ,Vi,M,NÞ using the con-

strained policies πR
j1
i \���\R

jk
i ,c and π

Rj ,b
j .

In contrast to a Baseline Negotiator, a Simple Deviator pi always
selects an action from the unconstrained policy πc

i , regardless of
whether a deal has been agreed or not (i.e., it always selects an action ai
= SBRðs,i,πb

�i,π
c
i ,Vi,M,NÞ). Colloquially speaking, we say that Simple

Deviators forget that they have signed deals with others—even when a
Simple Deviator pi has agreed on a deal D = (Ri,Rj) with another player
pj, during the action phase it still chooses an action which does not
necessarily respect the constraint Ri, and doesn’t assume that pj will
respect the constraint Rj.

Conditional Deviators
Similarly to the Simple Deviators, during the negotiation phase the
behavior of a Conditional Deviator is identical to that of a Baseline

Negotiator. Conditional Deviators only behave differently to Baseline
Negotiators during the action phase.

When no deal has been agreed, a Conditional Deviator pi selects
an action in the sameway as the Baseline Negotiator, i.e., using the SBR
logic: sampling a set B−i of M partial action profiles, sampling N can-
didate actions from the unrestricted policy πc

i , and choosing the one
yielding the maximal value on the sample, i.e.,

argmax c2fc1 ,…,cN gQ̂
B�i

i ðs,cÞ. However, when a deal D = (Ri,Rj) has been
agreedbetween aConditionalDeviatorpi and someother playerpj, the
Conditional Deviator attempts to maximize its gain under the
assumption that the other side would respect their end of the deal;
againwe use a sampleB−i ofM partial actionprofiles, but in this sample
we select the action for any deal partner pj from the restricted policy

π
Rj ,b
j , reflecting the assumption that the peer pj would behave

according to the restriction of the contract. We consider the top
candidate action sampled from the unconstrained policy

c* = argmax c2fc1 ,…,cN gQ̂
B�i

i ðs,cÞ. We then consider actions which do not
violate any contract pi has agreed to, by taking a sample of candidate

actions c01,…,c0N which are sampled from the policy π
R1
i\���\Rn

i ,c
i that

respects all the contracts that pi had agreed to. The top ranked action
that does not violate pi’s agreements is

c0* = argmax c02fc01 ,…,c0N gQ̂
B�i

i ðs,c0Þ. If the estimated value of c* exceeds

that of c0*, the Conditional Deviator expects to gain by breaking its
agreements and it chooses the contract-violating action c*; otherwise,
when a deviation is not deemed profitable, it selects the top contract-

respecting action c0*. This process is given in Algorithm 7.

Algorithm 7 Conditional Deviator Action Selection for pi.

Learned Deviator
We describe our approach for training a deviator agent that learns the
optimal state in which to deviate from a contract when playing a
population of other agents (in our empirical analysis these peers are
the Sanctioning agents of the section “Mitigating the deviation pro-
blem: defensive agents”). Consider that the defensive agents of the
section “Mitigating the deviation problem: defensive agents” modify
their behavior following any deviation from a previous agreement, and
starting from that point they persist with their negative behavior
towards the deviator for the remainder of the game; if pi has deviated
from a deal with pj at a certain point in a game, pjwill never again reach
an agreement with pi in that game. Thus, a deviator agent pi playing
against a defensive agent pj only has a single opportunity to deviate
from an agreementwith them in a game. Hence, itmakes sense to pose
the issue of optimizing the behavior of a deviator pi as identifying the
point in the game where it is best to deviate from an agreement with
some defensive agent pj. We simplify the problem further by having
the Learned Deviators consider only two features of the current state s

Article https://doi.org/10.1038/s41467-022-34473-5

Nature Communications |         (2022) 13:7214 12



and contract D = (Ri,Rj) agreed with a peer pj. The first is the approx-

imate immediate deviation gain ϕ= Q̂
B�i

i ðs,c*Þ � Q̂
B�i

i ðs,c0*Þ, as defined
on line 15 of Algorithm 7, reflecting the immediate improvement in
value pi can gain by deviating fromD. The second is the strength of the
other agents that pi may turn against itself should pi deviate from a
contract. In Diplomacy, the win probability of a player pi in a state s is
closely correlatedwith thenumber of units (or supply centers) that this
player has, and how well positioned they are to attack other players.
These characteristics of the state are also closely correlated with the
ability of that player to retaliate against an attack from another
player. In other words, when a player pi considers deviating from an
agreement with player pj, they should be more worried regarding
player pj’s retaliation when pj has a high win probability (equivalently
a high value) in the resulting state. Thus, we derive a measure ψ from
two considerations. One is that if none of the partners with whom a
contract has been made is strong, pi may more safely deviate. The
other is that if one of the partners is very dominant among the non-pi
players, then that partner may be mostly incentivized to reduce pi’s
value to begin with, and so pi doesn’t have as much to lose by trig-
gering its retaliation. Thus, with c*, s, B, and Di,j as defined in Algo-

rithm 7, we define ψ=minðQ̂B�i

j* ðs,c*Þ,1� Q̂
B�i

i ðs,c*Þ � Q̂
B�i

j* ðs,c*ÞÞ,
where j* = argmax j:Di,j≠;Q̂

B�i

j ðs,c*Þ.

Finally, we define a Deviator agent pi parameterized by two
thresholds tϕ, tψ. It follows theBaselineNegotiator behavior (as though
ϕ <0 in Algorithm 7) until the first turn where ϕ > tϕ and ψ < tψ. Then,
the agent switches its behavior to that of the Conditional Deviator. In
otherwords, this Deviator waits until a turnwhere the immediate gains
from deviation are high enough and the ability of the other agent to
retaliate is low enough, and only then deviates from an agreement. In
our experiments the thresholds tϕ, tψ are tuned by applying a simple
grid search over the space of parameters (see Fig. 8), though many
other approaches couldbe used (such asGradient Ascent or Simulated
Annealing).

Defensive agent algorithms
Defensive agents are designed to deter others from deviating from
agreements,while still retaining the advantage negotiation skills afford
over non-communicating agents; they shun Deviators, or work as a
group to repel them by negatively responding to deviations so as to
reduce the gains from suchdeviations. Defensive agents act identically
to the Baseline Negotiator agents described in detail in the “Baseline
Negotiator algorithms” section, but change their behavior when
another agent deviates from an agreement made with them. When a
defensive agent pi accepts a dealD = (Ri,Rj) with a counterpart agent pj,
it examines the behavior of the counterpart pj in the following action
phase. If pj deviates from the agreement by taking a disallowed action
aj∉Rj, it changes its behavior towards this deviator for the remainder
of the game. We now fully describe the Binary Negotiators and Sanc-
tioning agents discussed in the section “Negotiating with non-binding
agreements”.

Binary Negotiators respond to a deviation of pj by ceasing all
communication with pj for the remainder of the game. In the
Mutual Proposal protocol this means never proposing any con-
tract to pj and hence never agreeing on any contract with pj for
the remainder of the game, and in the Propose-Choose protocol
this means never choosing any contract proposed by or to pj,
hence never agreeing a contract with pj for the remainder of the
game. This is done via an additional check on lines 8 and 17 of
Algorithm 6.

A Sanctioning agent pi takes a more active role when responding
to a deviation by player pj. Following such a deviation, the Sanctioning
agent pi modifies its behavioral goal so as to attempt to lower the
deviator pj’s reward in the game.

The standard SBR procedure, Algorithm 1 described in the section
“The sampled best responses procedure”, estimates the expected

value for player pi in the next state when taking action a as Q̂
B�i

i ðs,aÞ,
and selects the actions that maximize this expected reward. Following
a deviation by player pj against player pi, we consider the modified

score Q̂
B�i

i�αjðs,aÞ= Q̂
B�i

i ðs,aÞ � αQ̂
B�i

j ðs,aÞ. This perturbed score repre-

sents a combination of the target player pi’s utility and the negative of
player pj’s utility, where the parameter α controls the degree of
importance placed on lowering player pj’s utility.

A Sanctioning Agent pi selects actions identically to the Baseline
Negotiator of the section “Baseline Negotiator algorithms” until a
deviation occurs by a peer pj. Following this point and until the end of
the game, the Sanctioning Agent turns to selecting the actions max-

imizing the perturbed score Q̂
B�i

i�αj defined above (in the negotiator

algorithms, this affects the evaluation in RSS and on lines 5, 7, and 16 of
the Choose phase ofMBDS, but not in the Proposal phase). In the case
where multiple players pj1 ,…,pjk have deviated from contracts with pi,

the negative utilities are combined to form Q̂
B�i

i�αj1�����αjk , defined ana-

logously. Thus, following a deviation by player pj, the Sanctioning
agent pioptimizes for a perturbed score that represents a combination
of maximizing the win probability of pi and minimizing the win prob-
ability of the deviator pj.

Data availability
The raw data for producing the figures is provided as Source
data. Source data are provided with this paper.

Code availability
The experiments are based on the algorithms contained in the
“Methods” section, which are presented in more detail using Python-
style code snippets in Supplementary Note 12. These depend on the
base No-Press Diplomacy policy and value functions39, which are
available at https://github.com/deepmind/diplomacy.
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