
 

Negotiation Platform for Personalised 

Advertising 
 

 

Luís Ventura de Sousa1 

Malheiro, Benedita1 

Foss, Jerry2 
 

 

1st January 2012 

 

 

1 – “Instituto Superior de Engenharia do Porto”, Department of Electrical 

Engineering, Rua Dr. António Bernardino de Almeida, 431, P-4200 PORTO 

{1900503, mbm}@isep.ipp.pt 

 

2 – “Birmingham City University”, Millennium Point, Birmingham, B4 7XG 

jeremy.foss@bcu.ac.uk 

 
Abstract 

 

This paper describes a multi-agent brokerage platform for near real time 

advertising personalisation organised in three layers: user interface, agency and 

marketplace. The personalisation is based on the classification of viewer profiles 

and advertisements (ads). The goal is to provide viewers with a personalised 

advertising alignment during programme intervals.  

The enterprise interface agents upload new ads and negotiation profiles to 

producer agents and new user and negotiation profiles to distributor agents. The 

agency layer is composed of agents that represent ad producer and media 

distributor enterprises as well as the market regulator. The enterprise agents offer 

data upload and download operations as Web Services and register the 

specification of these interfaces at an UDDI registry for future discovery. The 

market agent supports the registration and deregistration of enterprise delegate 

agents at the marketplace. 

This paper addresses the marketplace layer, an agent-based negotiation platform 

per se, where delegates of the relevant advertising agencies and programme 

distributors negotiate to create the advertising alignment that best fits a viewer 

profile and the advertising campaigns available.  

The whole brokerage platform is being developed in JADE, a multi-agent 

development platform. The delegate agents download the negotiation profile and 

upload the negotiation results from / to the corresponding enterprise agent. In the 

meanwhile, they negotiate using the Iterated Contract Net protocol. All tools and 

technologies used are open source. 

 



 

Keywords: Multi-agent computing, brokerage, automated negotiation, Iterated 

Contract Net, Web Services, UDDI, JADE. 

 

1 Introduction 

Context-aware computing is currently a major research topic driven by the 

availability, popularity, seamless network access and processing power of mobile 

devices. Mobile device applications exploit existing on board sensor data (GPS, 

compass, accelerometer, gyroscope, pressure, temperature or proximity sensors) 

and nearby devices to dynamically adapt to the location, available resources, user 

interests, etc. Furthermore, they allow service providers to build and maintain user 

profiles based on the user interactions and on the user context data collected. 

Personalisation, user recommendation or location-based services are examples of 

popular context-aware computing systems. 

The work herein described expects content distributors to build and maintain 

viewer profiles in order to provide viewers with a personalised advertising 

alignment during programme intervals. The goal is, thus, to develop a multi-agent 

brokerage platform for near real time advertising personalisation [1]. It is a 

component of a larger system intended for the automated near real time content 

personalisation. The architecture for this broader scenario – networked video 

personalised placement – is depicted in Figure 1.  
 

 

Figure 1: Personalised placement overview 

This multi-tier architecture is constituted of four main tiers: the content production 

tier, the content distribution tier, the content consumption tier and the artefact 

brokerage tier. The key players are the producers, the distributors and the viewers. 

End-user clients (PC clients, set-top boxes) need to support object processing, e.g., 

decoding and rendering needs to be supported in advanced codecs. All current 

video distribution formats are feasible, including Satellite Television (TV), Cable 

TV, Cable Internet Protocol TV (IPTV), Telco IPTV, WebTV and Digital 

Terrestrial TV. The video head-end will be unaffected by the requirement to host 

the source content stream. 

The work described in this paper is concerned with the dynamic selection of the 

objects to be inserted in the viewer play-out stream. 



 

2 Background 

The brokerage tier is responsible for the dynamic selection of the objects to be 

inserted in the viewer play-out stream. This is achieved through automated 

agent-based negotiation involving the video content producers and distributors. 

This functionality is exposed to the involved parties as a Software-as-a-Service 

(SaaS) component [2]. 

Here, a service-centric model is proposed to provide producers and distributors an 

automated negotiation service based on Web Service interfaces, Service-Oriented 

Architecture (SOA) and SaaS approaches. Such combination is, according to [3], 

an interesting attempt to combine the strengths of SOA, Web Services, agent-based 

systems and instant messaging technologies. The idea of developing a multi-agent 

negotiation system integrated in a service-oriented architecture is feasible and 

meaningful for e-commerce oriented intelligent trading applications [4]. 

The producers and distributors of media content are modelled by autonomous 

intelligent agents. These so-called enterprise agents must, on one hand, be entirely 

controlled by their real world counterparts to ensure the privacy of the company 

strategic knowledge and, on the other hand, be fully compatible and interoperable 

with the remaining components of the framework. The latter is achieved by the 

adoption of a Web Service interface guaranteeing interoperability and allowing the 

creation of loosely coupled enterprise agents that can enter and leave freely the 

proposed transaction environment. The resulting SOA relies on Universal 

Description, Discovery and Integration (UDDI) service registries to hold the 

descriptions of existing agent services. On one hand, producers and distributors can 

publish, update and remove their service descriptions – metadata descriptions of 

the objects they hold or seek to insert in the viewer stream. On the other hand, any 

agent can discover, download and interact with any service (agent) automatically. 

All video objects are MPEG-4 instances annotated in an MPEG-7 based 

multimedia ontology1. This applies both to the source video objects (the viewer-

selected video streams) and to the external video objects (automatically selected 

and inserted by this framework).  

2.1 Scenario 

The scenario used for testing the platform is the personalisation of advertising 

content. In this context, content producers are advertising agencies eager to place 

their ads in the video streams of target viewers. Content distributors are video on 

demand providers that intend to offer viewers a personalised advertising 

experience. To achieve this goal, distributors have to build and maintain the viewer 

profiles. Viewer profiles and ads have been segmented into a set of predefined 

classes to ensure a straightforward matching. Viewer profiling as well as other 

context-aware inputs are not addressed in this paper. 

                                                      
1 MPEG-4 and MPEG-7 are multimedia standards of the Moving Picture Experts Group (MPEG). 



 

When a viewer selects a programme (video stream) from a distributor registered at 

the platform, he triggers the automated brokerage mechanism. The distributor 

representative queries the UDDI registry for producers with ads matching the 

viewer profile and sends out invitations to the discovered producers to participate 

in a dedicated negotiation. If the invitations are accepted, a collection of trading 

delegate agents are launched at the marketplace and the automated negotiation 

involving the viewer distributor delegate and the producer delegates begins. This 

procedure is repeated until the accumulated list of ads spans the planed interval 

timeslot. As a result, when the programme interval occurs, the distributor has a 

personalised advertising alignment ready to send to the viewer.  

3 Brokerage Platform 

The brokerage platform is a competitive Multi-Agent System (MAS) where 

enterprise agents (representing producer and distributor enterprises) and the market 

regulator meet in order to trade media components according to the negotiation 

profiles of the agents and the rules of the market. The resulting MAS is structured 

in three layers presented in Figure 2.  

 

Figure 2: Brokerage platform architecture 

The top layer is composed by the enterprise user interface agents, the middle layer 

is made of agents that model and represent each enterprise in the platform and the 

bottom layer represents the actual marketplace where the automated negotiation 

occurs. The top layer is the platform interface and holds a collection of enterprise 

user interface agents, one per each registered enterprise. The middle layer contains 

AgDist1AgProd1 AgDistdAgProdp

Market

Profiler

Agent

Market 

Service 

Registry

Delegatei

AgProd1

Delegatej

AgProdp

Delegatei

AgDist1

Market 

Agent
Delegatej

AgDistd

Distributor1 GUIAdmin GUI Distributord GUIProducerp GUIProducer1 GUI

In
te

rf
a

c
e

 

L
a

y
e

r

E
n

te
rp

ri
s
e

 

L
a

y
e

r

M
a

rk
e
tp

la
c
e
 

L
a

y
e

r



 

coarse grain agents representing content producers and distributors – the enterprise 

agents – and the market profiler agent. The bottom layer is composed of the market 

agent and finer grain agents that are delegate enterprise agents. The brokerage 

platform includes, thus, the following agent categories: 

Enterprise interface agents that allow enterprises to join and interact with the 

platform. They are responsible for taking the inputs, spawning or 

reconfiguring the enterprise agent and reporting back the results. A 

producer uses its producer interface agent to upload new ad features and 

market behaviours and to download the obtained results. A distributor 

defines through its distributor interface agent the current viewer profiles, 

the available advertising timeslots and market behaviours and retrieves the 

negotiation outcomes; 

Enterprise agents that represent producers (AgProd) and distributors (AgDist) 

within the platform are coarse grain agents. They participate, upon 

invitation, in specific negotiations by launching delegate agents at the 

marketplace. The enterprise agents expose through Web Service interfaces 

the services required to interact with the other layers; 

Market profiler agent that is responsible for defining the type of negotiation. It is 

controlled by the platform administrator and offers a Web Service 

interface;  

Market agent that is the coordinator of the marketplace;  

Market delegate agents that are small grain agents responsible for trading 

individual ads or timeslots on behalf of enterprise agents. Their ephemeral 

life terminates upon success or failure in the negotiation round for which 

they were invited to participate.  

The brokerage platform MAS is being implemented using the Java Agent 

Development Framework (JADE) [5] [6], the Web Service Integration Gateway 

(WSIG) add-on [7], the Web Service Dynamic Client (WSDC) add-on [8] and the 

UDDI4J API to interact with Web Services. The UDDI service registry used is 

jUDDI [9], an open source Java implementation of the Universal Description, 

Discovery, and Integration (UDDI) specification for Web Services. The WSIG and 

jUDDI technologies are supported by the Apache Tomcat application server [10] 

and Axis 2/Java API for Web Services [11]. To maintain the jUDDI database, we 

use additionally the MySQL database server [12].  

The enterprise agents offer Web Service interfaces that expose a collection of agent 

actions as Web Service operations to the marketplace. These actions were defined 

in a specific ontology created with the Protégé Ontology Editor [13] and imported 

into the platform using JADE Bean Generator plug-in for Protégé – the NegPub 

ontology. This ontology specifies a collection of agent actions (RegisterAgent, 

GetProducerProfile, GetDistributorProfile and SetResults) and data types (Profile, 

ProducerProfile, DistributorProfile and Results). Ontology mapper classes were 

defined to ensure that each enterprise agent exposes only the operations relevant to 

its functionality: producers expose GetProducerProfile and SetResults operations, 



 

distributors GetDistributorProfile and SetResults operations and the market agent 

the RegisterAgent and DeregisterAgent operations. 

The Web Service interfaces of the enterprise agents are deployed at the WSIG and 

registered at jUDDI. This approach allows the automated search, identification and 

invitation to the marketplace of the potential negotiation partners (advertising 

agencies) by programme distributors. Upon acceptance, the corresponding 

delegates are launched at the marketplace layer.  

The interaction between the enterprise and the delegate agents on the second and 

third layers, respectively, rely on the Web Service Dynamic Client (WSDC) 

mechanism, e.g., the delegate agents get the negotiation profile and report the 

negotiation results through WSDC.  

The work detailed in this paper is concerned with the marketplace layer.  

3.1 Marketplace 

Since the interface and enterprise layers are currently under development, we have 

developed a temporary brokerage platform Graphical User Interface (GUI) where it 

is possible to create directly new producer and distributor agents – see Figure 3.  

 

Figure 3: Brokerage platform GUI 



 

The creation of producer and distributor agents requires the specification of the 

enterprise agent name, the ad properties (product category, price-related features 

and, in the case of a producer, the ad contract reference) and the negotiation 

behaviour (protocol and strategy). The negotiation strategy will be used to make, in 

the case of a producer delegate, new bids/proposals and, in the case of a distributor 

delegate, for evaluating the proposals received so far. Figure 4 shows the GUI of 

the distributor and producer agents. 

 

Figure 4: Distributor and producer agents GUI 

For each enterprise agent launched, a new service interface is deployed at WSIG 

and the corresponding Web Service is registered at jUDDI. Figure 5 shows the list 

of Web Services registered at the WSIG after the creation of the marketplace agent 

market, isep, a distributor agent, and uzina, a producer agent, as well as the details 

of each Web Service interface.  

The uzina and isep agents expose, respectively, the GetProducerProfile and 

GetDistributorProfile operations, used by the delegate agents to download their 

negotiation profile, and the SetResults operation, used by the delegate agents to 

report the negotiation outcomes. The market agent exposes the RegisterAgent 



 

operation used to register the delegate agents in the marketplace. The different 

types of agents expose diverse operations due to the application of specific 

ontology mappers: producers use the NegPubOntoMapProducer, distributors the 

NegPubOntoMapDistributor and the market agent the NegPubOntoMapMarket. 

Finally, it presents for each agent the UDDI service key created as well as the link 

for the Web Service Description Language (WSDL) file automatically created by 

the WSIG. 

 

Figure 5: WSIG’s service list 

On the jUDDI side, it is possible to obtain the features of a business. Figure 6 

shows the WSIG services registered at jUDDI: isep, market and uzina.  



 

<?xml version="1.0" encoding="UTF‐8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"> 
 <soapenv:Body xmlns="urn:uddi‐org:api_v2"> 
  <serviceList generic="2.0" operator="jUDDI.org"> 
   <serviceInfos> 
    <serviceInfo businessKey="7A7B3E00‐00C5‐11E1‐BE00‐979858722BD2"  
      serviceKey="6D6CE8E0‐4C0F‐11E1‐A8E0‐E9DD87AB71D7"> 
     <name>WSIG's businessService for isep</name> 
    </serviceInfo> 
    <serviceInfo businessKey="7A7B3E00‐00C5‐11E1‐BE00‐979858722BD2"  
      serviceKey="58CBD7C0‐4C0F‐11E1‐97C0‐FDA5C089E11E"> 
     <name>WSIG's businessService for market</name> 
    </serviceInfo> 
    <serviceInfo businessKey="7A7B3E00‐00C5‐11E1‐BE00‐979858722BD2"  
      serviceKey="6E504400‐4C0F‐11E1‐8400‐E7952212B0E4"> 
     <name>WSIG's businessService for uzina</name> 
    </serviceInfo> 
   </serviceInfos> 
  </serviceList> 
 </soapenv:Body> 
</soapenv:Envelope> 

Figure 6: WSIG’s service descriptions at jUDDI 

Figure 7 shows the isep agent service description stored to jUDDI. 

 
<?xml version="1.0" encoding="UTF‐8"?>
<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"> 
 <soapenv:Body xmlns="urn:uddi‐org:api_v2"> 
  <serviceDetail generic="2.0" operator="jUDDI.org"> 
   <businessService businessKey="7A7B3E00‐00C5‐11E1‐BE00‐979858722BD2"  
        serviceKey="6D6CE8E0‐4C0F‐11E1‐A8E0‐E9DD87AB71D7"> 
    <name>WSIG's businessService for isep</name> 
    <bindingTemplates> 
     <bindingTemplate bindingKey="6D77BE50‐4C0F‐11E1‐BE50‐EB165205F663"  
        serviceKey="6D6CE8E0‐4C0F‐11E1‐A8E0‐E9DD87AB71D7"> 
      <accessPoint URLType="http">http://localhost:8080/wsig/ws</accessPoint> 
      <tModelInstanceDetails> 
       <tModelInstanceInfo tModelKey="uuid:6D66F570‐4C0F‐11E1‐B570‐ED9EE68159CC"/> 
      </tModelInstanceDetails> 
     </bindingTemplate> 
    </bindingTemplates> 
    <categoryBag> 
     <keyedReference keyName="fipaServiceName" keyValue="isep"  
        tModelKey="UUID:A035A07C‐F362‐44dd‐8F95‐E2B134BF43B4"/> 
     <keyedReference keyName="GetDistributorProfile" keyValue="GetDistributorProfile"  
        tModelKey="UUID:A035A07C‐F362‐44dd‐8F95‐E2B134BF43B4"/> 
     <keyedReference keyName="fipaServiceName" keyValue="isep"  
        tModelKey="UUID:A035A07C‐F362‐44dd‐8F95‐E2B134BF43B4"/> 
     <keyedReference keyName="SetResults" keyValue="SetResults"  
        tModelKey="UUID:A035A07C‐F362‐44dd‐8F95‐E2B134BF43B4"/> 
    </categoryBag> 
   </businessService> 
  </serviceDetail> 
 </soapenv:Body> 
</soapenv:Envelope> 

Figure 7: WSIG’s isep service description at jUDDI 



 

After the creation of the enterprise agents, trading can start. The distributor agents 

query the UDDI registry for producers with ads matching the viewer profile and 

invite the discovered producers to participate in a dedicated negotiation. If these 

invitations are accepted and the involved agents support a common negotiation 

protocol, a collection of delegate agents are launched at the marketplace and the 

automated negotiation between delegates begins. In our case, isep and uzina launch 

two delegate agents in the marketplace: the isep_convertible_Delegate and the 

uzina_bmw_convertible_Delegate – see Figure 8.  

 

Figure 8: JADE platform GUI 

In this example, distributor and producer delegates use the Iterated Contract Net 

(ICNET) negotiation protocol [14] and adopt a linear negotiation strategy 

regarding a single ad feature – price. Although the negotiation strategy is identical, 

the input parameters downloaded via the GetDistributerProfile and 

GetProducerProfile operations differ.  

The negotiation follows the ICNET protocol, where the distributor delegate issues 

calls for proposals to all relevant producer delegates and collects the received 

proposals for a given number of iterations. In the end, the distributor delegate 

accepts the best proposal (higher price) and reports the result using the Web 

Service interface of the distributor agent, i.e., invokes the SetResults operation of 

the distributor agent. This cycle is repeated until the whole interval timeslot is 

filled with an alignment of ads. At this point, the distributor delegate terminates 

execution. The producer delegates report their results back by invoking the 

SetResults operation of the corresponding producer agents and terminate.  

Although the ICNET protocol adopts the Foundation for Intelligent Physical 

Agents (FIPA) Agent Communication Language (ACL) standard [15], it does not 

specify the actual content of a message. The content of the ICNET messages 

exchanged between delegate agents uses a dedicated multimedia negotiation 



 

ontology that was also defined with the Protégé Ontology Editor and imported into 

the platform using JADE Bean Generator plug-in for Protégé. This ontology 

represents all relevant negotiation actions and features. The negMultimediaComp 

ontology defines a single action – Negotiate – and several negotiation features: 

category, price, available_timeslot, contract and component, a structure to hold 

multimedia objects composed of type, category and timeslot. Table 1 illustrates the 

use of this ontology during the ICNET negotiation by showing the content of three 

FIPA ACL standard messages: a call for proposals (CFP) issued by the 

isep_convertible_Delegate, a propose message send by the 

uzina_bmw_convertible_Delegate and a final accept-proposal of the 

isep_convertible_Delegate. 

Table 1: Content of ICNET messages 

Performative Content 

CFP (Negotiate
 :category convertible 
 :price 45.0 

:available_timeslot 10.0)

PROPOSE (Negotiate
 :contract bmw 
 :price 45.199997 
 :available_timeslot 0.0 
 :component 

 (MultimediaComponent 
  :type ad 
  :category convertible 

:timeslot 10.0))

ACCEPT-PROPOSAL (Negotiate
 :category convertible 
 :price 45.199997 

:available_timeslot 0.0)
 

Finally, the distributor delegates have a GUI where the outcomes of the negotiation 

rounds are displayed – see Figure 9. 

 

Figure 9: Distributor agent isep GUI 



 

4 Conclusions 

In this paper we situate this research work, describe an implementation scenario, 

the layered platform architecture and, then, focus on the marketplace layer 

development and on its interaction with the enterprise layer. 

4.1 Achievements 

A brokerage platform GUI has been implemented for specifying and launching 

distributor and producer agents. These agents offer Web Service interfaces to 

interact both with user interface (interface layer) and market delegate (marketplace 

layer) agents. Furthermore, they register their Web Service specifications on a 

UDDI service registry to allow the discovery and consumption of the exposed 

services by others. 

Distributor agents wishing to create a personalised ad alignment for an upcoming 

viewer interval, query the UDDI to discover and invite relevant producers to the 

market. Upon success, a distributor delegate and one or more producer delegates 

are created at the marketplace and the actual negotiation occurs according to the 

negotiation profiles downloaded from the enterprise agents. Once a negotiation 

finishes, the delegates report back their negotiation outcomes and terminate. 

Two ontologies were created to support the negotiation process: the first is used 

between enterprise and delegate agents, i.e., in the inter-layer communication, and 

the second between delegate agents within the marketplace layer. 

The setup of this test-bed has involved a relevant effort in the selection, 

deployment and use of several different technologies exclusively supported by 

open source API and tools. 

4.2 Future Work 

The interface layer between the real world producers and distributors and the 

platform will continue to be developed. The enterprise interface agents will interact 

with the enterprise layer through Web Service interfaces, allowing enterprises to 

reconfigure their enterprise agents, define new inputs and collect the negotiation 

results.  

The enterprise layer agents will expose additional Web Service interfaces to 

support the interaction with the interface layer.  

Support to other negotiation protocols and strategies will be added to the 

marketplace layer.  

To reinforce the availability and scalability of the platform, the migration to the 

cloud computing paradigm will be attempted in an effort to offer the platform as a 

Software-as-a-Service (SaaS) component to the involved parties, i.e., the real world 

enterprises.  

Finally, extensive testing with appropriate datasets will be carried out. 



 

References 

[1] Malheiro, B., Foss, J., Burguillo, J. C., Peleteiro, A. and Mikic, F. A. 

(2011), “Dynamic Personalisation of Media Content”, Proceedings of the 

Sixth International Workshop on Semantic Media Adaptation and 

Personalization (SMAP 2011), ISBN 978-0-7695-4524-0, pp 21-26, 

Vigo, Spain. 

[2] Malheiro, B. and Foss, J. (2010), “A Proposal for Media Component 

Brokerage”, Proceedings of the Fourth International European 

Conference on the Use of Modern Information and Communication 

Technologies (ECUMICT 2010), Ed. Lieven de Strycker, Nevelland 

v.z.w., ISBN 978-9-08-082555-5, pp 389-403, Gent, Belgium. 

[3] Ma, Y., Xia Li, H. and Sun, P. (2007), “A lightweight agent fabric for 

service autonomy”, Proceedings of the Conference on Service-oriented 

Computing: Agents, Semantics, and Engineering (SOCASE'07), Huang 

et al. (Eds.), LNCS 4504, Springer-Verlag, pp. 63-77. 

[4] Cao, M., Chi, R. and Liu, Y. (2009), “Developing a Multi-Agent 

Automated Negotiation Service Based on Service-Oriented 

Architecture”, Service Science, Vol. 1, No. 1, pp 31-42.  

[5] Bellifemine, F., Caire, G. and Greenwood, D. (2007), “Developing 

Multi-Agent Systems with JADE”, Wiley. 

[6] Telecom Italia. JADE (2012). Available at http://jade.tilab.com/ 

[Accessed in January 2012]. 

[7] JADE Board (2011), “JADE Web Services Integration Gateway (WSIG) 

Guide”, Telecom Italia, Tech. Rep. 

[8] Scagliotti, E. and Caire, G. (2010), Telecom Italia, “Web Services 

Dynamic Client (WSDC) Guide”, Telecom Italia, Tech. Rep. 

[9] The Apache Software Foundation (2012). Apache jUDDI. Available at 

http://juddi.apache.org/ [Accessed in January 2012]. 

[10] The Apache Software Foundation (2012). Apache Tomcat. Available at 

http://tomcat.apache.org/ [Accessed in January 2012]. 

[11] The Apache Software Foundation (2012). Apache Axis2/Java. Available 

at http://axis.apache.org/axis2/java/core/ [Accessed in January 2012]. 

[12] Oracle Corporation. MySQL (2012). Available at http://www.mysql.com/ 

[Accessed in January 2012]. 

[13] Stanford Center for Biomedical Informatics Research (2012). Protégé. 

Available at http://onlinelibrary.wiley.com/book/10.1002/9780470058411 

[Accessed in January 2012]. 

[14] FIPA (2012). Iterated Contract Net Specification. Available at 

http://www.fipa.org/specs/fipa00030/ [Accessed in January 2012]. 

[15] FIPA (2012). Agent Communication Language. Available at 

http://www.fipa.org/repository/aclspecs.html [Accessed in January 2012]. 

 


