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Abstract—We address the problem of localization in vehicular
ad hoc networks. Our goal is to leverage vehicle communications
and smartphone sensors to improve the overall localization
performance. Assuming vehicles are equipped with IEEE 802.11p
wireless interfaces, we employ a two-stage Bayesian filter to track
the vehicle’s position: an unscented Kalman filter for heading
estimation using smartphone inertial sensors, and a particle
filter that fuses vehicle-to-vehicle signal strength measurements
received from mobile anchors whose positions are uncertain, with
velocity, GPS position, and map information. Our model leads to
a robust localization system and is able to provide useful position
information even in the absence of GPS data. We evaluate the
algorithm performance using real-world measurements collected
from four communicating vehicles in an urban scenario, and con-
sidering different combinations of location information sources.

Index Terms—Information fusion, road vehicle localization,
vehicular ad hoc networks (VANETs), vehicle-to-vehicle (V2V)
communications.

I. INTRODUCTION

VEHICULAR ad hoc networks (VANETs) are a promising

technology that may provide solutions to many of the

current transportation problems, and enable interesting new

applications to the users in their everyday lives. Location

information plays a key role in several important VANET

applications such as geographic information dissemination,

traffic control, and automatic positioning of accidents. The

focus of this work is on distributed localization of vehicles

in a VANET by combining different sources of information.

Nowadays, the most widely used positioning service is the

Global Positioning System (GPS). However, GPS ceases to

work or exhibits large positioning errors in multipath en-

vironments and non-line-of-sight conditions to the satellites,

such as urban canyons, tunnels, and underground parking [1].

Additional sources of information can be exploited in order

to provide better positioning performance for the navigation

system. Performance is not exclusively the accuracy, but also

integrity, availability, and continuity of service [2].

In VANETs, IEEE 802.11p communication range typically

reaches few hundreds of meters. Deploying a whole network

in which any node has a minimum of three road side units

(RSU) within reach at all times is highly costly, while lower
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density will not provide enough accuracy or coverage [3].

Neighbor-aided localization arises as an alternative approach

that overcomes these limitations of localization techniques that

rely on fixed anchors alone. Vehicles able to collect informa-

tion about themselves and about the surrounding environment

can act as mobile anchors by sharing information with their

neighbors [4]. Our main goal is to leverage communication in

VANETs, both between vehicles (V2V) and between vehicles

and infrastructure (V2I), and low-cost smartphone sensors in

order to improve localization performance. We also use map

information, if available, but our algorithm is not dependent on

the availability of any of the location information sources. In

the absence of GPS, the combination of ranging information

from neighbor vehicles and map data is particularly interesting

since while the map limits the lateral error, the V2V ranging

helps to reduce the error along the road direction, where the

closest anchors are distributed. We show that this strategy,

for a typical urban scenario where the vehicle of interest

reaches at least three nearby (maximum distance of 40 m)

anchors with limited uncertainty (1σ confidence interval of

8 m), gives a similar performance to what we obtained using

the smartphone’s GPS.

The key contributions of this paper are as follows: 1) a new

neighbor-aided localization and tracking model using moving

vehicles with uncertain positions as anchors that is able to

provide reliable position information even in the absence of

GPS data; 2) a robust distributed inference algorithm suitable

for large-scale use in vehicular networks, fusing various types

of data such as V2V signal strength measurements, GPS po-

sitions, inertial data from a smartphone, and map information,

in a particle filter; and 3) evaluation using real-world data

in a challenging urban scenario with quality assessment for

different combinations of the location information sources,

proposing a characterization for favorable V2V ranging con-

ditions. The rest of the paper is organized as follows. Section

II provides an overview of the vehicular networks localization

literature, focusing mainly on collaborative approaches. We

formulate the problem statement in Section III, and the model

assumptions in Section IV. Our proposed inference algorithm

is explained in Section V, and in Section VI we show

experiments with real data to evaluate its performance. Section

VII concludes the paper.

II. OVERVIEW OF LOCALIZATION IN VANETS

Existing wireless positioning approaches typically rely on

pairwise range estimates, and/or relative angles with respect to

some anchor nodes whose positions are fixed and known [5].

Range is estimated either from received signal strength indica-

tor (RSSI) measurements using a calibrated channel model [6],
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signal propagation time [7]–[10], or combination of the

two [11], whereas angle estimation requires either antenna

arrays [5], or coil arrays [12]. Other popular localization

techniques are RSSI fingerprinting [13] and simultaneous

localization and mapping [14].

Apart from the wireless-based techniques, various on-board

sensors may be used to gather useful information for position-

ing [15]. Vehicle motion sensors such as odometer, velocity

encoder, steering encoder, gyroscope, electronic compass, and

accelerometer allow the extraction of kinematic information

like traveled distance, heading, linear/angular velocity and ac-

celeration. Such sensors are used in inertial navigation systems

or dead reckoning techniques [16]. If there is access to digital

road maps, the set of possible locations can be reduced and

the accuracy of the estimator improved by correcting vehicles’

positions and trajectories to the roads, a technique known as

map matching. A survey on this topic is provided in [17].

The aim of this paper is to leverage the cheap inertial sensor

available in the passenger’s mobile phone, as well as vehicle-

to-vehicle communication, which will most likely become

mandatory in future vehicles (e.g. in Europe [18]).

A. Collaborative Localization in VANETs

Localization in wireless networks is a broad subject. We

focus on collaborative approaches [19], [20] for vehicular

networks. A comprehensive review on this topic can be found

in [21]. The area of robotics also addresses the problem of

cooperative localization. However, robots typically share a

common goal, and motion and control models differ from the

ones for road vehicles. Furthermore, solutions often involve

sensors too expensive to be deployed in large scale, such as

cameras and lasers [22]. VANETs are a very special type

of ad-hoc networks, with particular constraints on vehicle

movement, high mobility causing rapid topology changes, and

limited bandwidth [23]. These fundamental differences call for

specially tailored solutions. Many works address the localiza-

tion problem in VANETs, pointing out that GPS is insufficient

in urban areas. Fusing data from a variety of sources increases

not only the accuracy, but also the reliability. In [24], each

vehicle shares its own velocity and distance to the neighbors

(calculated through RSSI) among its cluster of vehicles. GPS,

if available, is used only to define the initial position since

the focus is the relative positions of vehicles. Accuracy is

increased by using road constraints. Uncertainty along the

road is set to be higher than in the orthogonal direction. In

[25], every vehicle is equipped with a GPS receiver, an INS

and a VANET transceiver. The inter-vehicle communication

system extracts information pertinent to the location estimates

of vehicles in its vicinity: the distance between the vehicle

and its neighbors (GPS based), the location estimates of the

neighbors, and their level of uncertainty. Vehicles with the

smallest uncertainty are used as anchors, whereas vehicles

with detected multipath are not. Both works apply an EKF,

which tends to perform better in approximately linear settings

(see Section V). Their main limitation is the performance

assessment of the proposed model solely on simulations and

using a straight highway scenario of few kilometers. These

scenarios are very limited as they do not pose most of

the challenges faced in real situations, especially in urban

settings, such as alternative paths (bifurcations, intersections,

roundabouts, etc), sinuous routes, multipath and shadowing

effects from numerous obstacles (including moving ones)

and non-line of sight communications. By contrast, we use

a particle filter, which has the ability to represent arbitrary

probability densities, converging to the true posterior asymp-

totically even in non-Gaussian, nonlinear dynamic systems.

This filter is therefore more suitable for our localization

approach, evaluated in tortuous urban trajectories and using

real measurements.

CoVeL project [26], [27] includes tests with real collected

data. The authors use four (valid) vehicles, one of them

equipped with a high accuracy GPS and inertial navigation

reference system used for ground truth retrieval. V2V is

solely employed to exchange GPS raw measurements among

vehicles to determine their relative positions, assuming that

all vehicles experience the same GPS positioning bias and

disregarding other errors such as multipath. A group map

matching is performed in order to improve accuracy, along

with a UKF for position tracking. There are other cooperative

localization works that do not use V2V ranging techniques,

namely [28], [29], focusing instead on improving the low-

level GPS data. They require at least four pseudo-ranges

from visible satellites, making them unsuitable whenever GPS

exhibits limited coverage and large positioning error, which

happens frequently in dense urban areas. The solution in

[30] also uses real data to evaluate performance. However,

it makes use of expensive sensors, namely laser scanners, and

is therefore beyond the scope of our work, which focuses on

approaches with the potential for large-scale application.

III. PROBLEM FORMULATION

Our system consists in a group of vehicles (and RSUs if

available), all equipped with IEEE 802.11p vehicular con-

nectivity. Concerning sources of information, we assume that

vehicles are heterogeneous and each may have access to

different types of data. Examples of potential sources comprise

GPS, on-board sensors, road maps, and WLANs signals. In our

implementation, we include the first three. The approach is not

exclusively developed for urban environments, but focuses on

those scenarios since they are more challenging.

We focus on the computations performed in a single vehicle

as the center of the network, denoted as V0. This vehicle of

interest (VOI) aims to calculate its own state. For simplicity,

the state of a vehicle consists in its 2D position and velocity

(heading and speed). Our approach can be easily extended

to a more complex state, including for example 3D position

and acceleration, and to comprise other information sources.

Considering the whole network, our goal is to estimate the

state of all vehicles, each performing the calculations by

seeing itself as the VOI (and its one-hop neighbors as mobile

anchors).

We propose a distributed architecture since it is more

scalable and flexible for dynamic vehiclular networks than

a centralized one. By handling information locally and pro-

cessing it in the vehicle itself, the computational burden is
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spread among the vehicles. A centralized architecture would

imply a high use of resources and be less robust to failure [19]

since it would require all measurements to be sent to a central

processor that would then transmit the computed results to

the vehicles. One limitation of distributed algorithms is the

circular reasoning that can arise from inter-estimate depen-

dency, which might lead to over convergence [31]. To avoid

this issue, in our work the vehicles do not share any estimation

made with external data, i.e. data collected and shared by

other vehicles. Each vehicle sends a position estimate obtained

only with data acquired from its own sensors, which we name

individual position information. This location is sent along

with a corresponding measure of uncertainty.

IV. MODEL ASSUMPTIONS

A. Path-loss Channel Model

In free space, the power of a radio-frequency signal de-

cays proportionally to d2, where d is the distance between

transmitter and receiver. In real-world channels, however, the

propagation of a signal is affected by various phenomena

such as reflection, refraction, diffraction, and scattering. It is

nonetheless accepted on the basis of empirical evidence that

the received signal strength may be modeled as a log-normally

distributed random variable with a distance-dependent location

parameter [32]. Since the aforementioned effects are envi-

ronment dependent, the models have to be calibrated for the

intended scenario. Eq. (1) provides a path-loss channel model

that describes the received signal strength ρ measured in dBm

(decibel milliwatt) given the transmitter-receiver distance d (in

meters), using three parameters: received signal strength ρ0
[dBm] at a reference distance of 1 m, channel path-loss expo-

nent α, and the fading vσ , modeled as a zero-mean Gaussian

random variable with variance σ2, i.e., vσ ∼ N (0, σ2).

ρ(d) = ρ0 − 10α log10(d) + vσ (1)

Fig. 1 shows a set of real measurements along with the

estimated path-loss model (using logarithmic scale for the dis-

tance, the model becomes linear). The data were collected in

an urban scenario, from four vehicles communicating through

802.11p with 50Hz beacons, during a 10 minutes drive of

approximately 5.5 km, in Porto, Portugal. The linear model

in Fig. 1 was obtained from the measurement data of one of

the vehicles using linear regression. The estimated values for

the channel parameters are ρ0 = −34 dBm, α = 2.1, and

σ = 5.5 dB. Having calculated these channel parameters, we

are able to apply the path-loss model to estimate the distances

from the RSSI values of the neighbors. Different techniques

can be used to estimate the position of the vehicle from the

distance to its neighbors. We opted for a parametric approach

as it takes into account the uncertainty of the measurements.

In order to estimate the location of a vehicle, we calculate

the likelihood function lρ(d) = p(ρ|d) corresponding to the

path-loss model in (1).

lρ(d) = N (ρ0 − 10α log10(d), σ
2) (2)

It is important to note that several parameters impact ranging

precision, such as the true distance d, the fading variance σ2,
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Fig. 1: Pairs of GPS estimated distance and RSSI used to

determine channel parameters along with the estimated model.

and the number of available measurements M . Below, we

provide the Cramér-Rao Lower Bound (CRLB), a lower bound

on the variance of any unbiased estimator d̂ of d:

CRLB(d̂) =
1

M

(

σd ln 10

10α

)2

. (3)

Eq. (3) highlights the importance of each parameter in the

estimator variance. The CRLB increases quadratically with d
and σ and is inversely proportional to M .

We substitute d by the Euclidean distance between a vehicle

position x0 = [x0, y0]
⊺ and anchor position xa = [xa, ya]

⊺

to obtain the likelihood of the location of the VOI V0. We

assume that nA anchors are available, and that the channel

model is the same for all anchors. Since the anchors are at

different locations separated by a distance much higher than

the wavelength, we also assume that the vehicles experience

independent fading. Therefore, the joint likelihood function of

the position factorizes as follows:

lρ(x0) =

nA
∏

a=1

N (ρ0 − 10α lg ‖xa − x0‖, σ
2). (4)

The corresponding CRLB for the general scenario with nA

anchors, each providing Ma independent RSSI measurements,

is given by (5). We observe that the number of anchors and

their geometry relative to the VOI impact the lowest achievable

variance. These results are consistent with the ones presented

in [5] for a location estimation algorithm using RSSI, although

we show ours from the perspective of a single vehicle, VOI,

while in [5] they are calculated for the whole network. In [33],

the authors present the CRLB for the scenario of network

topology uncertainty. The fundamental limits of wideband

localization are presented in [34].

CRLB(x̂0)=
(σ ln 10

10α

)2

[

nA
∑

a=1

(xa − x0)(xa − x0)
⊺

M−1
a ‖xa − x0‖4

]

−1

(5)

A higher number of anchors helps to build up the rank of

the Fisher information matrix (FIM) by summing up rank-one

matrices (outer products) in (5). The FIM rank is increased

as long as the corresponding position vectors are linearly
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independent. For example, 2-D position estimation requires a

rank-two (invertible) FIM. When the anchors lie approximately

on a line, the rank of the FIM tends to one, and therefore the

positioning estimator exhibits very large variance along the di-

rection orthogonal to the corresponding line (null space). This

conclusion is also consistent with the concept of horizontal

dilution of precision (HDOP), which quantifies the impact of

range estimation errors on the positioning error given certain

anchor configurations.

B. Map Information

If a road map is available, we distinguish between road

and non-road areas. In our implementation we use basic map

data from Open Street Map: each road segment is defined

simply by two edge points. We consider this segment as the

center of the road. The map does not include the width of the

roads or their number of lanes. Since our focus is on urban

environments, we attribute a default width of 10.5 m to all road

segments, assuming a three-lane road (3.5 m each lane) as the

largest possible scenario. Most streets in the city have either

one or two lanes (same or opposite directions), so this value

already gives us a safe margin by including potential roadsides

or parking spaces. By choosing the highest value, we may

keep non-road locations flanking narrower roads as valid but

we also guarantee that we do not eliminate suitable position

candidates. This assumption can be adapted depending on the

scenario and the available map details.

V. INFERENCE ALGORITHM

A. Bayesian Approach

Fusing different types of data with different degrees of

reliability in a single position estimator can be done in many

different ways. Parametric estimation approaches, such as

Maximum Likelihood, rely on statistical models associated

with erroneous measurements. Based on the assumption that

the errors corresponding to different sensors are statically

independent, a joint likelihood of all available information

can be calculated [35]. Bayesian inference methods can also

be applied, involving prior information, and not only the

likelihood [36]. Typically, when estimating time-varying pa-

rameters filtering algorithms are used, the choice being based

upon a trade-off between accuracy and complexity. Kalman

Filter (KF) is widely used for its simplicity of implementa-

tion, tractability and robustness. When measurement and state

transition models are linear and all errors are Gaussian, KF

is an optimal estimator in the mean-square sense. However,

often the observation model and vehicle dynamics in road

navigation are nonlinear processes. Therefore, we focus on

nonlinear filtering methods more suitable for navigation. Ex-

tended Kalman Filter (EKF) linearizes the nonlinear model

with first-order Taylor series about the predicted state, such

that KF can be applied. However, the employed models are

often highly nonlinear, and divergence may occur, especially

when measurements exhibit high noise. Unscented Kalman

Filter (UKF) [37] appears as an alternative to EKF, especially

for highly nonlinear systems for which the latter gives particu-

larly poor performance. Particle filters, on one hand, impose no

restrictions on the state-space model. On the other hand, when

the dimension of the state is large, they suffer from “the curse

of dimensionality” [38], i.e., large computational complexity.

More details on the comparison of nonlinear filters can be

found in [39].

Bayesian-filters are powerful statistical tools for state es-

timation that reliably combine information originating from

multiple sources with different degrees of reliability. In order

to track the location over time, we employ a two-stage

Bayesian filter. The main stage is a particle filter for location

tracking. We choose this filter because it allows the represen-

tation of arbitrary probability density functions and makes it

very easy to incorporate the road restrictions. We are, however,

mindful of their potential large complexity and careful to keep

the computational cost feasible. Once the posterior function

has been calculated, in order to obtain the state estimate, we

use a maximum a posteriori estimate, which corresponds to

the mode of the posterior density. As our state-space model is

highly non-linear, we opt for a bootstrap particle filter that im-

plements a sequential importance sampling with the transition

prior probability distribution as importance function [35]. This

main filtering stage includes a prediction phase based on the

vehicle’s dynamics, namely the velocity (speed and heading).

A secondary filtering stage, which is a UKF, is employed and

outputs the heading estimate required by the main stage. This

UKF fuses inertial measurements collected from a smartphone

(magnetometer, gyroscope and accelerometer data).

B. Proposed Filter

In Section IV-A, we considered the method to estimate

the position of V0 in a fixed time instant, i.e. we did not

take the motion of the vehicles into account yet. Now, we

focus on the dynamic part of the solution, proposing a two

stage inference method. We shall first introduce the state-

space model corresponding to the main stage of our Bayesian

filter, i.e., the particle filter for position tracking. We define

the current full state of the vehicle of interest V0 at time k in

Cartesian coordinates as

X0(k) = [x0(k), y0(k), s0(k), h0(k)]
⊺, (6)

where x0(k), y0(k) are the vehicle position coordinates (in me-

ters) at time k, s0(k) is the vehicle speed (in meters/second),

and h0(k) denotes the vehicle’s heading (measured in radians

from the x-axis that coincides with the East direction, and

positive angles are measured from East to North).

The state-space model of the second stage is given as:

x0(k) = x0(k − 1) + Ts0(k − 1) cos(h0(k − 1)) (7)

y0(k) = y0(k − 1) + Ts0(k − 1) sin(h0(k − 1)) (8)

s0(k) = ŝ0(k) + wsk (9)

h0(k) = h0(k − 1) + ∆ĥ+ whk
(10)

where T is the time interval between instances k − 1 and

k (in seconds), whereas ∆ĥ is the estimated heading change

rate during interval T , and ŝk is the estimated average speed

within that time interval. The process noise is defined for

both heading and speed as Gaussian distributions, represented
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by whk
and wsk , respectively. The corresponding normal

distributions have zero mean and variances Tσ2

h and Tσ2
s ,

respectively, where σh and σs are the reference standard

deviations for an interval of one second.

1) State Equations: The state prediction equation is a

simple linear motion model along each coordinate x and y,

as shown in Eqs. (7) and (8), respectively. We assume the

vehicle has access to heading and speed estimates to be used

in the motion model. These can be obtained from any source,

without loss of generality. For example, the speed information

can be collected by a low-cost on-board diagnostics (OBD)

device connected to the vehicle. In our case, the heading is

estimated using the inertial sensors available in the passen-

ger’s smartphone, namely accelerometer, magnetometer and

gyroscope. A UKF implementation based on [40] was used,

corresponding to the secondary stage of the proposed Bayesian

filter. Please refer to Section 5.2 of [40] for details about the

algorithm for orientation estimation.

2) Measurement Equations: We define Z(k), a composite

measurement vector at time k which is comprised of individual

GPS position estimates and RSSI measurements the VOI

collected from the available anchors. A different model is

necessary for each sensor in composite vector Z(k). For the

RSSI, the model is derived from (1), rewriting the distance

d in terms of coordinates of the VOI x0(k) for all available

anchors xa(k). The RSSI measurement ρa(k) corresponding

to the packets sent from an anchor a at time k is related to

the vehicle position x0(k) as follows

ρa(k) = ρ0 − 10α lg ‖xa(k)− x0(k)‖+ vσ(k), (11)

and the corresponding joint likelihood function for nA anchors

is given in (4). In our model, moving vehicles that are in the

range of V0 act as mobile anchors. They know their positions

with some degree of uncertainty and share their own estimated

positions x̂a(k) = [x̂a, ŷa]
⊺ along with respective uncertainty,

e.g. (a representation of) their location posterior density. In

the implementation, we used GPS position estimates along

with position reliability measure provided by the GPS receiver.

Due to anchor position uncertainty, their realizations have been

drawn from a Gaussian distribution with mean xa as the mea-

sured GPS position, and standard deviation σa derived from

the corresponding position reliability measure. The likelihood

corresponding to the anchor’s GPS measurements is given by

N (x̂a(k), σa(k)), where x̂a(k) and σa are the estimated GPS

position and its standard deviation at time k. In the algorithm

(see Algorithm 1), in order to reduce the computational cost

of calculating the joint likelihood function for nA anchors

with uncertain positions online, we precompute it using 100

particles drawn from the aforementioned Gaussian function to

represent each anchor and save the results in a lookup table.

If individual location estimates are available at the vehicles,

for example from GPS, the corresponding likelihood functions

are modeled according to the reliability of these estimates. The

composite likelihood function p(Z(k)|X(k)) is given by

p(Z(k)|X(k)) = lL(x0(k))lρ(x0(k)) (12)

where lL(x0(k)) is the product of the probabilities of x0(k)
being the current position of V0, for each alternative source

Fig. 2: Urban trajectory of approximately 7 km.

of individual information. The global positions coordinates

have been converted to Cartesian ones using an equirectangular

projection.

3) Map Restrictions: For each particle, we check whether

its position lies on a road or not. Particles outside the roads

are deleted and to maintain the total number of particles, the

ones on the roads are replicated according to their weights, so

that particles with higher weights have higher probability of

being replicated.

4) Computational Cost: The computational complexity of

our particle filter is O(nAnP ) at each time instance k, where

nA is the number of anchors and nP the number of particles.

The number of anchors is usually much lower than the number

of particles and anchors should be limited to the closest or

more promising neighbors (the ones with higher confidence

in their position). Therefore the computational cost is mostly

driven by the number of particles used in the filter, a trade-

off between the accuracy of the estimation and the required

computational resources to achieve it in suitable time. For

example, considering an update rate of few Hz, and one

thousand particles, the computation can be easily carried out

by most modern multi-core processors based smartphones.

VI. EXPERIMENTS WITH REAL DATA

In this section, we show experiments as a proof-of-concept

for our approach in a real world setting and providing an

evaluation of quality among different combinations of in-

formation sources. Four cars were driven for 30 minutes in

the city of Porto along the route shown in Fig. 2, facing

everyday traffic conditions with regular driving behavior. No

special environments or settings were chosen, other than

keeping the vehicles in communication reach of each other

for as long as possible while being safe and compliant with

the road rules. Each vehicle was equipped with a purpose-

built development platform for vehicle communication, NEC

LinkBird MX, which implements 802.11p wireless standard

(5.85–5.925 GHz) and has built-in beaconing functionality of
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Fig. 3: Various metrics for the whole trip displayed per second.

50 beacons per second. A GPS receiver was positioned on ve-

hicle’s rooftop, connected to the LinkBird. Inside, two Nexus

4 or 5 smartphones (near the windshield) collect inertial, Wi-Fi

and GPS measurements with the maximum possible sampling

rates. Video (1080p, 30 fps) was also captured in order to infer

location ground truth. We chose the front vehicle, equipped

with two cameras (front and rear) as the vehicle of interest but

the results apply to all vehicles, since they act simultaneously

as a vehicle of interest from their own perspective and as an

anchor relative to their neighbors. The last part of the drive, in

downtown area, includes some zones with poor GPS coverage

due to narrow streets flanked by buildings. The estimated mean
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Data: State and weight of each particle

Result: Estimated location

get initial position and uncertainty from individual

position data or mean of anchors positions;

initialize particles’ states randomly (3σ area around

initial position) and weights uniformly;

foreach time instance do

get speed measurements;

get heading change from UKF;

foreach particle do

sample speed error;

sample heading error;

calculate displacement;

update state;

end

if using map restrictions then

delete particles outside road;

replicate current particles using weights;

end

if using individual position data then

get individual position and respective uncertainty;

foreach particle do

calculate Gaussian probability of location;

update weight;

end

normalize weights (sum to 1);

end

if using V2V ranging data then

foreach anchor do

get mean RSSI;

get individual position and uncertainty;

end

foreach particle do

foreach anchor do

if σa <= 15 m then
calculate likelihood of particle

position from RSSI, distance to the

anchor and anchor uncertainty (from

a previously created lookup table);

update weight;

end

end

end

if sum(weight) < ZeroThreshold then

restart filter;

else

normalize weights (sum to 1);

end

end

if 1/sum(weight2) < ResamplingThreshold then

delete lowest weighted particles;

copy highest weighted particles according to their

weights maintaining the total number of

particles;

normalize weights (sum to 1);

end

get MAP estimate: the state (location and velocity) of

highest weighted particle;

end
Algorithm 1: Vehicle tracking algorithm using particle filter
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Fig. 4: CDF of location error in meters.

GPS location error of the anchors is 7 m for a confidence

interval of 1σa. The mean GPS distance between V0 and each

of the anchors is 23.2 m, 48.3 m, and 55.8 m. These parameters

are show in Fig. 3a and Fig. 3c, respectively, for each anchor

throughout the trip. The mean RSSI values from 50 beacons

per second are shown as well in Fig. 3b.

The following parameters were used in the experiments.

The ResamplingThreshold was set to 10% of the total number

of particles and the ZeroThreshold was set to 10−18. The

particle filter used 1000 particles with resampling eliminating

the lowest 10% weights and replicating the top 80%. It

applied T = 1 s iterations with sub-iterations of 200 Hz

for the motion model (UKF). The channel parameters were

ρ0 = −34 dBm, α = 2.1, and σ = 5.5 dB, obtained

as described in IV-A from previous experiments in similar

conditions. The individual locations and respective uncertainty

from the anchors were provided by their own GPS receivers

from one the smartphones. If available, GPS position estimates

were drawn from a Gaussian distribution with position as mean

and an estimated horizontal standard deviation provided by the

GPS receiver (when unavailable we used σGPS = 5 m). The

gyroscope and accelerometer from the smartphone collected

data at 200 Hz sampling rate, and magnetometer at 50 Hz. The

speed measurement was obtained from the GPS (even when

GPS is not used in the update phase) since we did not have

the OBD device available. The standard deviations used in the

motion model were set to σh = 2◦/s and σs = 0.75 m/s. Map

information from Open Street Map was used as described in

Section IV-B. The ground truth of the position was marked

manually using videos as the main source. Two different

videos were obtained from cameras at the front and back

of the vehicle of interest, as well as at the front of all the

vehicles following it. In addition, we used the map and GPS

from various devices to disambiguate some situations (when

the videos did not provide clear landmarks). We choose the

smartphone attached to the mid-section of the windshield

(containing the front camera and collecting GPS data) as the

true position of the vehicle. Although the trajectory may be

very close to the real one, some error introduced by the manual

labeling is unfortunately inevitable at high speeds.

The results for 20 runs of the algorithm are presented in

Table I for six different combinations of the three location
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TABLE I: Location errors for full trajectory (meters)

Location
sources

GPS
GPS

+ map
V2V

V2V
+ map

GPS
+ V2V

GPS
+ V2V
+ map

RMSE 9.80 9.84 25.71 13.63 9.68 9.47

MAE 8.37 8.31 17.01 11.60 7.92 7.70

SD [heading] 2.68 2.51 4.70 3.03 2.26 2.10

SD [⊥heading] 2.90 2.62 5.51 3.25 2.39 2.19

information sources: GPS, RSSI ranging information denom-

inated V2V for simplicity, and map restrictions. We show

the root-mean-square error (RMSE), the mean absolute error

(MAE), which is the mean of location error, and the standard

deviation (SD) of the posterior function, providing a measure

of confidence in the estimated position, both in the direction of

motion (heading), that will mostly coincide with the direction

of the road, and in the perpendicular direction. In order to have

a better picture of the errors we also present the cumulative

distribution function (CDF) of the location error in meters

in Fig. 4. We observe that both the maps and the V2V, in

combination with GPS, improve its results and, as we would

expect, all three sources of information together provide the

best configuration. The position accuracy achieved in this case

is less than 6.1 m for 50% of the trip, and less than 11.7 m for

80%. It is important to note that not only the accuracy is better,

but also the reliability of the results is improved in comparison

to using only a subset of the available information sources.

The V2V based model, with no GPS available in the vehicle

of interest or fixed anchors with known exact positions, relying

on the GPS estimates of its neighbors, often out-of-reach or in

poorly covered GPS areas, is able to provide localization with

a position accuracy of 12.8 m for 50% of the trip, even without

the map. It’s relevant to point out that this configuration shows

a small percentage of very large errors (5% of the errors are

higher than 40 m) from a specific situation where V0 was

separated from the rest of the vehicles, which got delayed

by a traffic light (see in Fig. 3 the interval of 1 minute

centered in 10:32), resulting not only in very large distances

between the vehicle of interest and the anchors but also in a

especially poor anchor geometry. In fact, very close to each

other from a large distance of V0, these 3 anchors behave as

virtually only one and the likelihood takes an annular shape,

not allowing the model to distinguish the correct road in a

bifurcation. When combining map restrictions, we are able

avoid these high errors and improve significantly the quality

of the overall estimation. The error for the V2V configuration

combined with map restrictions is less than 10.5 m in 50%

of the cases and less than 17.3 m in 80%. We observe that

the use of map restrictions, particularly when combined with

V2V, improves both the accuracy and the reliability of the

estimation significantly.

In Fig. 3d, we show the values of the location error (MAE)

throughout the trip, allowing the observation of its relation

with the error of the anchors and the distance to V0, for the

configurations without GPS, and provide the GPS with maps

as a benchmark. We confirm that the moments for which

the V2V errors are larger, coincide with the situations where

all three anchors were at large distances from the vehicle of

TABLE II: Location errors for intervals with good conditions

of the anchors (meters)

Location
sources

GPS
GPS

+ map
V2V

V2V
+ map

GPS
+ V2V

GPS
+ V2V
+ map

RMSE 9.62 9.23 9.60 8.70 7.30 6.93

MAE 8.64 8.28 8.05 7.32 6.18 5.90

SD [heading] 2.08 2.10 2.57 2.18 1.58 1.54

SD [⊥heading] 2.25 2.03 2.66 2.28 1.68 1.58

interest. It is very important to stress that in these experiments

we were limited to those three vehicles as anchors. They

were often distant (sometimes even completely out of reach)

and providing a poor anchor geometry. However, in a typical

scenario of a densely populated urban area, a larger number

of vehicles is expected to be within communication reach

of V0 and the ones providing the best geometry and lowest

position errors might be chosen as anchors. We present in

Table II, the results only for moments that present favorable

conditions to apply V2V, namely all three anchors close to

the leading vehicle (less than 40m of GPS distance) and with

good position accuracy (less than 8 m for 1σa confidence

interval). In our experiment these happened approximately

23% of the trip, but we expect them to occur much more

frequently in large vehicular networks. We observe that for

these favorable conditions, the performance of our tracking

algorithm even when V0 has no access to GPS position is quite

good. The location error of the V2V based configuration is 8 m

and the estimation has a standard deviation of approximately

2.6 m, which is a performance equivalent to the GPS for the

same context. The accuracy of the configuration V2V+map

is 7.3 m, exceeding the accuracy of the GPS+map, which

is 8.3 m. This shows the potential of our proposed model.

It is also interesting to note that, since the anchors follow

the leading vehicle, the distribution of the vehicles in space

is mostly in line or in two lanes in the same direction,

which is a poor geometry (see Fig. 5). However, while this

limits more the longitudinal error (along the direction of the

road/movement, using map restrictions bounds the lateral error

(perpendicular to the previous direction), leading to a balanced

combination of information sources. In our implementation the

road restrictions assume a worse case road width, so the impact

is mostly noticeable in situations for which the errors are very

high (e.g. very distant anchors). Nevertheless, using more tight

road constraints, for example having access to the actual width

of each road, would lead to an even higher impact on location

performance.

VII. CONCLUSION

We propose a location tracking approach for vehicular

networks, allowing vehicles to estimate or improve their

position using widely available low-cost smartphone sensors

and information shared by one-hop neighbors with uncertain

locations. We provide a proof-of-concept using data from a

real urban scenario with four communicating vehicles, collect-

ing their GPS, RSSI, and inertial data, and using available road

maps. We present results evaluating the quality of different

combinations of these information sources. By combining all
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Fig. 5: Geometry of anchors and V0 during the trip: longitudi-

nal distances (measured along the road) Dij ≥ 0 between the

vehicles’ antennas vary in time and represent the distribution

of vehicles in space. The leading vehicle is V0 and A1, A2

and A3 follow in that order (their colors correspond to the

ones used to represent them in Fig. 3), either in one lane or

in two lanes when possible. Except for very close distances,

both geometries have a similar impact. For large distances the

configuration on the right can be approximated by the one on

the left, so the geometry is mostly in line following the VOI.

of them, we provide a mean location error of 7.7 m during

the whole trip, including urban downtown areas with low GPS

coverage, as well as relying on anchors with uncertain and

often poor position estimates and geometry. For intervals with

good conditions of the anchors, we reduce this value to 5.9 m.

It is relevant to highlight that by leveraging different sources of

information not only the accuracy is improved, but the model

is also more reliable and robust to failure. We propose the

existence of at least 3 neighbor vehicles with good position

accuracy (less than 8 m for 1σa confidence interval) and a

maximum distance of 40 m to the VOI as favorable conditions

for using V2V ranging. In these V2V conditions, we show

it is possible to provide a performance comparable to GPS

even when the VOI lacks access to GPS, achieving a mean

location error of approximately 8 m. These results motivate us

to explore more cooperative scenarios, and extend our model to

be applied in a real setting by taking advantage of the currently

largest urban vehicular network in the world, deployed in the

city of Porto, Portugal [41].
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