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ABSTRACT density-based clusters [15, 14] and distance-based outliers [20, 3],

The discovery of complex patterns such as clusters, outliers, andfor the first time applied to sliding window semantics [5, 7]. Many
associations from huge volumes of streaming data has been recapplications providing monitoring services over streaming data re-
ognized as critical for many domains. However, pattern detection quire this capability of real-time pattern detection. For example, to
with sliding windowsemantics, as required by applications rang- monitor main trends as well as the abnormal phenomena arising in
ing from stock market analysis to moving object tracking , remains the stock market, a financial analyst may want to be kept updated
largely unexplored. Applying static pattern detection algorithms about major clusters as well as the outliers existing in the latest
from scratch to every window is prohibitively expensive due to stock transactions. As another example, to understand the major
their high algorithmic complexity. This work tackles this prob- threats of an enemy’s air force, a battlefield commander needs to
lem by developing the first solution for incremental detection of be continuously aware of the “clusters” formed by enemy warcraft
neighbor-based patterns specificstmling windowscenarios. The based on the objects’ most recent positions reported from satellites
specific pattern types covered in this work include density-based or ground stations. We evaluated our techniques within such appli-
clusters and distance-based outliers. Incremental pattern compu-cations by using real stock trades data from [19] and real ground
tation in highly dynamic streaming environments is challenging, moving target indicator data from [13] respectively.

because purging a large amount of to-be-expired data from previ-

ously formed patterns may cause complex pattern changes includ-Background on Neighbor-Based Patterns. Neighbor-based pat-

ing migration, splitting, merging and termination of these patterns. tern detection techniques are distinct from global clustering meth-
Previous incremental neighbor-based pattern detection algorithms,ods [25, 18], such as k-means clustering. Global clustering meth-
which were typically not designed to handle sliding windows, such ods aim to summarize the main characteristics of huge datasets by
as incremental DBSCAN, are not able to solve this problem effi- first partitioning them into groups (e.g., in Figure 1, the objects in
ciently in terms of both CPU and memory consumption. To over- the same circles are considered to be in the same cluster), and then
come this, we exploit the “predictability" property of sliding win-  providing abstract information about the identified clusters, such as
dows to elegantly discount the effect of expiring objects on the re- cluster centroids, as output. In these approaches, the cluster mem-
maining pattern structures. Our solution achieves minimal CPU berships of individual objects are not of special interest and thus not
utilization, while still keeping the memory utilization linear in the  determined. In contrast, the techniques presented in our work target
number of objects in the window. Our comprehensive experimen- a different scenario, namely when individual objects belonging to
tal study, using both synthetic as well as real data from domains of patterns are of importance. For example, each outlier in the credit
stock trades and moving object monitoring, demonstrates superior-card transactions may point to a credit fraud that may cause serious
ity of our proposed strategies over alternate methods in both CPU loss of revenue. Or, during the battlefield monitoring scenario, the

and memory utilization. commander may need to drill down to access specific information
about individual objects in the clusters formed by enemy warcraft.
1. INTRODUCTION This is because some important characteristics of the clusters, such

as the composition of each cluster (e.g., how many bomb carriers
and fighter planes each cluster has), have to be learned from this
specific information.

We present a new framework for detecting “neighbor-based" pat-
terns in streams covering two important types of patterns, namely
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jects may cause complicated pattern structural changes, such as
Cher 1 Clster2 LI oo @ “splitting", whose detection and handling are almost equally com-
putationally expensive as recomputing clusters from scratch.

Qutlier 1

= Cluster 2
IO

s LI We note that théncremental DBSCAN algorithm [14], as an al-
° o4 gorithm based on the incremental maintenance of abstraeigt-
borhships(cluster membershipsjloes not solve this problem. In
Custer 3 Custer 4 particular, it relies on expensive range query searches to check
whether the “deletion" (corresponding to the “expiration” in our
Figure 1: Four global clus- Figure 2: Two density-based case) of a cluster membgr will cause “splitting" of any existing
ters determined by global clusters ar_1d one dl_stance- clu_st_er. Since the expqupn of any cluster member may cause an
clustering algorithms, such ba§ed outlier determined by existing c_Iuster_ to be split mto_several smaller ones, once a cluster
as K-means ’ nelghbor-based pattern de- member is expired from the window, [14] has to run a sequence of
tection algorithms range query searches to check whether the remaining objects are

still “connected” and thus belong to the same cluster. Computa-
tionally, such a split-checking process can be as expensive as re-
forming the whole cluster from scratch in many cases. Also, since
the maintenance process of [14] is based on single update (an in-
sertion or deletion), by using it for sliding windows, we need to run

10] is that we study the neighbor-based pattern detection problems
within the sliding window scenario, which have barely been ap-

plied to neighbor-based pattern detection queries. Sliding window an expensive “split check” for each cluster member expired from

semantics assume a window size (either a time interval or a countthe window. which mav make it even worse then the naive solution

of objects), with the pattern detection results generated based on : S y : ) )

the most recent data that fall into the sliding window. However, in ment|oped earhgr. .O.ur experimental study presentgd n Sgctlon
) ' 7 comfirms the inefficiency of Incremental DBSCAN in handling

previous clustering works [17, 16, 11, 10], objects with different sliding windows with large numbers of data points expiring at each
time horizons are either treated equally or given weights decaying indow slide. We will further elaborate on this in Section 5.

as their recentness decreases. These techniques summarize the adt
cumulative characteristics of the incoming data, while losing the
ability to isolate and identify the specific patterns existing in the
most recent stream portion. Using our earlier example, the finan-
cial analyst may only be interested in the pattterns arising in the
most recent transactions, for example, those that happened in las
5 minutes. In such cases, we need the sliding window technigue to
purge the out-of-date information and form the patterns only based
on the most recent transactions.

Proposed Methods. To make the abstractetwighborshipsncre-
mentally maintainable in a CPU efficient manner, we exploit an im-
portant characteristic of sliding windows, namely the “predictability”
Pf the expiration of existing objects. Specifically, given a window
with a fixed slide size, we can predetermine the “life-span" of any
data point in the window, hamely the exact future windows it will
participate in. We further propose the notion of “predicted viéws

In particular, given the objects in the current window, we can pre-

- . . .. dict the pattern structures that will persist in subsequent windows
Challenges. Efficiently detecting neighbor-based patterns for slid by considering the objects (in the current window) that will partic-

ing windows is a challenging problem. Naive approaches that run | . . -
the static neighbor-based pattern detection algorithms from scratch'paiir': St?ﬁgtl?:e??:; Y‘V'ngivztsegn\l,{éﬁgq Oafbggéiﬁtﬂtﬁjrss vF\)/irr?c(ich:\:/:[/ed
for each window are not feasible in practice, considering the con- pat . o prea . :

. . . . This “view prediction" technique elegantly discount the effect of
flict between the high complexity of these algorithms and the real- exired obiects and thus allow us to efficiently maintain the ab-
time response requirement from streaming applications. Based Onstrgctednei] hborshinsy handling the impact o?/the new obiects
our experiments, detecting density-based clusters from scratch in anl whichgis much E:hga er corr? utatior?all )
50K-object window takes around 100 seconds in our test environ- Y P P Y-

ment, clearly not meeting real-time response requirements. . L Lo .
' y 9 P q Finally, we propose a hybrideighborshipmaintenance mechanism

incorporating two forms of neighbor abstraction and dynamically
switching between them when needed. This solution achieves not
only linear memory consumption, but now also guarantees opti-
mality in the number of the range query searches (the most CPU-
expensive operations in neighbor-based pattern detection processes).
Our proposed technique takes only 5 seconds to cluster the same

The incremental approach, which incrementally maintains the ex-
act neighbor relationships (we will henceforth use the term “neigh-
borship" for this concept) among objects, will also fail in many
cases. This is because the potentially huge numbeeihbor-
shipscan easily raise the memory consumption to unacceptable

P . L :
levels. In the worst casey™ neighborshipsnay exist in a single 50K data points at each window given a slide of 5K new objects,

window, with N the number of data points in the window. Our ex- S ;
periments confirm that this solution consumes on average 15 timesWhICh is at least 3 times faster than Incremental DBSCAN. Also,

more memory than the naive approach in real datasets [13]. it is on average 5 tlmes_ faster than the altt_ern_atlve incremental al-
gorithm using abstracteighborshipsnly, while it consumes only

5% of memory space compared to that needed by the method using

To overcome this resource strain of a huge memory consumption . .
exactneighborshiponly.

while still enabling incremental computation, sevaraighborship
abstractions, such as cluster membership, can be maintained in- o . o . . .
stead of the exaateighborships. However, designing solutions f)oU\t/relbgrt:grn;éterizzh?hgnalrgtflgrrlr:”gy tlf(?r?ancw)far:rtlfljlsl (\;Vgt[ekctlir:)ﬂugfeihe

based on abstractegighborshipgomes with the shortcoming that . P - X

the maintenance of abstracteeighborshifs extremely expensive nelgh_bor-based pattern_s over sliding W'anWS’ and _conclude that
in terms of CPU resources. More specifically, discounting the ef- handling the expired objects consumes either massive memory or

fect of expired objects from the abstractegighborshipdecomes CPU time, t_)oth (,:,”tlca.l resp_ur%‘es for stream_m_g dat_a processing.
S - L 2) We exploit the “predictability” property of sliding windows and
a computation-intensive problem, because such expiration of ob-
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further extend it with the notion of “predicted views", which ele- W;.Tenqa = Wi Tstart + Q.win. The query results of each win-
gantlydiscount the effect of expired data from future query results. dow W;, namely the patterns iW;, will be generated based on the
This class of techniques has the potential of benefiting incremen- data points falling intd¥;, which have a time stamp larger than
tal query processing problems within sliding windows in general. W;.Ts:q-+ but smaller thariV;.T.,,q. The window slide is trig-

3) We present, to the best of our knowledge, the first algorithm gered periodically by the system time (wall clock time). At each
that detects density-based clusters in sliding windows. This algo- window slide, the new windowWV; 11 hasW; 1. Tstart=W; . Tstart

rithm theoretically guarantees the minimum number of range query +Q.slide andW; 1. Tend = Wi Tstart + Q.win. Our techniques
searches needed at each window slide, while keeping the memorycan equally be used for count-based windows, which take a fixed
requirement linear in the number of objects in the window. 4) We number of data points as window sizewin and slide after ar-
present a new algorithm to detect distance-based outliers for slidingrival of every Q.win data points. In this paper, we focus on the
windows. This algorithm covers both count-based and time-based generation of complete pattern detection results. In particular, for
windows and thus is more comprehensive than the state-of-art so-distance-based outliers, we output all outliers identified in a win-
lution restricted to count-based windows only [3]. 5) Our compre- dow. For density-based clusters, we output the members of each
hensive experiments on both synthetic and real streaming data fromcluster, each with a cluster id of the clusters they belong to. Other
domains of moving object monitoring and stock trades confirm the output formats, such as incremental output, indicating the evolution
effectiveness of our proposed algorithms and also their superiority of the clusters over successive windows, can also be supported by
to all other alternative approaches. In this paper, we present theour techniques as discussed in [24].

key ideas of our proposed methods. Due to page limits, additional

details of the algorithms, a cost analysis and more experimental
results can be found in a technical report [24]. 3. ?:T?g:NgOLUTIONS AND THEIR LIMI-

2. PROBLEM DEFINITION . 3.1 Naive Approach of Pattern Re-Detection
Definition of Neighbor-Based Patterns. We support “neighbor-  The naive approach for detecting patterns over continuous windows
based" patterns, in particular, distance-based outliers [15, 14] andyould be to run a static pattern detection algorithms from scratch
density-based clusters [20]. In this work, we use the term “data at each window. Generally, the static neighbor-based pattern detec-
point" to refer to a multi-dimensional tuple in the data stream. tion algorithms [15, 20] consume one range query search for every
Neighborbased pattern detection uses a range thregtgier > 0 data point in the dataset. In our case, they ndedange query

to define theneighborshipbetween any two data points. For two  searches at each windoW;, with N the number of data points
data pointsp; and p;, if the distance between them is no larger in ;. Although some minor improvement could be made, such
than"*"9¢, p; andp, are said to be neighbors. Any distance func- 55 some range query searches may be terminated earlier when de-
tion can be plugged to calculate the distance. We use the functiontecting distance-based outliefs, is the minimum number of range
NumNei(p:,0""9°) to denote the number of neighbors a data qguery searches needed to detect neighbor-based patterns in a new
pointp; has, given th@"*"9¢ threshold. dataset (see Lemma 3.1).

Definition 2.1. Distance-Based Outlier:Given 07¢"¢ and a Considering the expensiveness of range query searches, such naive
fraction thresholdd’ " (0 < 677@ < 1), a distance-based outlier ~ @PProach may not be applicable in practice, specially wNers
is a data pointp; WhereNﬂmNei(_p, §7m9e) < N % 077, with arge. Obviously, without the support of indexing, the complexity

N the number of data points in the data set. of each range query searchG§ N). The average run-time com-
plexity of a range query search can be improved by use of index

structures, for instance an R-tree could improve iOtdog(NV))

Definition 2.2. Density-Based Cluster:Given #7°"9¢ and a [15]. However, such complexity may still be an unacceptable bur-
count threshold“°“™*, a data pointp; with NumNei(p;, 67™9¢) den for the streaming applications that require real-time response,
> 9"t is defined as a core point. Otherwisepifis a neigh- not to mention that the high-frequency of data updating in the stream-
bor of any core objecty; is an edge objectp; is a noise if it is ing environments makes the index maintenance expensive. Given
neither a core point nor an edge point. Two core poigtaind ¢, these limitations, such naive approach is obviously not viable for
are connected, if they are neighbors of each other, or there exists handling overlapping windows (Q.slide < Q.wjnwhere the op-

a sequence of core points, ci, ...cn—1, cn, Where for anyi with portunity for sharing meta-information among windows exists.

0 < i < n — 1, apair of core objectg; andc;; are neighbors
of each other. Finally, a density-based clusteris definedasagroup 3 2 |ncremental Approach Based On
of “connected core objects" and the edge objects attached to them.

Any pair of core points in a cluster is “connected" with each other. Exact Neighborships _ _
Our task is thus to design incremental pattern detection algorithms

that efficiently maintain and reuse meta-information among adja-
Figure 3 shows an example of a density-based cluster composed otent windows. For clarity, we henceforth adopt a four-stage frame-

3 core pointgblack) and 8&dge pointggrey). work for incremental maintenance. We first purge expired data
points from the previous window. Second, we load the new data
Neighbor-Based Pattern Detection in Sliding WindowsWe fo- points into an index to accelerate the later range query searches.

cus on periodic sliding window semantics as proposed by CQL Since our proposed algorithms are independent from the index struc-
[5] and widely used in the literature [6, 3]. Such semantics can ture, any multi-dimensional index structure can be plugged into this
be either time-based or count-based. In time-based window sce-framework. Third, we perform theeighborshipmaintenance for
narios, each quer) has a fixed window siz€.win and a fixed all data points in the current window. Lastly, we compute and out-
slide Q.slide. Q.win and@Q.slide are both time intervals. Each  put the pattern detection results based ometighborshipamong
window W; of @ has a starting timéV;. 7., and a ending time the data points.
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Now we discuss the first incremental algorithm that detects the 4.2 The Abstract-C Algorithm
neighborbased patterns based on the exagighborshipsamong Different from Exact-N, we now propose a solution that maintains
data points. We call EExact-Neighborship-Based Solution (Exact-  a compact summary of theeighborships, namely the count of the
N). Exact-N relieves the computational intensity of processing each neighbors for each data point. We callAbstract-C. In some
window by preserving the exacteighborshipgdiscovered in the cases, these neighbor counts provide sufficient information for gen-
previous windows. In particular, Exact-N requires each data point erating the patterns. For example, they are sufficient to determine
p; in the window to maintain a list of links pointing to all its neigh-  the distance-based outliers.
bors.

Challenges. However, maintaining neighbor counts for each data
At each window slide, the expired data points are removed along point appears to be not computationally cheaper than the mainte-
with the exactneighborshipghey are involved in, namely all the  nance of their neighbor lists. Since the data points in Abstract-C
links pointing from or to them. Then Exact-N runs one range no longer maintain the exacteighborshipsbetween each other,
query search for every new data popi.., to discover the new they lose the direct access to their neighbors. Thus, expired data
neighborshipgo be established in the new window. For distance- points cannot broadcast their expirations to their neighbors without
based outliers, Exact-N simply outputs the data points with less re-running expensive range query searches to figure our who their
thanN x #77* neighbors. For density-based clusters, Exact-N con- neighbors are. Obviously, this will largely increase the computa-
structs the cluster structures by a Depth First Search (DFS) on alltional cost at each window. This force us to find a solution that
core points(with no less tharg<°“™* neighbors) in the window. keeps data points aware of their neighbors’ expiration without the
Exact-N offers the advantage of conducting oMy.., range query help of direct links among them.
searches at each window, with, .., the number of new data points

in the window. Solution. Fortunately, the “predictability” property introduced in
Definition 4.1 provides us with a mechanism to tackle this prob-
Lemma 3.1. For each query windowV;, the minimum num- lem. The key idea is that since we can predict the expiration of
ber of range query searches needed for detecting neighbor-based any data poinp;, we can pre-handle the impact pfs expiration
patterns inWi is Nyeuw. on its neighbors’ neighbor counts, at the time when they are first

identified to be neighbors.

INTUITIVE ARGUMENT 3.1. Ateach new window/;, each new
data point falling intolW; needs a range query search to discover
all its neighbors in the window, otherwise we cannot obtain all new
neighborships inl¥; introduced by the participation of the new
data points. This shows the necessity of Mig.., range query \indow thatp; will participate in . For example, at a given window
_searches. Since we can always preserve a_II nelghb_orshlp_s !nher-Wi' a data point; has 3 neighbors in it, which afei, p» and
ited fromIV;_1, we will not miss any prior neighborships existing ,. “gy using the “predictability’, we could figure out the lifespan
in W;. This demonstrates the sufficiency of ffig.., range query of each of these neighbors as well as of that Let's assume,
searches. will expire after W;. p, andps will expire after W; 1. p; will

expire afterlW, . Then, atW;, p;.lt_cnt = (W; @ 3-W;4q : 2-
However, Exact-N suffers from a major shortcoming, namely its W, : 0) indicates thap; currently has 3 neighbors i;, while
huge memory consumption, as it requires storing all eragjh- at (W;+1), 2 of these 3 neighbors, namely andps will still be its
borshipsamong data points. In the worst case, the memory re- neighbors (p will no longer bep;’s neighbor then as it will expire
quirement may beguadratic in the number of data points in the  after;). In other words, atV;, p; has 2 “predicted neighbors" in
window. Such a tremendous demand on memory may make theW; 1. The length ofp;.lt_cnt is kept equal t@;.li fespan, and
algorithms impractical for huge window sizég, given that the thus decreases by one after each window slide by removing the left
real-time response requirement of streaming applications necessidmost entry. In this example, tH&; : 3 entry will be removed after
tates main memory resident processing. Our experimental resultsthe window slide. Here we note that all the “predicted neighbor
in Section 7 confirm the serious memory-inefficiency of Exact-N.  counts” inp;.l¢_cnt are calculated based on thgs neighbors in

current window and will later be updated when new data points join

4. ABSTRACTED-NEIGHBORSHIP-BASED its neighborhood. More precisely, each entryperit_cnt records

We introduce the notion of a “lifetime neighbor counts"¢nt).

The “lifetime neighbor counts" of a data poptit_cnt correspond

to a sequence of “predicted neighbor counts”, each corresponding
to the number of “predicted neighbors;'has in a particular future

SOLUTION USING COUNTS the number ofp;’s current neighbors that are known to survive in
4.1 “Predictability" of Sliding Windows the corresponding future window.
We first highlight the “predictability" property of sliding windows
to be exploited for our later algorithm design. Lemma 4.1. Atany given windowV;, the entries inp;.lt_cnt

obey a monotonic decreasing function pattern.

Definition 4.1. Given the slide siz€).slide of a query@ and
the starting time of the current windoW,, . T4+, thelife-span
pi.lifespan of a data pointp; in W,, with time stamp;.T is de-
fined byp;.li fespan = [l Wn-Tstart] indicatingthat p; will
participate in windows/V,, to I%/mp,ufespanfl.

The proof of Lemma 4.1is obvious, because less and less neighbors
of p; in the current window can survive as the window slides.

When later a new data poip} joinsp;’s neighborhood, both;.lt_cnt
andp;.lt_cnt will be updated. In particular, whep; andp; are
This property determines the expiration of current data points in fu- identified as neighbors, we add 1 to the entries of hotht_cnt
ture windows, and thus enables us to pre-handle the impact broughtand p,.lt_cnt, corresponding to all windows in which both will
by these expirations on future patterns. participate. For example, givew.lt_cnt = (W; @ 5 — Wiy
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2 —Wiyo : 2 —Wiys 1 1 — Wiga @ 1) before the update, the  Challenges.  Although marking cluster memberships for data
It_cnts of p; andp; will be updated t@;.lt_cnt = (W;:4-Wiy1:3- points at the initial window is straightforward, the maintenance of
Wige : 1) andp;.lt_ent = (W; @ 6-Wip1:3-Wi2:3-Wiis:1- these memberships is challenging. In [24] we enumerate all possi-
Wita : 1). The W,;4+3 and W, 4 entries will not be increased  ble changes to the cluster structures that may be caused by adding
asp, will expire before them. At each window slide, each new new or removing expired data points from the window, such as
data point is associated withlacnt with all its entries initialized expand,mergeand split of clusters. After careful analysis of the
to zero. Then, each of them runs a range query search to update itzost of handling each change type, we find that the most expensive
ownlt_cntand those of its neighbors. maintenance effort are needed when handling the changes caused
by the removal of the expired data points.

Lemma 4.2. No neighborship maintenance effort is needed

A ki hall for di ting the effect of ired dat int
when purging expired data points. ey challenge for discounting the effect of expired data points

lies in the detection and handling of thplit of a cluster. First, the
expiration of any single cluster member may cause a total break of
the existing cluster structure into many small pieces, each of which
may continue to persist as a smaller cluster or even completely de-
grade tonoise. Second, when the expiration of data points causes
a cluster to besplit, the remaining data points in this split clus-
ter need to be relabeled with different cluster memberships as they
then belong to different cluster$l/, andW; in Figure 3 show an
It_cntprovides sufficient information for determining distance-based €x@mple of a split cluster. The expiration of data point 2 causes the
outliers. For each data poipt, we simply compare;.lt_cnt[1] cluster composed afore points, data points 6, 8 and 12lir to

with 677 x N to decide whether a data point is an outlier or not. SPlitinto two clusters, each containing only or@re point. Such a
Similarly, thecore objectdor the density-based clusters can also SPlit detection is non-trivial as elaborated upon below.

be found by comparing;.lt_cnt[1] with °°*™*, However,lt_cnt

does not provide sufficient knowledge to generate the density-based
clusters. This is because, although we could knovealé points

in the window, we do not know which of them are within the same
clusters. Abstract-C acquires such information by running an ex-
tra range query for eaatore pointin the window in a Depth First
Search manner to reconstruct the clusters. More details of Abstrac
C algorithm, including the pseudo code, can be found in [24].

INTUITIVE ARGUMENT 4.2. We pre-handle the expiration of
any data pointp;'s neighbors by not counting them in the win-
dows they will not participate. So, ho maintenance is needed for
pi.lt_cnt when purging expired data points.

Observation 5.1. Given connection information (links) among

data points, the problem of detecting a split of a density-based clus-

ter can be mapped to the graph-theoretic problem of identifying

“cut-points” in a connected graph [21]. The complexity of this

t_problem is known to bé&(n?), with n the number of vertices in
the connected graph, or in our case the number of core points in a
cluster.

Discussion. Abstract-C achieves linedr(in the number of data

points in the window) memory consumption by maintaining the Moreover, our problem is harder than the problem of identifying
abstractedheighborshiponly. This makes it a very efficient algo-  the “cut-points”, because we do not even have the explicit connec-
rithm to detect distance-based outliers in terms of both memory and tjon information, namely the exaaeighborships, among the data
CPU. It takesVyc., (the minimum number) range query searches at points in hand. Generally, without such connection information,
each window. However, since Abstract-C takés,,. extrarange  the detection and relabeling for a split cluster requires one range
query searches (totally¥/,.c. + Neor.) for detecting density-based  query search for eactore point. Otherwise, we won't be able to
clusters at each window, its performance largely dependSgn. tell which core pointsremain connected to each other and should
the number otore objectsn the window, which can vary from 0 pe put into the same clusters. Obviously, this will make Abstract-

all the way toN. This instability in CPU performance for the clus- M no better than Abstract-C and thus defeats the purpose of the
ter pattern query class is the main shortcoming of Abstract-C, as apstract-M solution.

our experiments confirm in Section 7.
Here we note that, as an algorithm also based on maintenance of

5. ABSTRACTED-NEIGHBORSHIP-BASED cluster membership, Incremental DBSCAN suffers from the same
SOLUTION USING MEMBERSHIP problem. Moreover, since its maintenance is based on single update

We now observe that the extra range query searches needed ir?lan |tns§rt|on (ér dflztlon), for a;lwmdowtillde, sut;:h a fSpll't (;heck
Abstract-C are caused by its “amnesia”. In particular, the abstracted as 1o be conducted as many Umes as theé numbers or cluster mem-

neighborshipsnaintained in Abstract-C, namely the neighborcounts,.ber expiring. So, obviously, the Incremental DEBSCAN algorithm

cannot preserve any cluster structures identified in the previousIS not suna_\ble for handllng streaming W|r_1dows with large numbers
windows, even though such cluster structures may persist for mul- of data points expired at each window slide.

tiple windows. To tackle this problem, we enhance Abstract-C by
introducing a higher level abstraction néighborship, namely by
means of cluster memberships. To preserve the cluster structure
across windows, the new algorithm namfolstract-M marks the
data points found to be in the same cluster with the same clus-
ter membership (cluster id). Then at each window slide, it incre-
mentally maintains the “predicted cluster membership" of the data
points as explained below.

Solution. We now illustrate that the “predictability” property (Def-
é'nition 4.1) once again can help us to address the problem of dis-
counting expired data points. Specifically, with;,. M embers de-
noting the data points in a windoW;, we already know which
subsets ofV;. M embers will participate in each of the future win-
dows. For this reason, we could predetermine the cluster structures
that exist in the current window and will still persist in each spe-
cific future window. We call such prediction of the characteristics
1Thelength oflt_cntfor each data point is equal to a constant num-  of future windows “Predicted Views W in Figure 3 gives an ex-

berCis = [3;;’;;6 . ample of the data points falling in the current winddi. Given
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these data points i¥, andthe window size)).win = 4 time units
, the “predicted views" of the subsequent window3$16f (until all
the data points of¥, expire), namelyi;, W, andWs, are also

data points. Thus we simplify incremental density-based cluster
detection to the problem of handling the addition of new data
points only.

shown in this figure. Here, the number associated with each data

point indicates its time stamp.
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Figure 3: “Predicted Views" of 4 successive windows atV,

With such “predicted views", we can pre-generate the “predicted
cluster structures" in each future window and then maintain them
by adding the new data points to each of them when the window
slides. We call this technique “view prediction”. In particular,

we “premark” each of the data points with the “predicted cluster

INTUITIVE ARGUMENT 5.2. We pre-handle the expirations of
data points by not counting them in the “predicted cluster struc-
tures" in the future windows in which they will not participate.
Thus, no maintenance to the cluster memberships is needed when

purging.

Handling the addition of new data points is clearly much easier
then removal. Specifically, the addition of new data points may
cause three types of changes to the cluster structures. They are
birth, expandandmerge. Handling the first two types of changes is
trivial. We simply need to mark the data points in the new cluster
structure with either a new cluster id (fbirth) or with an existing
cluster idC,, when we find upon its insertion that it is connected
with any existing cluster with that respective @, (for expand.
Handlingmergeis also easy, because instead of remarking all the
cluster members involved, we simply notify the system to equalize
two or more cluster ids by using a hierarchical id structure. In our
system, this is efficiently handled by a simple heap structure. More
details of handling these changes can be found in [24].

Another important characteristic of our “view prediction" technique
is that, although we maintain the “predicted views" of each window
separately, for each new data paint.,, we only need one single
range query search to updaig..,’s neighborhoods in all views.
This is because, at a given windd#;, the “predicted neighbors"
of a data point in future windowd/; .1, W1 ... W;4; monotoni-

membership" (if any) for each future window in its life span, atthe cally lose members gsincreases (see Lemma 4.1). So we just need
first time we search for its neighborhood upon arrival. Then at each one single range query search to collect all the neighbors of a data
window slide, we update the “predicted views" by adding the new point at the current window. Then, before we update the “predicted

data points to each of them and also handling the impact of theseview" of a future windowWV;, we first filter out these neighbors

additions. Figure 4 demonstrates the updated viewd/of W5,
W3 andWy, after the new data points joiiy;.
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Figure 4: Updated “Predicted Views" of 4 successive windows
at Wy

Lemma 5.1. By using the “view prediction" technique to in-
crementally maintain the cluster memberships for density-based
clusters, we eliminate the need to discount the effect of expired
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who will expire beforel; by checking their life-spans and then
conducting the update based on the neighbors in that specific win-
dow only. Due to page limits, the specific algorithmic details of
Abstract-M are omitted here but can be found in [24].

Discussion. By using the “view prediction” techniques, Abstract-
M efficiently maintains the cluster memberships across windows by
eliminating the complex processes of discounting the effect of ex-
pired data points. Also, Abstract-M can directly output the cluster
members without any extra query searches.

While a significant step forward, Abstract-M does not completely
“cure" the “amnesia" suffered by Abstract-C. It still requires extra
range query searches (beyond fkig.., range query searches for
new data points) at each window. This is because the new data
points may join the neighborhoods of existing data points, and thus
“promote" the later to become “promoted core pair(tsy making

the size of their neighborhood larger or equate*™*). Once such
“promotion" happens, promoted core pointeeds to communicate
with its neighbors about its new “role". For example, tiésein its
neighborhood need to be markedeaigie pointand given a cluster

id. The only way gpromoted core pointan do this is to run a range
query search. We have proven that the range query searches caused
by “promotions" are the only extra range query searches needed in
Abstract-M in [24].

In conclusion, Abstract-M effectively reduces the number of range
query searches needed for detecting density-based clusters at each



window from (N,ew+Neore) 10 (Npewt Nprmtcore), WIth Nprmtcore neighborshipmaintenance mechanisms used by all previous three
the number opromoted core pointis the window. An example of algorithms discussed in this work. Besidesnt, we now intro-
such savings can be observed in Figure 4. In this example, two duce two other types of “life time marks" for each data point. The
range query searches are saved for data points 8 and 12, as they dfirst mark, called “life time type"I{_type), records the “predicted

not need to rerun the range query searché§’at This is an im- types" (which can be “c"=core point, “e"=edge poiot “n"=noise)
portant improvement to Abstract-C, becau$g-mcore is always of a data point in each window of its life span. The second one,
a subset ofV.,.. and tends to be much smaller in practice. “life time hybrid neighborship (It_hybrig stores the “predicted

cluster memberships" and the “predicted neighbors" of a data point

6. EXACT+ABSTRACTED NEIGHBORSHIP across different windows in a compact structure. We call the overall
ﬁSED SOLUTION (EXTRA-N) data structure composedlbfent, It_typeandlt_hybrid the Hybrid

Considering the expensive cost of range query searches and the faqlilleighborship Mark (H-Mark)) for a data point. Figure 5 depicts the
that Nyyow + Nyrmteore COUI be as large a¥ even whemVi,e is -Marks of the data points in Figure 3. As shown in Figure 5, we

small, Abstract-M is still not the ideal solution that could keep the 1 2 3 i 5 P 7 3
number of range query searches required minimgl.(/y and the il v i w BT v d] A df w & & d] v [ w
memory consumption linear. Wwofd EER delid  [woad 4d et P 4d e

wide 7h14se sl di3adsfid d o

Challenges. To achieve the minimum number of range query
searches ()M..,) at each window, we need to completely avoid

re-searching for anyeighborshipghat have been identified be- g BH a 2 = “H i nH o 13H o 14H o 15H ‘M 16H “
fore. This indicates that we have to give data points direct access to f,4q, o A W o1 | lwobez2] bd B iy
their neighbors whenever communication between them is needed. [, Hds|  Bdal  Wd oz | twaHs| Bds|  EHE|  bh

But unfortunately, the abstracted neighborship maintenance mech- [~ 2n111q 5;% EMM WA ;;% ;% n
anisms, namely both neighbor counts and cluster memberships, are —— - W@ o o o

not able to provide such information about the exact neighbors of a - -

data point. This points to the dilemma in the design ofrie@gh-

borshipmaintenance mechanism as explained below. Figure 5: The H-Marks of the data points at Wy

. ) . . usethe columns named', T and H to present thdt_cnt, It_type
Observation 6.1. On the one hand, to give data points direct  anqit hybrid of each data point respectively. Sirlcecnthas been
access to their neighbors, we have to preserve all exact neighbor- carefully discussed in Section 4.2 andypeis easy to understand,

ships identified in earlier windows. On the other hand, to keep pere we explaift_hybrid. For example, iV, the core point12
the memory consumption linear, we cannot afford to store all exact js predicted to becore pointalso in ;. Thus it is marked by

neighborships in the window. cluster memberships in both windows, §dt_hybrid[0] = “c1”,
pi2.lt_hybrid[1] = “c2”). Then, as itis predicted to bean-core
Accommodating these two conflicting goals within a singésgh- point, in particular, anoisein W2, we start to keep the predicted
borshipmaintenance mechanism is the key challenge for our algo- neighbors of it from this window (.lt_hybrid[2] = pis, p14).
rithm design. Since the number of “predicted neighbors" of a data point follows

a monotonic decreasing function (discussed earlier in Section 4.2) ,

Solution. We now proposé&xtra-N algorithm that successfully ~ the “non core object career” windows of a data point are continuous
tackles this problem by achieving optimality in both memory and and right after its “core object career” windows. Here we note that
CPU consumption. Extra-N combines the neighborship mainte- although we maintain the neighbor lists of each data pejrfor
nance mechanisms proposed in Exact-N, Abstract-C and Abstract-all its “non-core point career" windows, the link to each of these
M into one integrated solution. It overcomes the shortcomings of neighbors is only physically stored once linhybrid, no matter
the prior solutions while keeping their respective benefits. how many times it appears jsf s neighborhood in different win-
dows. This means that the number of predicted neighbors each data
We observe that different typesméighborshipabstraction are most ~ point p; keeps track of is equal to the maximum number of pre-
useful during different stages of a data point’s life-span. In par- dicted neighbors it has among all its “non-core point career” win-
ticular, we need to maintain the exaq;eighborshipjor a data dows. Given monotonicity, this is equal to the number of predicted
in its “non-core point career”, while abstracteeighborshipawill neighbors it has in its first “non-core point career" windows. For
be sufficient for its “core point career". More precisely, Extra-N €xample, data point 13 in Figure 5 has in total 3 predicted neigh-
marks each data poipt by a cluster membership in each window bors, namely data points 2, 6, and 12, in its first “non-core point
in which it is predicted to beore point, while keeping the exact ~ career” windowV,. At the same moment, its predicted neighbors
neighbor list forp; in all the windows where; is predicted to be a  in later windows are subsets of these three. For ease of expiration,
noiseor edge point. Such hybrid neighborship maintenance mech- @ predicted neighbgy; of the data poinp; is stored in the specific
anism carries sufficient information to produce the density-based row of p;'s H-Mark corresponding to the last window in which their
clusters, because all thmre pointsin a window I; are marked neighborshipwill hold.
with a cluster membership, and all tadge pointsan quickly fig-
ure out their cluster memberships by checking those ofctire
pointsin their neighbor list. We will next demonstrate that Extra-N
employs only the minimum number of range query searches while
keeping the memory consumption linear.

Lemma 6.1. Extra-N has the memory consumption linear in
the number of data points in the window.

INTUITIVE ARGUMENT 6.2. The maximum number of predicted
Data Structure. As mentioned earlier, Extra-N combines the neighbors of each “non core point; is less than the constant
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6<°*"* (otherwisep; is a core point), and we already know that
pi.lt_cnt, It_type and It_hybrid all have a constant lengthC';s
(defined earlier in Section 5). So, H-Mark of any data point is of a
constant size.

Algorithm. Similar to Abstract-M, at each window slide, Extra-N
runs a range query search for each new data point to update the
“predicted views" of future windows. However, the hybridigh-
borshipmaintenance mechanism brings the advantage to Extra-N
of eliminating extra range query searches from the updating pro-
cesses. That is whepromotionshappen to theon core points,

they now have direct access to their neighbors and thus no longer
need to run range query searches to re-collect their neighbors.

Lemma 6.2. Extra-N achieves the minimum number of range
query searches needed for detecting density-based clusters at each
window.

INTUITIVE ARGUMENT 6.3. Since Extra-N inherits the neigh-
borship maintenance mechanism of Abstract-M, it needs at most
NrewtNprmicore Fange query searches at each window like Abstract
M. Also, we know that th&p,,...core €Xtra range query searches
are caused by the handling of promotions. Lastly, no range query
search is needed when promotions happen in Extra-N. Thus, Extra-
N only needsV,.., queries at each window.

The pseudo code of Extra-N is shown in Figure 7. The updated
H-Marksfor the example in Figure 4 are shown in Figure 6.
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Figure 6: The updated H-Marks of the data points at¥;

Theorem 6.4. For detecting density-based clusters, Extra-N
requires only the minimum number of range query searches needed
at each window (by Lemma 6.2), while keeping the memory con-
sumption linear in the number of data points in the window (by
Lemma 6.1).

These properties make Extra-N a very efficient solution for detect-
ing density-based clusters over sliding windows in terms of both

Extra-N (9 range‘gcount)
1 For each Window Slide
/l Purge
2 For each expired data poipt..,
3 purgépeaxp;
/l Load
5 For each new data point, e
6 InitializeHMark (pnew)
7 loadpneqw into index
/I Neighborship Maintenance
8 For each new data point,ew
9 Neighbors = RangeQuerySearch{p,,, 67*"9¢)
10 UpdateHMark(prnew, Neighbors, new)
// Output
11 OutputPatterns(PatternType);

InitializeHMark (p)
1 Length _ ’—p T— Wzndou/ Tét(”t

2 setthe length ofp It cnt It typeandlt hybridto Length,;
3 For n:=1toLength do

4 plt_cnt[i] :=0;
5 p.lt_typeli] :=
6  plt_entMli] :=

U

“empty”;

UpdateHMark (p, Neighbors)
1 Fori:=1to Len(p.lt_hybrid)
For j:=1to Len(Neighbors)
If Len(Neighbors[j|.lt_hybrid) < i
removeN eighbors[j] from Neighbors
Else If Neighbors[j] is NOT New
Neighbors[j].lt_cntli] + + ;
addp to Neighbors[j].lt_hybrid if not added ;
addNeighbors[j] to p.lt_hybrid if not added ;
If Neighbors[j].lt_cnt[i] > gcount
10 Mark(Neighbors|j], i);
11 p.lt_cnti] := Len(Neighbors);
12 [fplt_cntli] > geount
13 Mark(p,i);

O hwnN

Mark(p,i)

1 p.lt_type[d] := “c”;

2 tempH = empty ;

3 For eachp’s predicted neighbap;;

4 If p;.lt_typeli] = “c” AND tempH # p;.lt_hybrid|i]
5 equalizetempH with p;.lt_hybrid[i] ;

6 tempH := p;.lt_hybrid[d;

7 If tempH = unmarked

8  tempH := ClusterId][i];

9 ClusterId[i] + +;

10 For eachp’s predicted neighbop;;

11 If p;.lt_typeli] = “n”;

12 p;.lt_typeli] := “ 7

12 pj.lt_hybrid[i] := tempH
13remove aII the pointers ip.lt_hybrid[i] (if any);
14 p.lt_hybrid[i| := tempH;;

OutputPatterns(Density-Based Clusters)

1 For each data poing; in the window

2 If p;.lt_type[l] #7"n”

3 output(n);

4 removep;.lt_cnt[1], p;.lt_type[l] andp;.lt_hybrid[1];

CPU and memory resource utilization.

7. EXPERIMENTAL STUDY

We have conducted a thorough cost analysis of the algorithms dis-
cussed in this work. This analytical study not only confirmed the
theoretical superiority of our proposed Extra-N algorithm to other
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Figure 7: Extra-N Algorithm




alternatives, but also identified the two major cost factors, namely of the two major cost factors identified in our cost analysis, namely
N,y (the average number of neighbors each data point has in a V,, and Ny...,. In particular, we have 7 different settings &%,

window) and Nn..,, that have the largest impact on the perfor- representing data from “very sparse’V@H) = 1%), “medium
mance of the different neighbor-based pattern detection algorithms.dense" {V(,,,) = 20%) and finally to “very dense"X,,) = 50%),
The details of this cost analysis can be found in [24]. and 7 different settings aWV.,..., covering all the increments from

“mostly remaining” (N,e.w = 10%), “half-half" (Nyeww = 50%),
In our experimental study, for each algorithm we first utilize syn- “mostly new" (N,e., = 80%) and finally to “all new" (N,ew =
thetic data to observe its scope of applicability for a wide range of 100%). Percentages here denote the ratiodpf and Ny,e., to N
parameter settings. To confirm the behaviors of the algorithms in the number of data points in the window. To avoid the performance
real applications, we also evaluate them against real data streams. fluctuations caused by different base sizes (humber of data points
in the window), we use count-based windows (equal in concept to

i time-based windows with uniform data rates). Thiis.., is equal
ZI.I]éur E()p()gr?nr;lenr?tggfgLigﬁggdagldaaitgaaliecntrlsdv4000 lap- to the slide siz&).slide. Ny, is controlled by adjusting the density
top with Intel Centrino 1.6GHz processor and 1GB memory, which of clusters generated by the data generator.
runs Windows XP professional operating system. We implemented
all algorithms with VC++ 7.0.

Abstract-

Real Datasets. We used two real streaming datasets in our exper-
iments. The first dataset GMTI (Ground Moving Target Indicator)
data [13] records the real-time information of the moving objects
gathered by 24 different data ground stations or aircraft in 6 hours
from JointSTARS. It has around 100,000 records regarding the in-
formation of vehicles and helicopters (speed ranging from 0-200
mph) moving in a certain geographic region. In our experiment,
we used all 14 dimensions of GMTI while detecting clusters based
on targets’ latitude and longitude. The second real dataset we usec
is the Stock Trading Traces data (STT) from [19], which has one
millions transaction records throughout the trading hours of a day.
More details of these two datasets can be found in [24]

Abstract-M

Extra-N  pajve

(%) awil pdo

Synthetic Datasets. For the evaluation of density-based clus-
ter detection, we built a synthetic data generator to generate therigure 8: Comparison of CPU Performances of Five Algo-
datasets containing controlled numbers of clusters and noise. Eachyithms

synthetic dataset is composed of one thousand stream segments.
Each segment of data contains certain percentage (as an input pa

rameter) of random noise and a set of clusters, each following a

Gaussian distribution but each with different randomly selected SOOOOW |
meanandvariance. More details of this synthetic data generator ., w000 || |
can be found in [24]. :

90000 Exact-N

For the evaluation of distance-based outlier detection algorithms,
we use the Gauss Data Set, which is also used by the only previou
work [3] in detecting distance-based outliers but restricted to count-
based windows only.
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We measure two major metrics for stream processing algorithms, 3§§§§§§ §§ "‘““*“ G T:¥:$714 g LR
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namely response time and memory footprint. In particular, we
measure the response time (henceforth referred as CPU time) eacl
algorithm takes to answer a query at each window. Such response
time includes the time consumed by all the four stages of the pattern ) )
detection process at each window (see section 3). We run all the ex-Figure 9: Comparison of Memory Performances of Five Algo-
periments using synthetic data for one thousand windows, and runfithms

those using real data to the end of the datasets. The response tim
is averaged over all the windows in each experiment. The memory
footprint, which indicates the maximum memory space required by
an algorithm, is recorded over all the windows.

From Figures 8 (CPU) and 9 (memory), we observe that Extra-
N and Abstract-M clearly outperform the other three algorithms,
namely Exact-N, Abstract-C and the naive solution, in almost all
the test cases. Besides the naive solution which does not take ad-
. . . vantage of incremental computation, the other two incremental al-
7.3 Evaluation for Density-Based Clustering gorithms Exact-N and Abstract-C suffer from the huge consump-
Comprehensive Evaluation. We conduct a comprehensive ex- tion on either memory space or CPU time in most of the cases.
periment with a wide range of synthetic data generated by our data

generator. These experiments cover all the important combinationsCompared with Exact-N, both Extra-N and Abstract-M consume a
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tiny amount of memory space. In fact, on average, both Extra-N space to store the links to its neighbors in its “non core pcaneer"
andAbstract-M only need around’% of memory space compared before its promotion. Thus, in general, a system can choose to im-
to that required by Exact-N. As shown in Figure 9, such limited plement Abstract-M when the memory space is its key bottleneck,
memory consumptions are actually very close to that of the naive while implementing Extra-N if CPU time is its major concern.
solution, which has no meta-information maintenance cost at all.

Scalability Analysis. Now, we look at the scalability in terms
The negligible CPU overhead of our proposed algorithms is also of the base size (count) ranging from 10K to 50K and with a fixed
confirmed by this experiment. As shown in Figure 8, Extra-N and slide size 5K. Other settings of this experiment are equal to those of
Abstract-M saved substantial CPU time compared to the naive so- the previous comprehensive one, except that we fixgdat 1 K.
lution in all the cases wheK@.Slide < 50% x Q.win. Eveninthe
cases wherf).Slide is very close (80%) or even equal @.win
(naturally the limit of any incremental algorithm), both algorithms | | et Kbstract-H
exhibit comparable performances with the naive solution. Actu- * < BxtraN Fisoopo [ T pret
ally, Extra-N and Abstract-M can be considered to be variances of = [ 7"
the naive solution when the windows are non-overlapping, because® 2w
they only have one “view" to maintain. In general, our proposed o LS
algorithms have very small CPU as well as memory overhead in all 10000 100 o O E 2k s wr on
cases and thus are good candidates for a system’s only implemen- Tindow Size
tation, regardless of the input data and queries. Figure 12: Comparison of

CPU Scalability on Base
Extra-N vs. Abstract-M. We first discuss the above observed (Window) Size
similarity in performance of Extra-N and Abstract-M in many test
cases, which we had not expected based on our cost analysis. Th

]rsaln reasc;?afc;r dtz:f‘];ﬁ i??rgatr?e Cr;usrggzgg?mj Zt?j(ij dcnogfirﬂogéf the Abstract-M show very good scalability in the base size in terms of
prmtcore S1AY Y P both CPU and memory, while others failed in either or both of them.

performance of Abstract-M. Actua!ly, we observed thatmcore . In particular, both Extra-N and Abstract-M only need 5 seconds to
tends to be small, unless there exists a large number of data points . ; . -

« . . unt cluster 50K data points at each window given 5K new data points.
who have a “boundary number" of neighbors (closedt6"™").

I ) . In the other words, both algorithms can comfortably handle a data
However, such situations are not frequent in our experiments for . :
. rate of 1K per second with a 50K window.
both synthetic and real data.

250000
80000 —-Exact-N

—-Exact-N
—#—Abstract—C
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Figure 13: Comparison of
Memory Scalability on Base
(Window) Size

s shown in Figures 12 and 13, both our algorithms Extra-N and

Extra-N and Abstract-M also show good scalability in the dimen-

Although Extra-N and Abstract-M work equivalently well in many sionality. Details of this experiment can be found in [24].

of our test cases, they do behave quite differently WNgn,,tcore
turns to be a nonnegligible factor. To better understand their perfor- Extra-N vs. Incremental DBSCAN. Now we compare the per-

. . = )
gﬁcselﬁe?\i?\?ecsfeesr'i:nvirfto?:?qi?égtfgg\%é Iliﬁoﬁ?ﬁ: Izlg:‘Jr:e OI_informance of our best solution Extra-N with Incremental DBSCAN,

p per - F19 . which, based on our analysis in Section 5, is expected to suffer
subparts of the experimental results from Figures 8 and 9.

from the scalability problem when there are large number of data
points expiring at each window slide. In this experiment, we use a
fixed base size 50K, while varying the slide size from 5K to 25K,

indicating that 10 to 50 percent of data points will be expired at

each window slide based on different testing cases. As shown in
Figure 14, in our test cases, the response time for Incremental DB-
SCAN to handle each window is 3 times higher than that needed by

2000 [ phstract-M = Extra-N —+ Naive 4000, ppstract-M -=Extra-N -+ Naive

- j . g‘i
/ -

10% 20% 30% 40% 50% 80% 100%

CPU Time (ms)

-
o 9o
g 8
g 8

Memory Footprint (K)

-
s 3
g 8
s 8

o

o

10% 20% 30% 40% 50% 80% 100%

Slide Size (% Window Size)

Figure 10: Comparison on
CPU Time of Extra-N and
Abstract-M in N,y = 5%
cases

Slide Size (% Window Size)

Figure 11: Comparison on
Memory Usage of Extra-N
and Abstract-M in N,,, =
5% cases

Extra-N on average, Also, it increases dramatically as the slide size
increases. Such performance of Incremental DBSCAN matches
our earlier analysis. The dramatic increase of response time for
Incremental DBSCAN can be explained by two reasons. First, In-
cremental DBSCAN needs a sequence of range query searches to
handle the impact of each expired cluster member. So, the more

data points are purged from each window, the more sequences of
In the cases shown in Figures 10 and 11, Abstract-M tends to userange query searches are needed by it. Also, the more data points
more CPU time while Extra-N consumes more memory space. This are purged from each window, the more likely “splitting" would
is as expected because of the existence of large numbgn®-of happen to the existing clusters. Thus, the average number of range
moted core points each window. In particular, since in thg,,,, = query searches in each sequence to handle a single expiration will
5% cases, the number of neighbors each data point has is quitealso increase, because more “splittings" need to be handled. How-
close to the population thresholtf**™* = 5% of the window size, ever, since Extra-N needs no maintenance effort at the expiration of
manycore pointsmay be demoted to beconeelge pointor even data points, its responce time only increases modestly as the slide
noiseafter losing some of their neighbors as the window slides. size increases. The averge memory consumption of Extra-N and
For the same reason, then-core pointdave a good chance to be  Incremental DBSCAN are almost the same in the five test cases in
promoted to becompromoted core pointafter gaining some new  this experiment (shown in Figure 15). As conclusion, Extra-N has
neighbors as the window slides. Corresponding to our analysis in apparent superiority to Incremental DBSCAN in terms of handling
Sections 5 and 7, eagiliomoted core pointharges Abstract-M an  sliding windows with a large number of data points expiring at each
extra range query search, while it charges Extra-N for the memory slide.
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Inc DBSCAN and Inc DBSCAN Figure 18: Comparison on  Figure 19: Comparison on
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Evaluation with Real Datasets. We first evaluate the perfor- ] o
mance of all five competitors on the GMTI data, which is a rep- @s the experimental results show in Figures 18 and 19, Abstract-C
resentative for moving object monitoring applications. We use the clearly outperforms the naive solution and exact-STORM.

guery parameters learned from the pre-analysis of the data, includ- ) ) )
ing window sizeQ.win, 67*"9¢ and#°°*"*. We varied the slide  Another experiment for the count-based window scenario shows

size from10% to 100% of Q.win. We find there are 6 to 11 clus-  that exact-STORM and Abstract-C perform equivalently well in

ters in the window at different time horizons, ahg, ranges from terms of CPU time in most of the test cases. Details of these exper-
9% to 11% of the number data points in the windows. iments as well as an analytical comparison between exact-STORM

and Abstract-C can be found in [24].

15000 C10% D305 W50% M80% W100% £ 10000 10% F130% W50% W80 W100%
3 £ 3000 Silde Size 8. RELATED WORK
P = 2000 (4 Windor Size) Traditionally, pattern detection techniques are designed for static
i . ﬂ ﬂ ”“ ‘ 10000 environments with large volumes of stored data. Well-known al-
5 - gorithms for static data clustering include [25, 18, 15, 4], and for
o Ll ‘ 3 * "Bt Aistract-Chbstract Btk Jaive detecting outliers include [22, 9, 20]. In these works, both clusters
Bact N Abstract-Cdbstraot il Extral Naive and outliers can either be global patterns [25, 18] that are defined
Figure 17: Comparison on by global characteristics of all data or local patterns [22, 4] that
Figure 16: Comparison on  Memory Usage with GMTI are defined by the characteristics of a subset of the data. In this
CPU Time with GMTI data data work, our target pattern types are density-based clusters [15] and

distance-based outliers [20]. Both are popular pattern types defined

As depicted in Figures 16 and 17, Extra-N has the best time ef- by local neighborhood properties.

ficiency compared with all other methods. The memory usage of

Extra-N is on average6% higher than the naive solution in the five ~ The early clustering algorithms applied to data streams [17, 16] are
cases. Itis a little bit higher than that of Abstract-M, which1§s  global clustering algorithms adapted from the static k-means algo-
higher than the naive solution, but still very acceptable. rithm. They treat the data stream clustering problem as a contin-

uous version of static data clustering. They treat objects with dif-

For STT dataset, similar behaviors of each algorithm as above canferent time horizons (recentness) equally and thus only reflect the
be observed, while the number of clusters in the windows ranges accumulative features in data streams. [2] presented a framework

from 17 to 26, andV,,, in the windows ranges fro% to 9% of of clustering streaming data using a two stage process. First, the
the number of data points. The result charts omitted here can beonline component summarizes streaming data into micro-clusters,
found in [24]. each represented by a CFV (a statistical description of clusters).

Then, an offline component clusters the micro-clusters formed ear-

Genera”yv our experiments on real data also confirm that our pro- lier to form final C|UStering results USing a static k-means algorithm.
posed algorithm Extra-N and Abstract-M outperform other alter- In this framework, a subtraction function is used to approximately
native methods and thus are the best solutions for density-basecﬂiSCOUnt the effect of the earlier data on the clustering results. Sev-
cluster detection in sliding windows. eral extensions have been made to this work, focusing respectively
on clustering multiple data streams [12] and parallel data streams
. . . [8]. None of efforts described above deals with arbitrarily shaped
7.4 quluatlon of Distance-Based Outlier De- local clusters, nor do they support sliding window semantics. The
tection Methods only exception is [7] which discusses the clustering problem with
To evaluate the performance of our outlier algorithm Abstract-C, sliding windows. However, it again is a global clustering algorithm
we compare it with two alternatives, namely the naive solution and maintaining approximated cluster centers only.
the exact-STORM presented by [3], which is the only previous
work we are aware of that detects distance-based outliers in slid- Incremental DBSCAN [14] incrementally updates density-based
ing windows. In our experiments, we compare the performance of clusters in data warehouse environments. However, as elaborated
exact-STORM and Abstract-C in both count- and time-based win- in our introduction and Section 5, this work does not solve the prob-
dow scenarios. In both scenarios, we strictly followed the imple- lem of efficiently discounting the effect of object “deleted” from the
mentation of exact-STORM presented in [3], except for breaking dataset. For this reason as well as because all optimizations in this
the upper bound on the number of neighbors stored, as required inwork were designed for single updates (a single deletion or inser-
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tion) to the data warehouse, it may fit well for the relatively stable [4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.
ervironments but is not scalable to streaming environments that are Optics: Ordering points to identify the clustering structure.

highly dynamic. [11, 10] also studied the problem of detecting In SIGMOD.

density-based clusters over streaming data. However, [11, 10] are [5] A. Arasu, S. Babu, and J. Widom. The cqgl continuous query
not applied to identify the individual members in the clusters as re- language: semantic foundations and query execuiib®B
quired by the application scenarios described in the introduction. J., 15(2):121-142, 2006.

Also, to capture the dynamicity of the evolving data, they both use [6] A. Arasu and J. Widom. Resource sharing in continuous
decaying factors derived from the “age" information of the objects. sliding-window aggregates. MLDB, pages 336347, 2004.

These decaying factors put lighter weights on older objects dur- (7] B. Babcock, M. Datar, R. Motwani, and L. O'Callaghan.

ing the clustering processes. This approach emphasizes the recent Maintaining variance and k-medians over data stream
stream portion more compared to the older data, but it does not en- windows. INPODS, pages 234-243, 2003.

force the discounting of old data’s effe_ct from the_ pattern detect_ion [8] J. Beringer and E. Hullermeier. Online clustering of parallel

re_sults_. _Thug, they cgnnot be L_Jseq in the applications associated data stream®ata Knowl. Eng., 58(2):180—204, 2006.

with sliding windows discussed in this work. [9] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:
identifying density-based local outlierSIGMOD Rec.,
29(2):93-104, 2000.

[10] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based

Outlier Detection over data streams has been studied by [1, 23,
3]. Among these works, [1] works with outliers defined differ-
ently than ours. Thus, this technique cannot be applied to detect the ' . . .
distance-based outliers discussed in this work. [23] studes the de- clustering over an evolving data stream with noiseSDM,
tection of distance- and MEDF-based outliers in hierarchical struc- 2006. ) ) .
tured sensor networks. The outliers detection is based on approx-111] Y- Chenand L. Tu. Density-based clustering for real-time
imated data distribution, which is different from our approach of stream data. IKDD, pages 133-142, 2007.

using exact objects. Most similar to our effort, the exact-STORM [12] B.-R. Dai, J.-W. Huang, M.-Y. Yeh, and M.-S. Chen.

algorithm [3] also detects exact distance-based outliers within slid- Adaptive clustering for multiple evolving streamEEE

ing windows. However, this work only deals with count-based win- Trans. Knowl. Data Eng., 18(9):1166-1180, 2006.

dows, where the number of objects in the window is aprioir known [13] J. N. Entzminger, C. A. Fowler, and W. J. Kenneally.

and fixed. Our analytical and experimental studies reveal that this Jointstars and gmti: Past, present and futliE&E

method is not suitable for handling time-based windows, where the Transactions on Aerospace and Electronic Sysfems

numbers of objects in each window are different. Our work instead 35(2):748-762, april 1999.

is more general yet efficient in both cases. [14] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu.
Incremental clustering for mining in a data warehousing

9. CONCLUSIONS environment. In A. Gupta, O. Shmueli, and J. Widom,

In this work, we study the problem of incrementally detecting neighbor- ~ editors,VLDB, pages 323-333, 1998.

based patterns for sliding windows over streaming data. We first [15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A

identify that the major difficulty of incremental detection of the density-based algorithm for discovering clusters in large
neighbor-based patterns exists in the handling of expired objects. spatial databases with noise.HiDD, pages 226-231, 1996.
For this reason, our two primitive incremental algorithms Exact-N [16] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and

and Abstract-C suffer from either massive CPU or memory con- L. O'Callaghan. Clustering data streams: Theory and
sumption for detecting density-based clusters. Then, we design practice IEEE Trans. Knowl. Data Eng., 15(3):515-528,
the third algorithm Abstract-M based on a proposed “view pre- 2003.

diction" technique, which elegantly discounts the effect of expired [17] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
data points from the patterns. Finally, the combination of the “view Clustering data streams. FOCS, pages 359-366, 2000.
prediction” technique and a proposed hyléghborshigmainte- [18] J. A. Hartigan and M. A. Wong. A k-means clustering

nance mechanism leads to an ideal solution Extra-N, achieving both algorithm.Applied Statistics, 28(1).

linear memory consumption and the minimum number of range [19] |. INETATS. Stock trade traces. http:/Awww.inetats.com.
query searches. Both our analytical and experimental studies con-[zo] E. M. Knorr and R. T. Ng. Algorithms for mining

firm that: 1) Our proposed algorithms Extra-N and Abstract-M are distance-based outliers in large dataset&/LDB, pages
near-optimal in detecting density-based clusters over sliding win- 392-403, 1998.

d;st in terms oc}‘ ClPU tihme, nt:emory space and alsodscalability. [21] J. MunkresTopology. Prentice Hall, 2000

2) Our proposed algorithm Abstract-C is a CPU- and memory- ’ ) ) o

efficient algorithm for distance-based outlier detection in sliding [22] :3'i\?alljrfztzndo?r;t‘]élst?;;:ssgum Cs(igpgtgt]g gﬁgrh contours of
windows. It clearly outperforms the only previous algorithm [3] 23(1)'153p—168 1996 put. ' "

when detecting outliers in time-based windows, while performing : o :

equivalently with it when dealing with count-based windows. [23] \S/ E:lt(;;aen::;aamna-rb Pélj’r?gslj’o 2 gﬁﬁr?s%%ct)lligcr)zetection in
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