
Neighbor-Based Pattern Detection for Windows Over
Streaming Data ∗

Di Yang
Worcester Polytechnic Institute

Worcester, MA, USA
diyang@wpi.edu

Elke A. Rundensteiner
Worcester Polytechnic Institute

Worcester, MA, USA
rundenst@cs.wpi.edu

Matthew O. Ward
Worcester Polytechnic Institute

Worcester, MA, USA
matt@cs.wpi.edu

ABSTRACT
The discovery of complex patterns such as clusters, outliers, and
associations from huge volumes of streaming data has been rec-
ognized as critical for many domains. However, pattern detection
with sliding windowsemantics, as required by applications rang-
ing from stock market analysis to moving object tracking , remains
largely unexplored. Applying static pattern detection algorithms
from scratch to every window is prohibitively expensive due to
their high algorithmic complexity. This work tackles this prob-
lem by developing the first solution for incremental detection of
neighbor-based patterns specific tosliding windowscenarios. The
specific pattern types covered in this work include density-based
clusters and distance-based outliers. Incremental pattern compu-
tation in highly dynamic streaming environments is challenging,
because purging a large amount of to-be-expired data from previ-
ously formed patterns may cause complex pattern changes includ-
ing migration, splitting, merging and termination of these patterns.
Previous incremental neighbor-based pattern detection algorithms,
which were typically not designed to handle sliding windows, such
as incremental DBSCAN, are not able to solve this problem effi-
ciently in terms of both CPU and memory consumption. To over-
come this, we exploit the “predictability" property of sliding win-
dows to elegantly discount the effect of expiring objects on the re-
maining pattern structures. Our solution achieves minimal CPU
utilization, while still keeping the memory utilization linear in the
number of objects in the window. Our comprehensive experimen-
tal study, using both synthetic as well as real data from domains of
stock trades and moving object monitoring, demonstrates superior-
ity of our proposed strategies over alternate methods in both CPU
and memory utilization.

1. INTRODUCTION
We present a new framework for detecting “neighbor-based" pat-
terns in streams covering two important types of patterns, namely

∗Thiswork is supported under NSF grant IIS-0414380.
We thank our collaborators at MITRE Corporation, in particular,
Jennifer Casper and Peter Leveille, for providing us the GMTI data
stream generator.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial ad-
vantage, the ACM copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the ACM.
To copy otherwise, or to republish, to post on servers or to redistribute to
lists, requires a fee and/or special permissions from the publisher, ACM.
EDBT 2009, March 24–26, 2009, Saint Petersburg, Russia.
Copyright 2009 ACM 978-1-60558-422-5/09/0003 ...$5.00

density-based clusters [15, 14] and distance-based outliers [20, 3],
for the first time applied to sliding window semantics [5, 7]. Many
applications providing monitoring services over streaming data re-
quire this capability of real-time pattern detection. For example, to
monitor main trends as well as the abnormal phenomena arising in
the stock market, a financial analyst may want to be kept updated
about major clusters as well as the outliers existing in the latest
stock transactions. As another example, to understand the major
threats of an enemy’s air force, a battlefield commander needs to
be continuously aware of the “clusters" formed by enemy warcraft
based on the objects’ most recent positions reported from satellites
or ground stations. We evaluated our techniques within such appli-
cations by using real stock trades data from [19] and real ground
moving target indicator data from [13] respectively.

Background on Neighbor-Based Patterns.Neighbor-based pat-
tern detection techniques are distinct from global clustering meth-
ods [25, 18], such as k-means clustering. Global clustering meth-
ods aim to summarize the main characteristics of huge datasets by
first partitioning them into groups (e.g., in Figure 1, the objects in
the same circles are considered to be in the same cluster), and then
providing abstract information about the identified clusters, such as
cluster centroids, as output. In these approaches, the cluster mem-
berships of individual objects are not of special interest and thus not
determined. In contrast, the techniques presented in our work target
a different scenario, namely when individual objects belonging to
patterns are of importance. For example, each outlier in the credit
card transactions may point to a credit fraud that may cause serious
loss of revenue. Or, during the battlefield monitoring scenario, the
commander may need to drill down to access specific information
about individual objects in the clusters formed by enemy warcraft.
This is because some important characteristics of the clusters, such
as the composition of each cluster (e.g., how many bomb carriers
and fighter planes each cluster has), have to be learned from this
specific information.

Thus our techniques focus on identifying the neighbor-based pat-
terns, which are composed of object(s) with specific characteristics
with respect to their local neighborhoods [22, 4, 15]. Precise def-
initions of the patterns will be given in Section 2. Figure 2 shows
an example of two density-based clusters and a distance-based out-
lier in the dataset from Figure 1. Obviously, such neighbor-based
patterns with arbitrary shapes are very different from the k-means
style clusters. Little effort to date has focused on efficiently detect-
ing such neighbor-based patterns in streaming windows.

Motivation for Sliding Window Scenario. One important char-
acteristic that distinguishes our work from previous efforts [11,

529

Figure 1: Four global clus-
ters determined by global
clustering algorithms, such
as K-means

Figure 2: Two density-based
clusters and one distance-
based outlier determined by
neighbor-based pattern de-
tection algorithms

10] is that we study the neighbor-based pattern detection problems
within the sliding window scenario, which have barely been ap-
plied to neighbor-based pattern detection queries. Sliding window
semantics assume a window size (either a time interval or a count
of objects), with the pattern detection results generated based on
the most recent data that fall into the sliding window. However, in
previous clustering works [17, 16, 11, 10], objects with different
time horizons are either treated equally or given weights decaying
as their recentness decreases. These techniques summarize the ac-
cumulative characteristics of the incoming data, while losing the
ability to isolate and identify the specific patterns existing in the
most recent stream portion. Using our earlier example, the finan-
cial analyst may only be interested in the pattterns arising in the
most recent transactions, for example, those that happened in last
5 minutes. In such cases, we need the sliding window technique to
purge the out-of-date information and form the patterns only based
on the most recent transactions.

Challenges. Efficiently detecting neighbor-based patterns for slid-
ing windows is a challenging problem. Naive approaches that run
the static neighbor-based pattern detection algorithms from scratch
for each window are not feasible in practice, considering the con-
flict between the high complexity of these algorithms and the real-
time response requirement from streaming applications. Based on
our experiments, detecting density-based clusters from scratch in a
50K-object window takes around 100 seconds in our test environ-
ment, clearly not meeting real-time response requirements.

The incremental approach, which incrementally maintains the ex-
act neighbor relationships (we will henceforth use the term “neigh-
borship" for this concept) among objects, will also fail in many
cases. This is because the potentially huge number ofneighbor-
shipscan easily raise the memory consumption to unacceptable
levels. In the worst case,N2 neighborshipsmay exist in a single
window, withN the number of data points in the window. Our ex-
periments confirm that this solution consumes on average 15 times
more memory than the naive approach in real datasets [13].

To overcome this resource strain of a huge memory consumption
while still enabling incremental computation, severalneighborship
abstractions, such as cluster membership, can be maintained in-
stead of the exactneighborships. However, designing solutions
based on abstractedneighborshipscomes with the shortcoming that
the maintenance of abstractedneighborshipis extremely expensive
in terms of CPU resources. More specifically, discounting the ef-
fect of expired objects from the abstractedneighborshipsbecomes
a computation-intensive problem, because such expiration of ob-

jects may cause complicated pattern structural changes, such as
“splitting", whose detection and handling are almost equally com-
putationally expensive as recomputing clusters from scratch.

We note that theincremental DBSCAN algorithm [14], as an al-
gorithm based on the incremental maintenance of abstractedneigh-
borhships(cluster memberships),does not solve this problem. In
particular, it relies on expensive range query searches to check
whether the “deletion" (corresponding to the “expiration" in our
case) of a cluster member will cause “splitting" of any existing
cluster. Since the expiration of any cluster member may cause an
existing cluster to be split into several smaller ones, once a cluster
member is expired from the window, [14] has to run a sequence of
range query searches to check whether the remaining objects are
still “connected” and thus belong to the same cluster. Computa-
tionally, such a split-checking process can be as expensive as re-
forming the whole cluster from scratch in many cases. Also, since
the maintenance process of [14] is based on single update (an in-
sertion or deletion), by using it for sliding windows, we need to run
an expensive “split check" for each cluster member expired from
the window, which may make it even worse then the naive solution
mentioned earlier. Our experimental study presented in Section
7 comfirms the inefficiency of Incremental DBSCAN in handling
sliding windows with large numbers of data points expiring at each
window slide. We will further elaborate on this in Section 5.

Proposed Methods. To make the abstractedneighborshipsincre-
mentally maintainable in a CPU efficient manner, we exploit an im-
portant characteristic of sliding windows, namely the “predictability"
of the expiration of existing objects. Specifically, given a window
with a fixed slide size, we can predetermine the “life-span" of any
data point in the window, namely the exact future windows it will
participate in. We further propose the notion of “predicted views".
In particular, given the objects in the current window, we can pre-
dict the pattern structures that will persist in subsequent windows
by considering the objects (in the current window) that will partic-
ipate in each of these windows only, and abstract these predicted
pattern structures into “predicted views" of each future window.
This “view prediction" technique elegantly discount the effect of
expired objects and thus allow us to efficiently maintain the ab-
stractedneighborshipsby handling the impact of the new objects
only, which is much cheaper computationally.

Finally, we propose a hybridneighborshipmaintenance mechanism
incorporating two forms of neighbor abstraction and dynamically
switching between them when needed. This solution achieves not
only linear memory consumption, but now also guarantees opti-
mality in the number of the range query searches (the most CPU-
expensive operations in neighbor-based pattern detection processes).
Our proposed technique takes only 5 seconds to cluster the same
50K data points at each window given a slide of 5K new objects,
which is at least 3 times faster than Incremental DBSCAN. Also,
it is on average 5 times faster than the alternative incremental al-
gorithm using abstractneighborshipsonly, while it consumes only
5% of memory space compared to that needed by the method using
exactneighborshipsonly.

Contributions. The main contributions of this work include:
1) We characterize the problem of incremental detection of the
neighbor-based patterns over sliding windows, and conclude that
handling the expired objects consumes either massive memory or
CPU time, both critical resources for streaming data processing.
2) We exploit the “predictability" property of sliding windows and

530

further extend it with the notion of “predicted views", which ele-
gantlydiscount the effect of expired data from future query results.
This class of techniques has the potential of benefiting incremen-
tal query processing problems within sliding windows in general.
3) We present, to the best of our knowledge, the first algorithm
that detects density-based clusters in sliding windows. This algo-
rithm theoretically guarantees the minimum number of range query
searches needed at each window slide, while keeping the memory
requirement linear in the number of objects in the window. 4) We
present a new algorithm to detect distance-based outliers for sliding
windows. This algorithm covers both count-based and time-based
windows and thus is more comprehensive than the state-of-art so-
lution restricted to count-based windows only [3]. 5) Our compre-
hensive experiments on both synthetic and real streaming data from
domains of moving object monitoring and stock trades confirm the
effectiveness of our proposed algorithms and also their superiority
to all other alternative approaches. In this paper, we present the
key ideas of our proposed methods. Due to page limits, additional
details of the algorithms, a cost analysis and more experimental
results can be found in a technical report [24].

2. PROBLEM DEFINITION
Definition of Neighbor-Based Patterns. We support “neighbor-
based" patterns, in particular, distance-based outliers [15, 14] and
density-based clusters [20]. In this work, we use the term “data
point" to refer to a multi-dimensional tuple in the data stream.
Neighborbased pattern detection uses a range thresholdθrange ≥ 0
to define theneighborshipbetween any two data points. For two
data pointspi and pj , if the distance between them is no larger
thanθrange, pi andpj are said to be neighbors. Any distance func-
tion can be plugged to calculate the distance. We use the function
NumNei(pi, θ

range) to denote the number of neighbors a data
pointpi has, given theθrange threshold.

Definition 2.1. Distance-Based Outlier:Givenθrange and a
fraction thresholdθfra (0 ≤ θfra ≤ 1), a distance-based outlier
is a data pointpi, whereNumNei(pi, θ

range) < N ∗ θfra, with
N the number of data points in the data set.

Definition 2.2. Density-Based Cluster:Given θrange and a
count thresholdθcount, a data pointpi with NumNei(pi, θ

range)
≥ θcount is defined as a core point. Otherwise, ifpi is a neigh-
bor of any core object,pi is an edge object.pi is a noise if it is
neither a core point nor an edge point. Two core pointsc0 andcn

are connected, if they are neighbors of each other, or there exists
a sequence of core pointsc0, c1, ...cn−1, cn, where for anyi with
0 ≤ i ≤ n − 1, a pair of core objectsci andci+1 are neighbors
of each other. Finally, a density-based cluster is defined as a group
of “connected core objects" and the edge objects attached to them.
Any pair of core points in a cluster is “connected" with each other.

Figure 3 shows an example of a density-based cluster composed of
3 core points(black) and 8edge points(grey).

Neighbor-Based Pattern Detection in Sliding Windows.We fo-
cus on periodic sliding window semantics as proposed by CQL
[5] and widely used in the literature [6, 3]. Such semantics can
be either time-based or count-based. In time-based window sce-
narios, each queryQ has a fixed window sizeQ.win and a fixed
slide Q.slide. Q.win andQ.slide are both time intervals. Each
window Wi of Q has a starting timeWi.Tstart and a ending time

Wi.Tend = Wi.Tstart + Q.win. The query results of each win-
dowWi, namely the patterns inWi, will be generated based on the
data points falling intoWi, which have a time stamp larger than
Wi.Tstart but smaller thanWi.Tend. The window slide is trig-
gered periodically by the system time (wall clock time). At each
window slide, the new windowWi+1 hasWi+1.Tstart=Wi.Tstart

+Q.slide andWi+1.Tend = Wi.Tstart + Q.win. Our techniques
can equally be used for count-based windows, which take a fixed
number of data points as window sizeQ.win and slide after ar-
rival of everyQ.win data points. In this paper, we focus on the
generation of complete pattern detection results. In particular, for
distance-based outliers, we output all outliers identified in a win-
dow. For density-based clusters, we output the members of each
cluster, each with a cluster id of the clusters they belong to. Other
output formats, such as incremental output, indicating the evolution
of the clusters over successive windows, can also be supported by
our techniques as discussed in [24].

3. BASIC SOLUTIONS AND THEIR LIMI-
TATIONS

3.1 Naive Approach of Pattern Re-Detection
The naive approach for detecting patterns over continuous windows
would be to run a static pattern detection algorithms from scratch
at each window. Generally, the static neighbor-based pattern detec-
tion algorithms [15, 20] consume one range query search for every
data point in the dataset. In our case, they needN range query
searches at each windowWi, with N the number of data points
in Wi. Although some minor improvement could be made, such
as some range query searches may be terminated earlier when de-
tecting distance-based outliers,N is the minimum number of range
query searches needed to detect neighbor-based patterns in a new
dataset (see Lemma 3.1).

Considering the expensiveness of range query searches, such naive
approach may not be applicable in practice, specially whenN is
large. Obviously, without the support of indexing, the complexity
of each range query search isO(N). The average run-time com-
plexity of a range query search can be improved by use of index
structures, for instance an R-tree could improve it toO(log(N))
[15]. However, such complexity may still be an unacceptable bur-
den for the streaming applications that require real-time response,
not to mention that the high-frequency of data updating in the stream-
ing environments makes the index maintenance expensive. Given
these limitations, such naive approach is obviously not viable for
handling overlapping windows (Q.slide < Q.win), where the op-
portunity for sharing meta-information among windows exists.

3.2 Incremental Approach Based On
Exact Neighborships

Our task is thus to design incremental pattern detection algorithms
that efficiently maintain and reuse meta-information among adja-
cent windows. For clarity, we henceforth adopt a four-stage frame-
work for incremental maintenance. We first purge expired data
points from the previous window. Second, we load the new data
points into an index to accelerate the later range query searches.
Since our proposed algorithms are independent from the index struc-
ture, any multi-dimensional index structure can be plugged into this
framework. Third, we perform theneighborshipmaintenance for
all data points in the current window. Lastly, we compute and out-
put the pattern detection results based on theneighborshipsamong
the data points.

531

Now we discuss the first incremental algorithm that detects the
neighbor-based patterns based on the exactneighborshipsamong
data points. We call itExact-Neighborship-Based Solution (Exact-
N). Exact-N relieves the computational intensity of processing each
window by preserving the exactneighborshipsdiscovered in the
previous windows. In particular, Exact-N requires each data point
pi in the window to maintain a list of links pointing to all its neigh-
bors.

At each window slide, the expired data points are removed along
with the exactneighborshipsthey are involved in, namely all the
links pointing from or to them. Then Exact-N runs one range
query search for every new data pointpnew to discover the new
neighborshipsto be established in the new window. For distance-
based outliers, Exact-N simply outputs the data points with less
thanN ×θfra neighbors. For density-based clusters, Exact-N con-
structs the cluster structures by a Depth First Search (DFS) on all
core points(with no less thanθcount neighbors) in the window.
Exact-N offers the advantage of conducting onlyNnew range query
searches at each window, withNnew the number of new data points
in the window.

Lemma 3.1. For each query windowWi, the minimum num-
ber of range query searches needed for detecting neighbor-based
patterns inWi is Nnew.

INTUITIVE ARGUMENT 3.1. At each new windowWi, each new
data point falling intoWi needs a range query search to discover
all its neighbors in the window, otherwise we cannot obtain all new
neighborships inWi introduced by the participation of the new
data points. This shows the necessity of theNnew range query
searches. Since we can always preserve all neighborships inher-
ited fromWi−1, we will not miss any prior neighborships existing
in Wi. This demonstrates the sufficiency of theNnew range query
searches.

However, Exact-N suffers from a major shortcoming, namely its
huge memory consumption, as it requires storing all exactneigh-
borshipsamong data points. In the worst case, the memory re-
quirement may bequadratic in the number of data points in the
window. Such a tremendous demand on memory may make the
algorithms impractical for huge window sizesN , given that the
real-time response requirement of streaming applications necessi-
tates main memory resident processing. Our experimental results
in Section 7 confirm the serious memory-inefficiency of Exact-N.

4. ABSTRACTED-NEIGHBORSHIP-BASED
SOLUTION USING COUNTS

4.1 “Predictability" of Sliding Windows
We first highlight the “predictability" property of sliding windows
to be exploited for our later algorithm design.

Definition 4.1. Given the slide sizeQ.slide of a queryQ and
the starting time of the current windowWn.Tstart, the life-span
pi.lifespan of a data pointpi in Wn with time stamppi.T is de-
fined bypi.lifespan = ⌈ pi.T−Wn.Tstart

Q.slide
⌉, indicatingthat pi will

participate in windowsWn to Wn+pi.lifespan−1.

This property determines the expiration of current data points in fu-
ture windows, and thus enables us to pre-handle the impact brought
by these expirations on future patterns.

4.2 The Abstract-C Algorithm
Different from Exact-N, we now propose a solution that maintains
a compact summary of theneighborships, namely the count of the
neighbors for each data point. We call itAbstract-C. In some
cases, these neighbor counts provide sufficient information for gen-
erating the patterns. For example, they are sufficient to determine
the distance-based outliers.

Challenges. However, maintaining neighbor counts for each data
point appears to be not computationally cheaper than the mainte-
nance of their neighbor lists. Since the data points in Abstract-C
no longer maintain the exactneighborshipsbetween each other,
they lose the direct access to their neighbors. Thus, expired data
points cannot broadcast their expirations to their neighbors without
re-running expensive range query searches to figure our who their
neighbors are. Obviously, this will largely increase the computa-
tional cost at each window. This force us to find a solution that
keeps data points aware of their neighbors’ expiration without the
help of direct links among them.

Solution. Fortunately, the “predictability" property introduced in
Definition 4.1 provides us with a mechanism to tackle this prob-
lem. The key idea is that since we can predict the expiration of
any data pointpi, we can pre-handle the impact ofpi’s expiration
on its neighbors’ neighbor counts, at the time when they are first
identified to be neighbors.

We introduce the notion of a “lifetime neighbor counts"(lt_cnt).
The “lifetime neighbor counts" of a data pointpi.lt_cntcorrespond
to a sequence of “predicted neighbor counts", each corresponding
to the number of “predicted neighbors"pi has in a particular future
window thatpi will participate in . For example, at a given window
Wi, a data pointpi has 3 neighbors in it, which arep1, p2 and
p3. By using the “predictability’, we could figure out the lifespan
of each of these neighbors as well as of thatpi. Let’s assumep1

will expire afterWi. p2 andp3 will expire afterWi+1. pi will
expire afterWi+2. Then, atWi, pi.lt_cnt = (Wi : 3-Wi+1 : 2-
Wi+2 : 0) indicates thatpi currently has 3 neighbors inWi, while
at (Wi+1), 2 of these 3 neighbors, namelyp2 andp3 will still be its
neighbors (p1 will no longer bepi’s neighbor then as it will expire
afterWi). In other words, atWi, pi has 2 “predicted neighbors" in
Wi+1. The length ofpi.lt_cnt is kept equal topi.lifespan, and
thus decreases by one after each window slide by removing the left
most entry. In this example, theWi : 3 entry will be removed after
the window slide. Here we note that all the “predicted neighbor
counts" inpi.lt_cnt are calculated based on thepi’s neighbors in
current window and will later be updated when new data points join
its neighborhood. More precisely, each entry onpi.lt_cnt records
the number ofpi’s current neighbors that are known to survive in
the corresponding future window.

Lemma 4.1. At any given windowWi, the entries inpi.lt_cnt
obey a monotonic decreasing function pattern.

The proof of Lemma 4.1is obvious, because less and less neighbors
of pi in the current window can survive as the window slides.

When later a new data pointpj joinspi’s neighborhood, bothpi.lt_cnt
andpj .lt_cnt will be updated. In particular, whenpi andpj are
identified as neighbors, we add 1 to the entries of bothpi.lt_cnt
and pj .lt_cnt, corresponding to all windows in which both will
participate. For example, givenpj .lt_cnt = (Wi : 5 − Wi+1 :

532

2 − Wi+2 : 2 − Wi+3 : 1 − Wi+4 : 1) before the update, the
lt_cnts ofpi andpj will be updated topi.lt_cnt = (Wi:4-Wi+1:3-
Wi+2 : 1) and pj .lt_cnt = (Wi : 6-Wi+1:3-Wi+2:3-Wi+3:1-
Wi+4 : 1). The Wi+3 and Wi+4 entries will not be increased
aspi will expire before them. At each window slide, each new
data point is associated with alt_cnt with all its entries initialized
to zero. Then, each of them runs a range query search to update its
own lt_cnt and those of its neighbors.

Lemma 4.2. No neighborship maintenance effort is needed
when purging expired data points.

INTUITIVE ARGUMENT 4.2. We pre-handle the expiration of
any data pointpi’s neighbors by not counting them in the win-
dows they will not participate. So, no maintenance is needed for
pi.lt_cnt when purging expired data points.

lt_cntprovides sufficient information for determining distance-based
outliers. For each data pointpi, we simply comparepi.lt_cnt[1]
with θfra × N to decide whether a data point is an outlier or not.
Similarly, thecore objectsfor the density-based clusters can also
be found by comparingpi.lt_cnt[1] with θcount. However,lt_cnt
does not provide sufficient knowledge to generate the density-based
clusters. This is because, although we could know allcore points
in the window, we do not know which of them are within the same
clusters. Abstract-C acquires such information by running an ex-
tra range query for eachcore pointin the window in a Depth First
Search manner to reconstruct the clusters. More details of Abstract-
C algorithm, including the pseudo code, can be found in [24].

Discussion. Abstract-C achieves linear1 (in the number of data
points in the window) memory consumption by maintaining the
abstractedneighborshipsonly. This makes it a very efficient algo-
rithm to detect distance-based outliers in terms of both memory and
CPU. It takesNnew (the minimum number) range query searches at
each window. However, since Abstract-C takesNcore extra range
query searches (totallyNnew + Ncore) for detecting density-based
clusters at each window, its performance largely depends onNcore

the number ofcore objectsin the window, which can vary from 0
all the way toN . This instability in CPU performance for the clus-
ter pattern query class is the main shortcoming of Abstract-C, as
our experiments confirm in Section 7.

5. ABSTRACTED-NEIGHBORSHIP-BASED
SOLUTION USING MEMBERSHIP

We now observe that the extra range query searches needed in
Abstract-C are caused by its “amnesia". In particular, the abstracted
neighborshipsmaintained in Abstract-C, namely the neighbor counts,
cannot preserve any cluster structures identified in the previous
windows, even though such cluster structures may persist for mul-
tiple windows. To tackle this problem, we enhance Abstract-C by
introducing a higher level abstraction ofneighborship, namely by
means of cluster memberships. To preserve the cluster structures
across windows, the new algorithm namedAbstract-M marks the
data points found to be in the same cluster with the same clus-
ter membership (cluster id). Then at each window slide, it incre-
mentally maintains the “predicted cluster membership" of the data
points as explained below.
1Thelength oflt_cnt for each data point is equal to a constant num-
berCils = ⌈ Q.win

Q.slide
⌉.

Challenges. Although marking cluster memberships for data
points at the initial window is straightforward, the maintenance of
these memberships is challenging. In [24] we enumerate all possi-
ble changes to the cluster structures that may be caused by adding
new or removing expired data points from the window, such as
expand,mergeandsplit of clusters. After careful analysis of the
cost of handling each change type, we find that the most expensive
maintenance effort are needed when handling the changes caused
by the removal of the expired data points.

A key challenge for discounting the effect of expired data points
lies in the detection and handling of thesplit of a cluster. First, the
expiration of any single cluster member may cause a total break of
the existing cluster structure into many small pieces, each of which
may continue to persist as a smaller cluster or even completely de-
grade tonoise. Second, when the expiration of data points causes
a cluster to besplit, the remaining data points in this split clus-
ter need to be relabeled with different cluster memberships as they
then belong to different clusters.W0 andW1 in Figure 3 show an
example of a split cluster. The expiration of data point 2 causes the
cluster composed ofcore points, data points 6, 8 and 12 inW0 to
split into two clusters, each containing only onecore point. Such a
split detection is non-trivial as elaborated upon below.

Observation 5.1. Given connection information (links) among
data points, the problem of detecting a split of a density-based clus-
ter can be mapped to the graph-theoretic problem of identifying
“cut-points" in a connected graph [21]. The complexity of this
problem is known to beO(n2), with n the number of vertices in
the connected graph, or in our case the number of core points in a
cluster.

Moreover, our problem is harder than the problem of identifying
the “cut-points", because we do not even have the explicit connec-
tion information, namely the exactneighborships, among the data
points in hand. Generally, without such connection information,
the detection and relabeling for a split cluster requires one range
query search for eachcore point. Otherwise, we won’t be able to
tell which core pointsremain connected to each other and should
be put into the same clusters. Obviously, this will make Abstract-
M no better than Abstract-C and thus defeats the purpose of the
Abstract-M solution.

Here we note that, as an algorithm also based on maintenance of
cluster membership, Incremental DBSCAN suffers from the same
problem. Moreover, since its maintenance is based on single update
(an insertion or deletion), for a window slide, such a “split check"
has to be conducted as many times as the numbers of cluster mem-
ber expiring. So, obviously, the Incremental DBSCAN algorithm
is not suitable for handling streaming windows with large numbers
of data points expired at each window slide.

Solution. We now illustrate that the “predictability" property (Def-
inition 4.1) once again can help us to address the problem of dis-
counting expired data points. Specifically, withWi.Members de-
noting the data points in a windowWi, we already know which
subsets ofWi.Members will participate in each of the future win-
dows. For this reason, we could predetermine the cluster structures
that exist in the current window and will still persist in each spe-
cific future window. We call such prediction of the characteristics
of future windows “Predicted Views". W0 in Figure 3 gives an ex-
ample of the data points falling in the current windowW0. Given

533

these data points inW0 andthe window sizeQ.win = 4 time units
, the “predicted views" of the subsequent windows ofW0 (until all
the data points ofW0 expire), namelyW1, W2 andW3, are also
shown in this figure. Here, the number associated with each data
point indicates its time stamp.

Figure 3: “Predicted Views" of 4 successive windows atW0

With such “predicted views", we can pre-generate the “predicted
cluster structures" in each future window and then maintain them
by adding the new data points to each of them when the window
slides. We call this technique “view prediction". In particular,
we “premark" each of the data points with the “predicted cluster
membership" (if any) for each future window in its life span, at the
first time we search for its neighborhood upon arrival. Then at each
window slide, we update the “predicted views" by adding the new
data points to each of them and also handling the impact of these
additions. Figure 4 demonstrates the updated views ofW1, W2,
W3 andW4, after the new data points joinW1.

Figure 4: Updated “Predicted Views" of 4 successive windows
at W1

Lemma 5.1. By using the “view prediction" technique to in-
crementally maintain the cluster memberships for density-based
clusters, we eliminate the need to discount the effect of expired

data points. Thus we simplify incremental density-based cluster
detection to the problem of handling the addition of new data
points only.

INTUITIVE ARGUMENT 5.2. We pre-handle the expirations of
data points by not counting them in the “predicted cluster struc-
tures" in the future windows in which they will not participate.
Thus, no maintenance to the cluster memberships is needed when
purging.

Handling the addition of new data points is clearly much easier
then removal. Specifically, the addition of new data points may
cause three types of changes to the cluster structures. They are
birth, expandandmerge. Handling the first two types of changes is
trivial. We simply need to mark the data points in the new cluster
structure with either a new cluster id (forbirth) or with an existing
cluster idCn when we find upon its insertion that it is connected
with any existing cluster with that respective idCn (for expand).
Handlingmergeis also easy, because instead of remarking all the
cluster members involved, we simply notify the system to equalize
two or more cluster ids by using a hierarchical id structure. In our
system, this is efficiently handled by a simple heap structure. More
details of handling these changes can be found in [24].

Another important characteristic of our “view prediction" technique
is that, although we maintain the “predicted views" of each window
separately, for each new data pointpnew, we only need one single
range query search to updatepnew ’s neighborhoods in all views.
This is because, at a given windowWi, the “predicted neighbors"
of a data point in future windowsWi+1, Wi+2 ... Wi+j monotoni-
cally lose members asj increases (see Lemma 4.1). So we just need
one single range query search to collect all the neighbors of a data
point at the current window. Then, before we update the “predicted
view" of a future windowWi, we first filter out these neighbors
who will expire beforeWi by checking their life-spans and then
conducting the update based on the neighbors in that specific win-
dow only. Due to page limits, the specific algorithmic details of
Abstract-M are omitted here but can be found in [24].

Discussion.By using the “view prediction" techniques, Abstract-
M efficiently maintains the cluster memberships across windows by
eliminating the complex processes of discounting the effect of ex-
pired data points. Also, Abstract-M can directly output the cluster
members without any extra query searches.

While a significant step forward, Abstract-M does not completely
“cure" the “amnesia" suffered by Abstract-C. It still requires extra
range query searches (beyond theNnew range query searches for
new data points) at each window. This is because the new data
points may join the neighborhoods of existing data points, and thus
“promote" the later to become “promoted core points" (by making
the size of their neighborhood larger or equal toθcount). Once such
“promotion" happens, apromoted core pointneeds to communicate
with its neighbors about its new “role". For example, thenoisein its
neighborhood need to be marked asedge pointsand given a cluster
id. The only way apromoted core pointcan do this is to run a range
query search. We have proven that the range query searches caused
by “promotions" are the only extra range query searches needed in
Abstract-M in [24].

In conclusion, Abstract-M effectively reduces the number of range
query searches needed for detecting density-based clusters at each

534

window from (Nnew+Ncore) to (Nnew+Nprmtcore), with Nprmtcore

the number ofpromoted core pointsin the window. An example of
such savings can be observed in Figure 4. In this example, two
range query searches are saved for data points 8 and 12, as they do
not need to rerun the range query searches atW1. This is an im-
portant improvement to Abstract-C, becauseNprmtcore is always
a subset ofNcore and tends to be much smaller in practice.

6. EXACT+ABSTRA CTED NEIGHBORSHIP
BASED SOLUTION (EXTRA-N)

Considering the expensive cost of range query searches and the fact
thatNnew +Nprmtcore could be as large asN even whenNnew is
small, Abstract-M is still not the ideal solution that could keep the
number of range query searches required minimal (Nnew) and the
memory consumption linear.

Challenges. To achieve the minimum number of range query
searches (Nnew) at each window, we need to completely avoid
re-searching for anyneighborshipsthat have been identified be-
fore. This indicates that we have to give data points direct access to
their neighbors whenever communication between them is needed.
But unfortunately, the abstracted neighborship maintenance mech-
anisms, namely both neighbor counts and cluster memberships, are
not able to provide such information about the exact neighbors of a
data point. This points to the dilemma in the design of theneigh-
borshipmaintenance mechanism as explained below.

Observation 6.1. On the one hand, to give data points direct
access to their neighbors, we have to preserve all exact neighbor-
ships identified in earlier windows. On the other hand, to keep
the memory consumption linear, we cannot afford to store all exact
neighborships in the window.

Accommodating these two conflicting goals within a singleneigh-
borshipmaintenance mechanism is the key challenge for our algo-
rithm design.

Solution. We now proposeExtra-N algorithm that successfully
tackles this problem by achieving optimality in both memory and
CPU consumption. Extra-N combines the neighborship mainte-
nance mechanisms proposed in Exact-N, Abstract-C and Abstract-
M into one integrated solution. It overcomes the shortcomings of
the prior solutions while keeping their respective benefits.

We observe that different types ofneighborshipabstraction are most
useful during different stages of a data point’s life-span. In par-
ticular, we need to maintain the exactneighborshipsfor a data
in its “non-core point career", while abstractedneighborshipswill
be sufficient for its “core point career". More precisely, Extra-N
marks each data pointpi by a cluster membership in each window
in which it is predicted to becore point, while keeping the exact
neighbor list forpi in all the windows wherepi is predicted to be a
noiseor edge point. Such hybrid neighborship maintenance mech-
anism carries sufficient information to produce the density-based
clusters, because all thecore pointsin a windowWi are marked
with a cluster membership, and all theedge pointscan quickly fig-
ure out their cluster memberships by checking those of thecore
pointsin their neighbor list. We will next demonstrate that Extra-N
employs only the minimum number of range query searches while
keeping the memory consumption linear.

Data Structure. As mentioned earlier, Extra-N combines the

neighborshipmaintenance mechanisms used by all previous three
algorithms discussed in this work. Besideslt_cnt, we now intro-
duce two other types of “life time marks" for each data point. The
first mark, called “life time type" (lt_type), records the “predicted
types" (which can be “c"=core point, “e"=edge pointor “n"=noise)
of a data point in each window of its life span. The second one,
“life time hybrid neighborship (lt_hybrid), stores the “predicted
cluster memberships" and the “predicted neighbors" of a data point
across different windows in a compact structure. We call the overall
data structure composed oflt_cnt, lt_typeandlt_hybrid the Hybrid
Neighborship Mark (H-Mark)) for a data point. Figure 5 depicts the
H-Marksof the data points in Figure 3. As shown in Figure 5, we

Figure 5: The H-Marks of the data points at W0

usethe columns namedC, T andH to present thelt_cnt, lt_type
andlt_hybrid of each data point respectively. Sincelt_cnt has been
carefully discussed in Section 4.2 andlt_typeis easy to understand,
here we explainlt_hybrid. For example, atW0, thecore point12
is predicted to becore pointalso in W1. Thus it is marked by
cluster memberships in both windows (p12.lt_hybrid[0] = “c1”,
p12.lt_hybrid[1] = “c2”). Then, as it is predicted to be anon-core
point, in particular, anoisein W2, we start to keep the predicted
neighbors of it from this window (p12.lt_hybrid[2] = p13, p14).
Since the number of “predicted neighbors" of a data point follows
a monotonic decreasing function (discussed earlier in Section 4.2) ,
the “non core object career" windows of a data point are continuous
and right after its “core object career" windows. Here we note that
although we maintain the neighbor lists of each data pointpi for
all its “non-core point career" windows, the link to each of these
neighbors is only physically stored once inlt_hybrid, no matter
how many times it appears inp′

is neighborhood in different win-
dows. This means that the number of predicted neighbors each data
point pi keeps track of is equal to the maximum number of pre-
dicted neighbors it has among all its “non-core point career" win-
dows. Given monotonicity, this is equal to the number of predicted
neighbors it has in its first “non-core point career" windows. For
example, data point 13 in Figure 5 has in total 3 predicted neigh-
bors, namely data points 2, 6, and 12, in its first “non-core point
career" windowW0. At the same moment, its predicted neighbors
in later windows are subsets of these three. For ease of expiration,
a predicted neighborpj of the data pointpi is stored in the specific
row ofpi’s H-Mark corresponding to the last window in which their
neighborshipwill hold.

Lemma 6.1. Extra-N has the memory consumption linear in
the number of data points in the window.

INTUITIVE ARGUMENT 6.2. The maximum number of predicted
neighbors of each “non core point"pi is less than the constant

535

θcount (otherwisepi is a core point), and we already know that
pi.lt_cnt, lt_type and lt_hybrid all have a constant length≤ Cils

(defined earlier in Section 5). So, H-Mark of any data point is of a
constant size.

Algorithm. Similar to Abstract-M, at each window slide, Extra-N
runs a range query search for each new data point to update the
“predicted views" of future windows. However, the hybridneigh-
borshipmaintenance mechanism brings the advantage to Extra-N
of eliminating extra range query searches from the updating pro-
cesses. That is whenpromotionshappen to thenon core points,
they now have direct access to their neighbors and thus no longer
need to run range query searches to re-collect their neighbors.

Lemma 6.2. Extra-N achieves the minimum number of range
query searches needed for detecting density-based clusters at each
window.

INTUITIVE ARGUMENT 6.3. Since Extra-N inherits the neigh-
borship maintenance mechanism of Abstract-M, it needs at most
Nnew+Nprmtcore range query searches at each window like Abstract-
M. Also, we know that theNprmtcore extra range query searches
are caused by the handling of promotions. Lastly, no range query
search is needed when promotions happen in Extra-N. Thus, Extra-
N only needsNnew queries at each window.

The pseudo code of Extra-N is shown in Figure 7. The updated
H-Marksfor the example in Figure 4 are shown in Figure 6.

Figure 6: The updated H-Marks of the data points atW1

Theorem 6.4. For detecting density-based clusters, Extra-N
requires only the minimum number of range query searches needed
at each window (by Lemma 6.2), while keeping the memory con-
sumption linear in the number of data points in the window (by
Lemma 6.1).

These properties make Extra-N a very efficient solution for detect-
ing density-based clusters over sliding windows in terms of both
CPU and memory resource utilization.

7. EXPERIMENTAL STUDY
We have conducted a thorough cost analysis of the algorithms dis-
cussed in this work. This analytical study not only confirmed the
theoretical superiority of our proposed Extra-N algorithm to other

Extra-N (θ range,θcount)
1 For each Window Slide

// Purge
2 For each expired data pointpexp

3 purgepexp;
// Load

5 For each new data pointpnew

6 InitializeHMark (pnew)
7 loadpnew into index

// Neighborship Maintenance
8 For each new data pointpnew

9 Neighbors = RangeQuerySearch(pnew, θrange)
10 UpdateHMark(pnew, Neighbors, new)

// Output
11 OutputPatterns(PatternType);

InitializeHMark (p)

1 Length := ⌈
p.T−Window.Tstart

Window.Slide
⌉ ;

2 setthe length ofp.lt_cnt, lt_typeandlt_hybrid to Length;
3 For n:=1 toLength do
4 p.lt_cnt[i] := 0;
5 p.lt_type[i] := “n”;
6 p.lt_cntM [i] := “empty”;

UpdateHMark (p, Neighbors)
1 For i:=1 to Len(p.lt_hybrid)
2 For j:=1 to Len(Neighbors)
3 If Len(Neighbors[j].lt_hybrid) < i
4 removeNeighbors[j] from Neighbors
5 Else If Neighbors[j] is NOT New
6 Neighbors[j].lt_cnt[i] + + ;
8 addp to Neighbors[j].lt_hybrid if not added ;
9 addNeighbors[j] to p.lt_hybrid if not added ;
9 If Neighbors[j].lt_cnt[i] ≥ θcount

10 Mark(Neighbors[j], i);
11 p.lt_cnt[i] := Len(Neighbors);
12 If p.lt_cnt[i] ≥ θcount

13 Mark(p,i);

Mark(p,i)
1 p.lt_type[i] := “c”;
2 tempH = “empty”;
3 For eachp’s predicted neighborpj ;
4 If pj .lt_type[i] = “c” AND tempH 6= pj .lt_hybrid[i]
5 equalizetempH with pj .lt_hybrid[i] ;
6 tempH := pj .lt_hybrid[i];
7 If tempH = unmarked
8 tempH := ClusterId[i];
9 ClusterId[i] + +;
10 For eachp’s predicted neighborpj ;
11 If pj .lt_type[i] = “n”;
12 pj .lt_type[i] := “e” ;
12 pj .lt_hybrid[i] := tempH;
13 remove all the pointers inp.lt_hybrid[i] (if any);
14p.lt_hybrid[i] := tempH;

OutputPatterns(Density-Based Clusters)
1 For each data pointpi in the window
2 If pi.lt_type[1] 6= ”n”
3 output(pi);
4 removepi.lt_cnt[1], pi.lt_type[1] andpi.lt_hybrid[1];

Figure 7: Extra-N Algorithm

536

alternatives, but also identified the two major cost factors, namely
¯N(pi)

(the average number of neighbors each data point has in a
window) andNnew, that have the largest impact on the perfor-
mance of the different neighbor-based pattern detection algorithms.
The details of this cost analysis can be found in [24].

In our experimental study, for each algorithm we first utilize syn-
thetic data to observe its scope of applicability for a wide range of
parameter settings. To confirm the behaviors of the algorithms in
real applications, we also evaluate them against real data streams.

7.1 Experimental Setup and Data Sets
All our experiments are conducted on a HP Pavilion dv4000 lap-
top with Intel Centrino 1.6GHz processor and 1GB memory, which
runs Windows XP professional operating system. We implemented
all algorithms with VC++ 7.0.

Real Datasets. We used two real streaming datasets in our exper-
iments. The first dataset GMTI (Ground Moving Target Indicator)
data [13] records the real-time information of the moving objects
gathered by 24 different data ground stations or aircraft in 6 hours
from JointSTARS. It has around 100,000 records regarding the in-
formation of vehicles and helicopters (speed ranging from 0-200
mph) moving in a certain geographic region. In our experiment,
we used all 14 dimensions of GMTI while detecting clusters based
on targets’ latitude and longitude. The second real dataset we used
is the Stock Trading Traces data (STT) from [19], which has one
millions transaction records throughout the trading hours of a day.
More details of these two datasets can be found in [24]

Synthetic Datasets. For the evaluation of density-based clus-
ter detection, we built a synthetic data generator to generate the
datasets containing controlled numbers of clusters and noise. Each
synthetic dataset is composed of one thousand stream segments.
Each segment of data contains certain percentage (as an input pa-
rameter) of random noise and a set of clusters, each following a
Gaussian distribution but each with different randomly selected
meanandvariance. More details of this synthetic data generator
can be found in [24].

For the evaluation of distance-based outlier detection algorithms,
we use the Gauss Data Set, which is also used by the only previous
work [3] in detecting distance-based outliers but restricted to count-
based windows only.

7.2 Experimental Methodologies
We measure two major metrics for stream processing algorithms,
namely response time and memory footprint. In particular, we
measure the response time (henceforth referred as CPU time) each
algorithm takes to answer a query at each window. Such response
time includes the time consumed by all the four stages of the pattern
detection process at each window (see section 3). We run all the ex-
periments using synthetic data for one thousand windows, and run
those using real data to the end of the datasets. The response time
is averaged over all the windows in each experiment. The memory
footprint, which indicates the maximum memory space required by
an algorithm, is recorded over all the windows.

7.3 Evaluation for Density-Based Clustering
Comprehensive Evaluation. We conduct a comprehensive ex-
periment with a wide range of synthetic data generated by our data
generator. These experiments cover all the important combinations

of the two major cost factors identified in our cost analysis, namely
N̄pi

andNnew. In particular, we have 7 different settings of̄Npi

representing data from “very sparse" (̄N(pi)
= 1%), “medium

dense" (¯N(pi)
= 20%) and finally to “very dense" (¯N(pi)

= 50%),
and 7 different settings ofNnew covering all the increments from
“mostly remaining" (Nnew = 10%), “half-half" (Nnew = 50%),
“mostly new" (Nnew = 80%) and finally to “all new" (Nnew =
100%). Percentages here denote the ratios ofN̄pi

andNnew to N
the number of data points in the window. To avoid the performance
fluctuations caused by different base sizes (number of data points
in the window), we use count-based windows (equal in concept to
time-based windows with uniform data rates). Thus,Nnew is equal
to the slide sizeQ.slide. N̄pi

is controlled by adjusting the density
of clusters generated by the data generator.

Figure 8: Comparison of CPU Performances of Five Algo-
rithms

Figure 9: Comparison of Memory Performances of Five Algo-
rithms

From Figures 8 (CPU) and 9 (memory), we observe that Extra-
N and Abstract-M clearly outperform the other three algorithms,
namely Exact-N, Abstract-C and the naive solution, in almost all
the test cases. Besides the naive solution which does not take ad-
vantage of incremental computation, the other two incremental al-
gorithms Exact-N and Abstract-C suffer from the huge consump-
tion on either memory space or CPU time in most of the cases.

Compared with Exact-N, both Extra-N and Abstract-M consume a

537

tiny amount of memory space. In fact, on average, both Extra-N
andAbstract-M only need around5% of memory space compared
to that required by Exact-N. As shown in Figure 9, such limited
memory consumptions are actually very close to that of the naive
solution, which has no meta-information maintenance cost at all.

The negligible CPU overhead of our proposed algorithms is also
confirmed by this experiment. As shown in Figure 8, Extra-N and
Abstract-M saved substantial CPU time compared to the naive so-
lution in all the cases whereQ.Slide ≤ 50%×Q.win. Even in the
cases whenQ.Slide is very close (80%) or even equal toQ.win
(naturally the limit of any incremental algorithm), both algorithms
exhibit comparable performances with the naive solution. Actu-
ally, Extra-N and Abstract-M can be considered to be variances of
the naive solution when the windows are non-overlapping, because
they only have one “view" to maintain. In general, our proposed
algorithms have very small CPU as well as memory overhead in all
cases and thus are good candidates for a system’s only implemen-
tation, regardless of the input data and queries.

Extra-N vs. Abstract-M. We first discuss the above observed
similarity in performance of Extra-N and Abstract-M in many test
cases, which we had not expected based on our cost analysis. The
main reason for this is that the number ofpromoted core points
Nprmtcore stayed small in many cases and thus did not impact the
performance of Abstract-M. Actually, we observed thatNprmtcore

tends to be small, unless there exists a large number of data points
who have a “boundary number" of neighbors (close toθcount).
However, such situations are not frequent in our experiments for
both synthetic and real data.

Although Extra-N and Abstract-M work equivalently well in many
of our test cases, they do behave quite differently whenNprmtcore

turns to be a nonnegligible factor. To better understand their perfor-
mance in such cases, we zoomed into thēN(pi)

= 5% cases in our
comprehensive experiment. Figures 10 and 11 show the zoomed-in
subparts of the experimental results from Figures 8 and 9.

Figure 10: Comparison on
CPU Time of Extra-N and
Abstract-M in ¯N(pi)

= 5%
cases

Figure 11: Comparison on
Memory Usage of Extra-N
and Abstract-M in ¯N(pi)

=
5% cases

In the cases shown in Figures 10 and 11, Abstract-M tends to use
more CPU time while Extra-N consumes more memory space. This
is as expected because of the existence of large numbers ofpro-
moted core pointsin each window. In particular, since in thēN(pi)

=
5% cases, the number of neighbors each data point has is quite
close to the population threshold,θcount = 5% of the window size,
manycore pointsmay be demoted to becomeedge pointsor even
noiseafter losing some of their neighbors as the window slides.
For the same reason, thenon-core pointshave a good chance to be
promoted to becomepromoted core pointsafter gaining some new
neighbors as the window slides. Corresponding to our analysis in
Sections 5 and 7, eachpromoted core pointcharges Abstract-M an
extra range query search, while it charges Extra-N for the memory

space to store the links to its neighbors in its “non core pointcareer"
before its promotion. Thus, in general, a system can choose to im-
plement Abstract-M when the memory space is its key bottleneck,
while implementing Extra-N if CPU time is its major concern.

Scalability Analysis. Now, we look at the scalability in terms
of the base size (count) ranging from 10K to 50K and with a fixed
slide size 5K. Other settings of this experiment are equal to those of
the previous comprehensive one, except that we fixedN̄pi

at1K.

Figure 12: Comparison of
CPU Scalability on Base
(Window) Size

Figure 13: Comparison of
Memory Scalability on Base
(Window) Size

As shown in Figures 12 and 13, both our algorithms Extra-N and
Abstract-M show very good scalability in the base size in terms of
both CPU and memory, while others failed in either or both of them.
In particular, both Extra-N and Abstract-M only need 5 seconds to
cluster 50K data points at each window given 5K new data points.
In the other words, both algorithms can comfortably handle a data
rate of 1K per second with a 50K window.

Extra-N and Abstract-M also show good scalability in the dimen-
sionality. Details of this experiment can be found in [24].

Extra-N vs. Incremental DBSCAN. Now we compare the per-
formance of our best solution Extra-N with Incremental DBSCAN,
which, based on our analysis in Section 5, is expected to suffer
from the scalability problem when there are large number of data
points expiring at each window slide. In this experiment, we use a
fixed base size 50K, while varying the slide size from 5K to 25K,
indicating that 10 to 50 percent of data points will be expired at
each window slide based on different testing cases. As shown in
Figure 14, in our test cases, the response time for Incremental DB-
SCAN to handle each window is 3 times higher than that needed by
Extra-N on average, Also, it increases dramatically as the slide size
increases. Such performance of Incremental DBSCAN matches
our earlier analysis. The dramatic increase of response time for
Incremental DBSCAN can be explained by two reasons. First, In-
cremental DBSCAN needs a sequence of range query searches to
handle the impact of each expired cluster member. So, the more
data points are purged from each window, the more sequences of
range query searches are needed by it. Also, the more data points
are purged from each window, the more likely “splitting" would
happen to the existing clusters. Thus, the average number of range
query searches in each sequence to handle a single expiration will
also increase, because more “splittings" need to be handled. How-
ever, since Extra-N needs no maintenance effort at the expiration of
data points, its responce time only increases modestly as the slide
size increases. The averge memory consumption of Extra-N and
Incremental DBSCAN are almost the same in the five test cases in
this experiment (shown in Figure 15). As conclusion, Extra-N has
apparent superiority to Incremental DBSCAN in terms of handling
sliding windows with a large number of data points expiring at each
slide.

538

Figure 14: Comparison on
CPU Time of Extra-N and
Inc DBSCAN

Figure 15: Comparison on
Memory Usage of Extra-N
and Inc DBSCAN

Evaluation with Real Datasets. We first evaluate the perfor-
mance of all five competitors on the GMTI data, which is a rep-
resentative for moving object monitoring applications. We use the
query parameters learned from the pre-analysis of the data, includ-
ing window sizeQ.win, θrange andθcount. We varied the slide
size from10% to 100% of Q.win. We find there are 6 to 11 clus-
ters in the window at different time horizons, and̄Npi

ranges from
9% to 11% of the number data points in the windows.

Figure 16: Comparison on
CPU Time with GMTI data

Figure 17: Comparison on
Memory Usage with GMTI
data

As depicted in Figures 16 and 17, Extra-N has the best time ef-
ficiency compared with all other methods. The memory usage of
Extra-N is on average16% higher than the naive solution in the five
cases. It is a little bit higher than that of Abstract-M, which is11%
higher than the naive solution, but still very acceptable.

For STT dataset, similar behaviors of each algorithm as above can
be observed, while the number of clusters in the windows ranges
from 17 to 26, andN̄pi

in the windows ranges from6% to 9% of
the number of data points. The result charts omitted here can be
found in [24].

Generally, our experiments on real data also confirm that our pro-
posed algorithm Extra-N and Abstract-M outperform other alter-
native methods and thus are the best solutions for density-based
cluster detection in sliding windows.

7.4 Evaluation of Distance-Based Outlier De-
tection Methods

To evaluate the performance of our outlier algorithm Abstract-C,
we compare it with two alternatives, namely the naive solution and
the exact-STORM presented by [3], which is the only previous
work we are aware of that detects distance-based outliers in slid-
ing windows. In our experiments, we compare the performance of
exact-STORM and Abstract-C in both count- and time-based win-
dow scenarios. In both scenarios, we strictly followed the imple-
mentation of exact-STORM presented in [3], except for breaking
the upper bound on the number of neighbors stored, as required in

the time-based window scenario. For time-based window scenario,

Figure 18: Comparison on
CPU Time for Time-Based
Window Scenario

Figure 19: Comparison on
Memory Usage for Time-
Based Window Scenario

as the experimental results show in Figures 18 and 19, Abstract-C
clearly outperforms the naive solution and exact-STORM.

Another experiment for the count-based window scenario shows
that exact-STORM and Abstract-C perform equivalently well in
terms of CPU time in most of the test cases. Details of these exper-
iments as well as an analytical comparison between exact-STORM
and Abstract-C can be found in [24].

8. RELATED WORK
Traditionally, pattern detection techniques are designed for static
environments with large volumes of stored data. Well-known al-
gorithms for static data clustering include [25, 18, 15, 4], and for
detecting outliers include [22, 9, 20]. In these works, both clusters
and outliers can either be global patterns [25, 18] that are defined
by global characteristics of all data or local patterns [22, 4] that
are defined by the characteristics of a subset of the data. In this
work, our target pattern types are density-based clusters [15] and
distance-based outliers [20]. Both are popular pattern types defined
by local neighborhood properties.

The early clustering algorithms applied to data streams [17, 16] are
global clustering algorithms adapted from the static k-means algo-
rithm. They treat the data stream clustering problem as a contin-
uous version of static data clustering. They treat objects with dif-
ferent time horizons (recentness) equally and thus only reflect the
accumulative features in data streams. [2] presented a framework
of clustering streaming data using a two stage process. First, the
online component summarizes streaming data into micro-clusters,
each represented by a CFV (a statistical description of clusters).
Then, an offline component clusters the micro-clusters formed ear-
lier to form final clustering results using a static k-means algorithm.
In this framework, a subtraction function is used to approximately
discount the effect of the earlier data on the clustering results. Sev-
eral extensions have been made to this work, focusing respectively
on clustering multiple data streams [12] and parallel data streams
[8]. None of efforts described above deals with arbitrarily shaped
local clusters, nor do they support sliding window semantics. The
only exception is [7] which discusses the clustering problem with
sliding windows. However, it again is a global clustering algorithm
maintaining approximated cluster centers only.

Incremental DBSCAN [14] incrementally updates density-based
clusters in data warehouse environments. However, as elaborated
in our introduction and Section 5, this work does not solve the prob-
lem of efficiently discounting the effect of object “deleted" from the
dataset. For this reason as well as because all optimizations in this
work were designed for single updates (a single deletion or inser-

539

tion) to the data warehouse, it may fit well for the relatively stable
environments but is not scalable to streaming environments that are
highly dynamic. [11, 10] also studied the problem of detecting
density-based clusters over streaming data. However, [11, 10] are
not applied to identify the individual members in the clusters as re-
quired by the application scenarios described in the introduction.
Also, to capture the dynamicity of the evolving data, they both use
decaying factors derived from the “age" information of the objects.
These decaying factors put lighter weights on older objects dur-
ing the clustering processes. This approach emphasizes the recent
stream portion more compared to the older data, but it does not en-
force the discounting of old data’s effect from the pattern detection
results. Thus, they cannot be used in the applications associated
with sliding windows discussed in this work.

Outlier Detection over data streams has been studied by [1, 23,
3]. Among these works, [1] works with outliers defined differ-
ently than ours. Thus, this technique cannot be applied to detect the
distance-based outliers discussed in this work. [23] studes the de-
tection of distance- and MEDF-based outliers in hierarchical struc-
tured sensor networks. The outliers detection is based on approx-
imated data distribution, which is different from our approach of
using exact objects. Most similar to our effort, the exact-STORM
algorithm [3] also detects exact distance-based outliers within slid-
ing windows. However, this work only deals with count-based win-
dows, where the number of objects in the window is aprioir known
and fixed. Our analytical and experimental studies reveal that this
method is not suitable for handling time-based windows, where the
numbers of objects in each window are different. Our work instead
is more general yet efficient in both cases.

9. CONCLUSIONS
In this work, we study the problem of incrementally detecting neighbor-
based patterns for sliding windows over streaming data. We first
identify that the major difficulty of incremental detection of the
neighbor-based patterns exists in the handling of expired objects.
For this reason, our two primitive incremental algorithms Exact-N
and Abstract-C suffer from either massive CPU or memory con-
sumption for detecting density-based clusters. Then, we design
the third algorithm Abstract-M based on a proposed “view pre-
diction" technique, which elegantly discounts the effect of expired
data points from the patterns. Finally, the combination of the “view
prediction" technique and a proposed hybridneighborshipmainte-
nance mechanism leads to an ideal solution Extra-N, achieving both
linear memory consumption and the minimum number of range
query searches. Both our analytical and experimental studies con-
firm that: 1) Our proposed algorithms Extra-N and Abstract-M are
near-optimal in detecting density-based clusters over sliding win-
dows in terms of CPU time, memory space and also scalability.
2) Our proposed algorithm Abstract-C is a CPU- and memory-
efficient algorithm for distance-based outlier detection in sliding
windows. It clearly outperforms the only previous algorithm [3]
when detecting outliers in time-based windows, while performing
equivalently with it when dealing with count-based windows.

10. REFERENCES
[1] C. C. Aggarwal. On abnormality detection in spuriously

populated data streams. InSDM, 2005.
[2] C. C. Aggarwal, J. Han, J. Wang, and P. S. Yu. A framework

for clustering evolving data streams. InVLDB, pages 81–92,
2003.

[3] F. Angiulli and F. Fassetti. Detecting distance-based outliers
in streams of data. InCIKM, pages 811–820, 2007.

[4] M. Ankerst, M. M. Breunig, H.-P. Kriegel, and J. Sander.
Optics: Ordering points to identify the clustering structure.
In SIGMOD.

[5] A. Arasu, S. Babu, and J. Widom. The cql continuous query
language: semantic foundations and query execution.VLDB
J., 15(2):121–142, 2006.

[6] A. Arasu and J. Widom. Resource sharing in continuous
sliding-window aggregates. InVLDB, pages 336–347, 2004.

[7] B. Babcock, M. Datar, R. Motwani, and L. O’Callaghan.
Maintaining variance and k-medians over data stream
windows. InPODS, pages 234–243, 2003.

[8] J. Beringer and E. Hüllermeier. Online clustering of parallel
data streams.Data Knowl. Eng., 58(2):180–204, 2006.

[9] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander. Lof:
identifying density-based local outliers.SIGMOD Rec.,
29(2):93–104, 2000.

[10] F. Cao, M. Ester, W. Qian, and A. Zhou. Density-based
clustering over an evolving data stream with noise. InSDM,
2006.

[11] Y. Chen and L. Tu. Density-based clustering for real-time
stream data. InKDD, pages 133–142, 2007.

[12] B.-R. Dai, J.-W. Huang, M.-Y. Yeh, and M.-S. Chen.
Adaptive clustering for multiple evolving streams.IEEE
Trans. Knowl. Data Eng., 18(9):1166–1180, 2006.

[13] J. N. Entzminger, C. A. Fowler, and W. J. Kenneally.
Jointstars and gmti: Past, present and future.IEEE
Transactions on Aerospace and Electronic Systems,
35(2):748–762, april 1999.

[14] M. Ester, H.-P. Kriegel, J. Sander, M. Wimmer, and X. Xu.
Incremental clustering for mining in a data warehousing
environment. In A. Gupta, O. Shmueli, and J. Widom,
editors,VLDB, pages 323–333, 1998.

[15] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A
density-based algorithm for discovering clusters in large
spatial databases with noise. InKDD, pages 226–231, 1996.

[16] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice.IEEE Trans. Knowl. Data Eng., 15(3):515–528,
2003.

[17] S. Guha, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering data streams. InFOCS, pages 359–366, 2000.

[18] J. A. Hartigan and M. A. Wong. A k-means clustering
algorithm.Applied Statistics, 28(1).

[19] I. INETATS. Stock trade traces. http://www.inetats.com/.
[20] E. M. Knorr and R. T. Ng. Algorithms for mining

distance-based outliers in large datasets. InVLDB, pages
392–403, 1998.

[21] J. Munkres.Topology. Prentice Hall, 2000.
[22] I. Ruts and P. J. Rousseeuw. Computing depth contours of

bivariate point clouds.Comput. Stat. Data Anal.,
23(1):153–168, 1996.

[23] S. Subramaniam, T. Palpanas, D. Papadopoulos,
V. Kalogeraki, and D. Gunopulos. Online outlier detection in
sensor data using non-parametric models. InVLDB, pages
187–198, 2006.

[24] D. Yang. Neighbor-based pattern detection for windows over
streaming data.WPI Technical Report, 2008.
http : //users.wpi.edu/ ∼ diyang/str_patt_detect.pdf.

[25] T. Zhang, R. Ramakrishnan, and M. Livny. Birch: an
efficient data clustering method for very large databases.
SIGMOD Record, vol.25(2), p. 103-14, 1996.

540

