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Abstract—Kinship verification from facial images is an interesting and challenging problem in computer vision, and there are very

limited attempts on tackle this problem in the literature. In this paper, we propose a new neighborhood repulsed metric learning (NRML)

method for kinship verification. Motivated by the fact that interclass samples (without a kinship relation) with higher similarity usually lie

in a neighborhood and are more easily misclassified than those with lower similarity, we aim to learn a distance metric under which the

intraclass samples (with a kinship relation) are pulled as close as possible and interclass samples lying in a neighborhood are repulsed

and pushed away as far as possible, simultaneously, such that more discriminative information can be exploited for verification. To

make better use of multiple feature descriptors to extract complementary information, we further propose a multiview NRML (MNRML)

method to seek a common distance metric to perform multiple feature fusion to improve the kinship verification performance.

Experimental results are presented to demonstrate the efficacy of our proposed methods. Finally, we also test human ability in kinship

verification from facial images and our experimental results show that our methods are comparable to that of human observers.

Index Terms—Face and gesture recognition, kinship verification, metric learning, multiview learning, biometrics
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1 INTRODUCTION

FACIAL images convey many important human character-
istics, such as identity, gender, expression, age, ethnicity

and so on. Over the past two decades, a large number of
face analysis problems have been investigated in the
computer vision and pattern recognition community.
Representative examples include face recognition [5], [8],
[10], [20], [22], [27], [28], [35], [37], [40], [41], [42], [43], [54],
[55], [56], [58], [64], [65], [66], [67], [68], facial expression
recognition [11], [18], [70], facial age estimation [19], [21],
[24], [25], [31], [39], gender classification [44], [45], and
ethnicity recognition [26], [47].

In this paper, we investigate a new face analysis
problem: kinship verification from facial images. To the
best of our knowledge, there are very limited attempts on
tackle this problem in the literature. Given each pair of
face images, our objective is to determine whether there is
a kinship relation between these two people. We define
kinship as a relationship between two people who are
biologically related with overlapping genes. Specifically,

we examine in this paper four different types of kinship
relations: father-son (F-S), father-daughter (F-D), mother-
son (M-S), and mother-daughter (M-D) kinship relations.
This new research topic has several potential applications
such as family album organization, image annotation,
social media analysis, and missing children/parents
search. However, limited research has been conducted
along this direction, possibly due to lacking of such
publicly available kinship databases and inherent chal-
lenges of this problem. To this end, we construct two new
kinship databases named KinFaceW-I and KinFaceW-II1

from Internet search under uncontrolled conditions. Then,
we learn a robust distance metric under which facial
images with kinship relations are projected as close as
possible and those without kinship relations are pushed
away as far as possible, simultaneously. Since interclass
samples (without a kinship relation) with higher similarity
usually lie in a neighborhood and are more easily
misclassified than those with lower similarity, we empha-
size the interclass samples in a neighborhood more in
learning the distance metric and expect those samples
lying in a neighborhood are repulsed and pushed away as
far as possible, simultaneously, such that more discrimi-
native information can be exploited for verification.
Inspired by the fact that multiple feature descriptors could
provide complementary information in characterizing
facial information from different viewpoints to extract
more discriminative information, we propose a multiview
neighborhood repulsed metric learning (MNRML) method
by learning a common distance metric, under which
multiple feature descriptors can be effectively and well
combined to further improve the verification performance.
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1. The difference of KinFaceW-I and KinFaceW-II is that each pair of
kinship facial images in KinFaceW-I was acquired from different photos
and that in KinFaceW-II was extracted from the same photo. Some face
examples with different relations will be provided in Section 3.
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Experimental results are presented to demonstrate the

feasibility of verifying human kinship via facial image

analysis and the efficacy of our proposed methods. Fig. 1

illustrates the basic framework of our proposed approach.
The contributions of this paper are summarized as

follows:

. Wehave proposed a novel NRMLmethod for kinship
verification. The proposed metric can pull intraclass
samples (with a kinship relation) to be as close as
possible and push interclass samples (without a
kinship relation) in a neighborhood to be as far as
possible, simultaneously, such that more discrimina-
tive information can be exploited for verification.

. We have proposed a new multiview NRML
(MNRML) method to seek a common distance
metric to perform multiple feature fusion by making
better use of multiple face feature descriptors to
extract complementary information to improve the
kinship verification performance.

. We have constructed two new kinship databases,
named KinFaceW-I and KinFaceW-II, from the
Internet search, where face images were captured
under uncontrolled conditions. To the best of our
knowledge, they are the largest face data sets for
kinship verification for practical applications be-
cause facial images in our data sets were collected
from real-world environments. We have made these
two databases and labels publicly available online.2

. We have conducted a number of kinship verification
experiments to demonstrate the efficacy of our
proposed methods. Moreover, we have also tested
human ability in kinship verification from facial
images and our experimental results show that our
methods are comparable to that of human observers.

This is an extended version of our conference paper [36].

The following describes the extensions in this paper from its

conference version:

. We have investigated the performance of our pro-
posed NRML andMNRMLmethods versus different
classifiers. Experimental results have shown that the
verification accuracies of our proposed methods are
not sensitive to the selection of the classifier.

. We have conducted experiments on two additional,
publicly available kinship databases and compared

the performance of our proposed methods with that
of their algorithms. Experimental results have
shown that our proposed methods significantly
outperform their methods in terms of the correct
verification rate, which further shows the efficacy of
our proposed methods.

. We have included more experimental results in this
paper such as the ROC curve comparisons, compu-
tational costs of different methods, and parameter
analysis of NRML and MNRML, to further show the
efficacy of our proposed methods.

. We have compared our MNRML method with
several existing multiview learning methods in our
kinship verification experiments. Experimental re-
sults show that our MNRML can achieve compar-
able performance with most existing multiview
learning methods.

. We have conducted age-invariant face verification
experiments on the FG-NET and MORPH face data
sets to further demonstrate the effectiveness of our
proposed methods.

The remainder of this paper is organized as follows:
Section 2 briefly reviews related work. Section 3 presents
our kinship data sets. Section 4 details the proposed
methods. Section 5 provides the experimental results, and
Section 6 concludes the paper.

2 RELATED WORK

In this section, we briefly review two related topics:
1) kinship verification, and 2) metric learning.

2.1 Kinship Verification

Recently, human perception of kinship verification has been
investigated in the psychology community [2], [13], [14],
[16], [29], [30], and one key finding is observed: Humans
have the capability to recognize kinship based on face
images even if these images are from unfamiliar faces.
Motivated by this finding, researchers in computer vision
are interested in developing computational approaches to
verify human kinship relations, and there have been a
limited number of attempts to address this problem in recent
years. To our best knowledge, Fang et al. [17] made the first
attempt to tackle the challenge of kinship verification from
facial images by using local facial feature extraction and
selection. They first localized several face parts and
extracted some features such as skin color, gray value,
histogram of gradient, and facial structure information to
describe facial images. Then, the k-nearest-neighbor (KNN)
and support vector machine (SVM) classifiers were applied
to classify face images. More recently, Xia et al. [60], [61]
proposed a transfer subspace learning approach for kinship
verification. Their basic idea is to utilize an intermediate
young parent facial image set to reduce the divergence
between the children and old parent images based on the
assumption that the children and young parents possess
more facial resemblance in facial appearances.

While encouraging results were obtained, there are still
two shortcomings among the existing kinship verification
works: 1) The conventional euclidean metric was usually
utilized for kinship verification and such metric is not
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Fig. 1. Framework of our proposed kinship verification approach
via facial image analysis. Given a set of training face images, we first
extract features for each face image and learn a distance metric to map
these feature representations into a low-dimensional feature subspace,
under which the kinship relation of face samples can be better
discriminated. For each test face pair, we also extract features of each
face image and map these features to the learned low-dimensional
feature subspace. Finally, a classifier is used to verify whether there is a
kinship relationship or not between the test face pair.

2. Available at: https://sites.google.com/site/elujiwen/kinfacew.



appropriate to measure the similarity of facial images
because the intrinsic space that face usually lies in is a low-
dimensional manifold rather than a euclidean space; 2) ex-
isting methods were only evaluated on relatively small data
sets (150 and 200 pairs in [17] and [61], respectively), which
may not be sufficient to demonstrate the effectiveness of face
analysis-based kinship verification. Hence, more robust and
effective distance metrics and larger kinship data sets are
desirable to be adopted to demonstrate and improve the
performance of existing kinship verification methods.

2.2 Metric Learning

Metric learning has received a lot of attention in computer
vision and machine learning in recent years, and there have
been a number of metric learning algorithms in the
literature. Existing metric learning methods can be mainly
divided into two categories: unsupervised and supervised.
Unsupervised methods aim to learn a low-dimensional
manifold where the geometrical information of the samples
is preserved. Representatives of such algorithms include
principal component analysis (PCA) [54], locally linear
embedding (LLE) [50], multidimensional scaling (MDS)
[52], and Laplacian eigenmaps (LE) [6]. Supervised methods
aim to seek an appropriate distance metric for classification
tasks. Generally, an optimization objective function is
formulated based on some supervised information of the
training samples to learn the distance metric. The difference
among these methods lies mainly in the objective functions,
which are designed for their specific tasks. Typical
supervised metric learning methods include linear discri-
minant analysis (LDA) [5], neighborhood component
analysis (NCA) [23], cosine similarity metric learning
(CSML) [46], large margin nearest neighbor (LMNN) [57],
and information theoretic metric learning (ITML) [15].

While metric learning methods have achieved reasonably
good performance in many visual analysis applications,
there are still two shortcomings among most existing
methods: 1) Some training samples are more informative in
learning the distance metric than others, and most existing
metric learning methods consider them equally and ignore
potentially different contributions of the samples to learn the
distance metric; 2) most existing metric learning methods
only learn a distance metric from single view data and
cannot handle multiview data directly. Previous research
has shown that different feature descriptors could provide
complementary information in characterizing facial infor-
mation from different viewpoints [62], [63], and hence it is
desirable to utilize multiple feature information for our
kinship verification task. However, multiple feature de-
scriptors generally have multiple modalities and existing
metric learning methods cannot work well for such multi-
view data directly. To address this shortcoming, we propose
a new multiview metric learning method to learn a common
and robust metric to measure the similarity of facial images
represented bymultiple feature descriptors, simultaneously.

3 DATA SETS

There are many potential applications for kinship ver-
ification. One representative example is family album
organization and missing parent/child search, where we

usually need to determine the kinship relation from two
face photos taken at different times. Another important
application is social media analysis, such as understand-
ing the relationships of people in a photo. For this
application, there are usually many face images in a photo
and we need to determine the kinship relation from two
face photos in the same photo.

To advance the kinship verification research for different
practical applications and show the efficacy of our
proposed methods, we collected two kinship face data sets,
named KinFaceW-I and KinFaceW-II, from the Internet
through an online search, where some public figure face
images, as well as their parents’ or children’s face images.
The difference of KinFaceW-I and KinFaceW-II is that each
pair of kinship facial images in KinFaceW-I was acquired
from different photos and that in KinFaceW-II was obtained
from the same photo. Hence, experimental results on the
KinFaceW-I and KinFaceW-II data sets show different
potentials in the real applications. We impose no restriction
in terms of pose, lighting, background, expression, age,
ethnicity, and partial occlusion on the images used for
training and testing. Some examples from these two data
sets are shown in Figs. 2 and 3, respectively.3

There are four kinship relations in both the KinFaceW-I
and KinFaceW-II data sets: father-son (F-S), father-daughter
(F-D), mother-son (M-S), and mother-daughter (M-D). In
the KinFaceW-I data set, there are 156, 134, 116, and 127
pairs of kinship images for these four relations. For the
KinFaceW-II data set, each relationship contains 250 pairs of
kinship images. Fig. 4 shows the ethnicity distributions of
these two data sets.

4 PROPOSED METHODS

4.1 Basic Idea

Fig. 5 shows the basic idea of our proposed NRML method.
There are two sample sets in Fig. 5a, where samples in the
left (blue color) denote face images of parents, and those in
the right (red color) denote face images of children,
respectively. These samples are denoted by circles, squares
and triangles, respectively. Let the two circles in this figure
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Fig. 2. Several image examples of our KinFaceW-I database. From top
to bottom are the father-son (F-S), father-daughter (F-D), mother-son
(M-S), and mother-daughter (M-D) kinship relations, and the neighboring
two images in each row are with kinship relation, respectively.

3. All face images shown in this paper were collected from the Internet,
which are meant to be used for academic research only.



denote a pair of face samples with a kinship relation, where
the blue circle and red circle represent face images of
the parent and child, respectively. In the original face image

space, there is usually a large difference between the parent
and child images in the circle class due to some variation

factors such as aging, illumination, pose and expression.
Hence, there are some other parent and children images

lying in the neighborhood of the parent and child images in
the circle class, respectively, as shown in Fig. 5a. From the

classification viewpoint, neighboring samples in the parent
and child image sets are more easily misclassified than
those are not in the neighborhood because there is a high

chance to misclassify the images in the neighborhood. To
address this challenge, we aim to learn a distance metric

under which facial images with kinship relations are
projected as close as possible and those without kinship

relations in the neighborhoods are pulled as far as possible,
as shown in Fig. 5b. In other words, the similarities of the

(blue) triangle samples and the (red) circle and that of
the (blue) circle and the (red) triangles should be decreased

such that the kinship margin in the learned distance metric
is much larger and more discriminative information can be
exploited for kinship verification.

4.2 NRML

Let S ¼ fðxi; yiÞji ¼ 1; 2; . . . ; Ng be the training set ofN pairs
of kinship images, where xi and yi are two m-dimensional
column vectors, of the ith parent and child image pair,

respectively. The aim of NRML is to seek a good metric d

such that the distance between xi and yj ði ¼ jÞ is as small as

possible, and that between xi and yjði 6¼ jÞ is as large as
possible, simultaneously, where

dðxi; yjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � yjÞ
TAðxi � yjÞ

q

; ð1Þ

where A is an m�m square matrix, and 1 � i; j � N . Since
d is a metric, dðxi; yjÞ should have the properties of
nonnegativity, symmetry, and triangle inequality. Hence,
A is symmetric and positive semidefinite.

As discussed above, we formulate the proposed NRML
as the following optimization problem:

max
A

JðAÞ ¼ J1ðAÞ þ J2ðAÞ � J3ðAÞ

¼
1

Nk

X

N

i¼1

X

k

t1¼1

d2ðxi; yit1Þ þ
1

Nk

X

N

i¼1

X

k

t2¼1

d2ðxit2 ; yiÞ

�
1

N

X

N

i¼1

d2ðxi; yiÞ

¼
1

Nk

X

N

i¼1

X

k

t1¼1

ðxi � yit1Þ
TAðxi � yit1Þ

þ
1

Nk

X

N

i¼1

X

k

t2¼1

ðxit2 � yiÞ
TAðxit2 � yiÞ

�
1

N

X

N

i¼1

ðxi � yiÞ
TAðxi � yiÞ;

ð2Þ

where yit1 represents the t1th k-nearest neighbor of yi and
xit2 denotes the t2th k-nearest neighbor of xi, respectively,
the metric d is defined as (1). The aim of J1 in (2) is to ensure
that if yit1 and yi are close, then they should be separated as
far as possible with xi in the learned distance metric space.
Similarly, the objective of J2 in (2) is to ensure that if xit2 and
xi are close, they should be separated as far as possible with
yi in the learned distance metric space. On the other hand,
J3 in (2) ensures that xi and yi are pulled as close as possible
in the learned distance metric space because they have
kinship relations.

It can be seen that the optimization criterion in (2) poses
a chicken-and-egg problem because the distance metric d
needs to be known for computing the k-nearest neighbors of
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Fig. 4. The ethnicity distribution of the (a) KinFaceW-I and
(b) KinFaceW-II data sets, respectively.

Fig. 5. Intuitive illustration of our proposed NRML method. (a) The
original face images with/without kinship relations in the high-dimen-
sional feature space. The samples in the left denote face images of
parents, and those in the right denote face images of children,
respectively. Given one pair of face images with kinship relation
(denoted as circles), the triangles and squares denote face samples in
the neighborhood and non-neighborhood, respectively. We aim to learn
a distance metric such that facial images with kinship relations are
projected as close as possible and those without kinship relations in the
neighborhoods are pushed away as far as possible. (b) The expected
distributions of face images in the learned metric space, where the
similarity of the circle pair (with a kinship relation) is increased and those
of the circle and triangle pairs are decreased, respectively.

Fig. 3. Several image examples of our KinFaceW-II database. From top
to bottom are the father-son (F-S), father-daughter (F-D), mother-son
(M-S), and mother-daughter (M-D) kinship relations, and the neighboring
two images in each row are with kinship relation, respectively.



xi and yi. To our best knowledge, there is no closed-form
solution for such an optimization problem. Alternatively,
we solve this problem in an iterative manner. The basic idea
is to first use the euclidean metric to search the k-nearest
neighbors of xi and yi, and solve d sequentially.

Since A is symmetric and positive semidefinite, we can
seek a nonsquare matrix W of size m� l, where l � m,
such that

A ¼ WWT : ð3Þ

Then, (1) can be rewritten as

dðxi; yjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � yjÞ
TAðxi � yjÞ

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi � yjÞ
TWWT ðxi � yjÞ

q

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðui � vjÞ
T ðui � vjÞ;

q

ð4Þ

where ui ¼ WTxi and vj ¼ WTyj.
Combining (2) and (4), we simplify J1ðAÞ to the

following form:

J1ðAÞ ¼
1

Nk

X

N

i¼1

X

k

t1¼1

ðxi � yit1Þ
TWWT ðxi � yit1Þ

¼ tr WT 1

Nk

X

N

i¼1

X

k

t1¼1

ðxi � yit1Þðxi � yit1Þ
TW

 !

¼ trðWTH1W Þ;

ð5Þ

where H1 ¼
4 1

Nk

PN
i¼1

Pk
t1¼1ðxi � yit1Þðxi � yit1Þ

T .

Similarly, J2ðAÞ and J3ðAÞ can be simplified as

J2ðAÞ ¼ tr WT 1

Nk

X

N

i¼1

X

k

t2¼1

ðxit2 � yiÞðxit2 � yiÞ
TW

 !

¼ trðWTH2W Þ;

ð6Þ

J3ðAÞ ¼ tr WT 1

N

X

N

i¼1

ðxi � yiÞðxi � yiÞ
TW

 !

¼ trðWTH3WÞ;

ð7Þ

where H2 ¼
4 1

Nk

PN
i¼1

Pk
t2¼1ðxit2 � yiÞðxit2 � yiÞ

T and H3 ¼
4

1
N

PN
i¼1ðxi � yiÞðxi � yiÞ

T .
Now, we can formulate our NRML method as

max
W

JðWÞ ¼ tr½WT ðH1 þH2 �H3ÞW �

subject to WTW ¼ I;
ð8Þ

where WTW ¼ I is a constraint to restrict the scale of W
such that the optimization problem with respect to W is
well posed. Then, W can be obtained by solving the
following eigenvalue problem

ðH1 þH2 �H3Þw ¼ �w: ð9Þ

Let w1; w2; . . . ; wl be the eigenvectors of (9) corresponding
to the l largest eigenvalues ordered according to �1 �
�2 � � � � � �l. An m� l transformation matrix W ¼ ½w1;
w2; . . . ; wl� can be obtained to project the original face samples
xi and yi into low-dimensional feature vectors ui and vi,
as follows:

ui ¼ WTxi; vi ¼ WTyi; i ¼ 1; 2; . . . ; N: ð10Þ

Having obtained W , we can recalculate the k-nearest
neighbors of xi and yi by using (1), respectively, and update
W by re-solving the eigenvalue equation in (9). The
proposed NRML algorithm is summarized in Algorithm 1.

Algorithm 1. NRML.

Input: Training images: S ¼ fðxi; yiÞji ¼ 1; 2; . . . ; Ng,

Parameters: neighborhood size k, iteration

number T , and convergence error " (set as 0.0001).

Output: Distance metric W .

Step 1 (Initialization):

Search the k-nearest neighbors for each xi and

yi by using the conventional euclidean metric.

Step 2 (Local optimization):

For r ¼ 1; 2; . . . ; T , repeat

2.1. Compute H1, H2 and H3, respectively.

2.2. Solve the eigenvalue problem in (9).

2.3. Obtain W r ¼ ½w1; w2; . . . ; wl�.

2.4. Update the k-nearest neighbors of xi and
yi by W r.

2.5. If r > 2 and jW r �W r�1j < ", go to Step 3.

Step 3 (Output distance metric):

Output distance metric W ¼ W r.

4.3 MNRML

Previous studies have shown that different feature descrip-
tors could provide complementary information in charac-
terizing facial information from different viewpoints [7],
[12], [38], [51], [69], [71], [73], and hence it is desirable to
utilize multiple feature information for our kinship ver-
ification task. However, multiple feature descriptors gen-
erally have multiple modalities and existing metric learning
methods cannot be used for multiview data directly. A
nature solution for multiview metric learning is to directly
concatenate different features together as a new vector and
then apply existing metric learning methods for feature
extraction. However, such operation is not physically
meaningful because different features have different statis-
tical characteristics and such concatenation ignores the
diversity of different feature representations, which cannot
efficiently exploit the complementary information of differ-
ent features. To address this problem, we propose a new
multiview NRML (MNRML) method to learn a common
distance metric for measuring multiple feature representa-
tions of facial images for kinship verification.

Assume there are K views of feature representations,
and Sp ¼ fðxpi ; y

p
i Þji ¼ 1; 2; . . . ; Ng is the feature representa-

tion of the pth view set of N pairs of kinship images,
where xpi 2 Rm and ypi 2 Rm are the ith parent and child
images from the pth view, respectively, where p ¼ 1;
2; . . . ; K. The aim of MNRML is to seek a common metric
d such that the distance between xp

i and ypj (i ¼ j) is as
small as possible, and that between xp

i and ypj ði 6¼ jÞ is as
large as possible, simultaneously.

To discover the complemental information of facial
images from different views, we impose a nonnegative
weighted vector � ¼ ½�1; �2; . . . ; �K � on the objective func-
tion of NRML of each view. Generally, the larger �p is, the
more contribution of the feature representations from the
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pth view is made to learn the distance metric. Hence, we
formulate MNRML as the following optimization problem:

max
W;�

X

K

p¼1

�ptr
�

WT
�

Hp
1 þHp

2 �Hp
3

�

W
�

subject to WTW ¼ I;
X

K

p¼1

�p ¼ 1; �p � 0:

ð11Þ

The solution to (11) is �p ¼ 1 corresponding to the
maximal tr½WT ðHp

1 þHp
2 �Hp

3ÞW � over different views, and
�p ¼ 0 otherwise, which means only the best view is
selected by our method, such that the complementary
information of facial features from different views has not
been exploited. To address this, we modify �p to be �q

p,
where q > 1, and the new objective function is defined as

max
W;�

X

K

p¼1

�q
ptr
�

WT
�

Hp
1 þHp

2 �Hp
3

�

W
�

subject to WTW ¼ I;
X

K

p¼1

�p ¼ 1; �p � 0:

ð12Þ

To the best of our knowledge, there is no closed-form
solution to (12) since it is nonlinearly constrained non-
convex optimization problem. Similarly to NRML, we also
solve it in an iterative manner.

First, we fix W and update �. We construct a Lagrange
function

Lð�; �Þ ¼
X

K

p¼1

�q
ptr
�

WT
�

Hp
1 þHp

2 �Hp
3

�

W
�

� �
X

K

p¼1
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Letting @Lð�;�Þ
@�p

¼ 0 and @Lð�;�Þ
@� ¼ 0, we have
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Combining (14) and (15), we can obtain �p as follows:
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Then, we update W by using the new �. When � is fixed,
(12) is equivalent to

max
W

tr WT
X

K

p¼1

�q
p

�

Hp
1 þHp

2 �Hp
3

�

 !

W

" #

subject to WTW ¼ I:
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And W can be obtained by solving the following eigenvalue
equation:
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w ¼ �w: ð18Þ

The proposed MNRML algorithm is summarized in
Algorithm 2.

Algorithm 2. MNRML.

Input: Training images: Sp ¼ fðxp
i ; y

p
i Þji ¼ 1; 2; . . . ; Ng

be the pth view set of N pairs of kinship images,

Parameters: neighborhood size k, iteration number

T , tuning parameter q, and convergence error "

(set as 0.0001).

Output: Distance metric W .

Step 1 (Initialization):

1.1. Set � ¼ ½1=K; 1=K; . . . ; 1=K�;

1.2. Obtain W 0 by solving (18).
Step 2 (Local optimization):

For r ¼ 1; 2; . . . ; T , repeat

2.1. Compute � by using (16).

2.2. Obtain W r by solving (18).

2.3. If r > 2 and jW r �W r�1j < ", go to Step 3.

Step 3 (Output distance metric):

Output distance metric W ¼ W r.

5 EXPERIMENTS

We have developed an experimental protocol for kinship
verification on our data sets and provided a benchmark
baseline for other researchers to compare their methods and
algorithms with our baseline results. Moveover, we have
also evaluated our proposed NRML and MNRML methods
by conducting a number of kinship verification experiments
on our data sets. The following details experimental settings
and results.

5.1 Experimental Settings

5.1.1 Data Preparation

In our experiments, we manually label the coordinates of
the eyes position of each face image, and cropped and
aligned facial region into 64� 64 according to the template
used in [53], such that the nonfacial regions such as the
background and hairs were removed and only facial region
was used for kinship verification. If those color images, we
converted them into grayscale images. For each cropped
image, histogram equalization was applied to mitigate the
illumination issue. Figs. 6 and 7 show some cropped and
aligned images of our KinFaceW-I and KinFaceW-II data
sets, respectively.
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Fig. 6. Aligned and cropped image examples of our KinFaceW-I
database. From top to bottom are the father-son (F-S), father-
daughter (F-D), mother-son (M-S), and mother-daughter (M-D) kinship
relations, and the neighboring two images in each row are with the
kinship relation, respectively.



5.1.2 Feature Representation

We have experimented with the following four feature
descriptors for our kinship verification task:

. LBP [1]: Each face image was divided into 4� 4

nonoverlapped blocks and the size of each block is
16� 16. For each block, we extracted a 256D histo-
gram feature rather than the 59D uniform pattern to
describe each image block because we found such
parameter setting achieved better performance than
that used in [1]. Therefore, there are 16 256D features
and these features were concatenated into a 4,096-
dimensional vector for feature representation.

. LE [9]: For each pixel in the face image, its
neighboring pixels in a ring-based pattern were
sampled to generate a low-level feature vector.
Specifically, we sampled r � 8 pixels at equal inter-
vals on the ring of radius r, and rwas empirically set
as 0, 1, and 2, respectively, such that 25 ð1þ 8þ 16Þ
neighboring pixels were sampled to construct a
feature vector for each pixel. Then, we normalized
the sampled feature vector into unit length such that
it can be more robust to illumination-invariant. For
all these feature vectors in the training set, we
performed K-means to quantize them into
M discrete types, and each face image will be
encoded as an M-dimensional feature vector. To
make better use of the spatial information, we
applied a spatial pyramid approach for feature
representation [72]. First, we constructed a sequence
of grids at resolution 0; . . . ; l; . . . ; L, such that
the grid at level l has 2l cells along each dimension,
where 0 � l � L. Then, we extracted the LE feature
in each cell and concatenated them into a long
feature vector. In our experiments, M and L are
empirically set to be 200 and 2, respectively, such
that the final LE feature vector is 4,200D.

. SIFT [34]: For each face image, we divided each face
image into several overlapping patches and ex-
tracted local features from each patch. In our
experiments, the patch size was set as 16� 16

and the overlapping radius is 8. Hence, there are
49 blocks for each face image and the whole image
was represented by a 6,272D feature vector.

. Three-patch LBP (TPLBP) [59]: Similarly to LBP, each
face imagewas also divided into 4� 4nonoverlapped

blocks and the size of each block is 16� 16. For each
pixel in each block, we considered a 3� 3 patch
centered on the pixel and eight additional patches
distributed uniformly in a ring of radius around it.
In our implementation, the radius was set as 2. For
each block, we extracted a 256D histogram feature
and concatenated features from all blocks into a
4,096D vector for face representation.

5.1.3 Classifier

Since our kinship verification is a binary classification
problem and support vector machine (SVM) has demon-
strated excellent performance for such tasks, we here apply
SVM for classification. In our experiments, the RBF kernel
was used for similarity measure of each pair of samples
because we also found this kernel yields higher verification
accuracy than other kernels. To tune the gamma parameter
of this kernel, we applied the fourfold cross validation
strategy on the training set to seek the optimal parameter.
Specifically, we divided samples in the training set into
4 folds and each fold has nearly the same number of face
pairs with kinship relation. We used three folds to train the
SVM classifier and the remaining one to tune the parameter
of SVM. This parameter was empirically set as 1.0 in our
experiments.

5.1.4 Experimental Protocol

Generally, there are two types of protocols for verification
tasks: closed-set and open-set [4]. In our experiments, we
designed an open-set verification protocol because we
expect our system can verify where there is a kinship
relation for a new face pair without redesigning the
verification system. We conducted fivefold cross validation
experiments on our kinship data sets. Specifically, each
subset of the KinFaceW-I and KinFaceW-II data sets was
equally and sequentially divided into five folds such that
each fold contains nearly the same number of face pairs
with kinship relation. Table 1 lists the face number index for
the five folds of these two data sets. For face images in each
fold, we consider all pairs of face images with kinship
relation as positive samples, and those without kinship
relation as negative samples. Hence, the positive samples
are the true pairs of face images (one from the parent and
the other from the child), and the negative samples are false
pairs of face images (one from the parent and the other from
the child’s image who is not his/her true child of the
parent). Generally, the number of positive samples is much
smaller than that of the negative samples. In our experi-
ments, each parent face image was randomly combined
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Fig. 7. Aligned and cropped image examples of our KinFaceW-II
database. From top to bottom are the father-son (F-S), father-daughter
(F-D), mother-son (M-S), and mother-daughter (M-D) kinship relations,
and the neighboring two images in each row are with the kinship
relation, respectively.

TABLE 1
Face Number Index Range of Different Folds
of the KinFaceW-I and KinFaceW-II Data Sets



with a child image who is not his/her true child of the
parent to construct a negative pair. Moreover, each pair of
parent and child images appeared once in the negative
samples. Therefore, the number of positive pairs and
negative pairs are the same to learn the SVM classifier.

5.2 Results and Analysis

5.2.1 Baseline Results

For each test face pair, we decide whether there is a kinship
relation by using the learned SVM classifier. The classifica-
tion rate is defined as Nc=Nt, where Nc is the number
of correct classification testing face pairs and Nt is the
number of total testing face pairs. Tables 2 and 3 tabulate
the classification rate of different feature representations
methods on our kinship databases. As can be seen from
these two tables, the best feature representation for kinship
verification on our data sets is the LE feature and it
outperforms the other three feature representation methods
with the lowest gains in classification accuracy of 0.6
percent on the F-S subset, 0.1 percent on the F-D subset,
2.9 percent on the M-S subset, 5.8 percent on the M-D
subset, and 3.3 percent on the mean accuracy of the
KinFaceW-I data set, 5.5 percent on the F-S subset, 2.6
percent on the F-D subset, 10.0 percent on the M-S subset,
9.0 percent on the M-D subset, and 6.6 percent on the mean
accuracy of the KinFaceW-II data set, respectively.

To better visualize the difference of different feature
representation methods, the receiver operating character-
istic (ROC) curves of different methods are shown in Fig. 8,
where Figs. 8a and 8b plot the ROC curves of the results on
the KinFaceW-I and KinFaceW-II data sets, respectively. We
can see from this figure that the LE feature can yield the
best performance in terms of the ROC curve.

5.2.2 Comparisons with Existing Metric Learning

Algorithms

We have compared our methods with three other metric
learning-based face verification algorithms which could
also address the kinship verification problem, including
CSML [46], NCA [23], and (LMNN) [57]. The neighborhood
size k was empirically set as 5 for all five metric learning

methods, and the feature dimensions of our proposed
NRML and MNRML methods are empirically as 30 and 40,
respectively.

Tables 4 and 5 tabulate the verification rate of different
metric learning methods with different features on our
kinship databases. The best recognition accuracy of different
methods was selected for a fair comparison. As seen from
these two tables, our proposed NRML (MNRML) methods
outperform the other three compared methods with
the lowest gains in accuracy of 1.0 percent (3.0 percent) on
the F-S subset, 2.0 percent (3.3 percent) on the F-D subset,
2.0 percent (3.0 percent) on the M-S subset, 1.0 percent
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Fig. 8. The ROC curves of different methods obtained on the
(a) KinFaceW-I and (b) KinFaceW-II data sets, respectively.

TABLE 2
Classification Accuracy (Percent) of Different
Feature Representation Methods on Different

Subsets of the KinFaceW-I Data Set

TABLE 3
Classification Accuracy (Percent) of Different Feature

Representation Methods on Different Subsets
of the KinFaceW-II Data Set

TABLE 5
Classification Accuracy (Percent) of Different Methods

on Different Subsets of the KinFaceW-II Data Set

TABLE 4
Classification Accuracy (Percent) of Different Methods

on Different Subsets of the KinFaceW-I Data Set



(2.0 percent) on theM-D subset, and 1.0 percent (6.6 percent)
on the mean accuracy of the KinFaceW-I data set, 2.0 percent
(3.1 percent) on the F-S subset, 2.0 percent (3.2 percent) on the
F-D subset, 1.0 percent (1.6 percent) on the M-S subset,
1.0 percent (1.6 percent) on the M-D subset, and 1.2 percent
(2.0 percent) on the mean accuracy of the KinFaceW-II data
set, respectively.

We make four observations from the results listed in
Tables 4 and 5:

. NRML consistently outperforms the other com-
pared methods on all experiments on our data sets,
which implies that learning a distance metric by
considering and exploring the differences of differ-
ent interclass samples can provide better discrimi-
native information for verification.

. MNRML can improve the verification performance
of NRML. The reason is MNRML can make use of
multiple facial feature representations in a common
learned distance metric such that some complemen-
tary information can be utilized for our kinship
verification task.

. LE is the best feature representation among all used
feature descriptors and it has achieved the best
performance, which is consistent with some previous
face verification results [9]. That is because the LE
method has better utilized the local patch informa-
tion of face images and such local patches may
provide more discriminative information for kinship
relation discovery.

. The results obtained on the KinFaceW-II data set are
generally higher than those obtained on the
KinFaceW-I data set, which indicates that kinship
verification on the KinFaceW-I data set is more
difficult than that on the KinFaceW-II data set. The
reason is that face images in the KinFaceW-II data set
are collected from the same photo and the kinship
images have the same collection conditions, which
could reduce some challenges caused by the illumina-
tion and aging variations in the KinFaceW-I data set.

. It is interesting to see that the performance of the
same kinship relation from different kinship data
sets are usually different. For example, we can
see that the most difficult kinship verification task is
the M-S for KinFace-I datatset and the F-D for the
KinFace-II data set, respectively. We consider that
this inconsistent observation may stem from the
biased data sets. While there are hundreds of face
pairs for each kinship relation in our data sets, the
size of these data sets are still not enough to well
model and discover the kinship relation. Hence, it is

still desirable to collect larger kinship data sets to
further evaluate and enhance the generalization
ability of existing kinship verification methods.

To further visualize the difference between our proposed
methods and the other compared methods, the ROC curves
of different methods are plotted in Fig. 9, where Figs. 9a and
9b plot the ROC curves of the results on the KinFaceW-I and
KinFaceW-II data sets, respectively. Note that besides
MNRML, the other four methods adopt the LE feature
because it achieves the best verification accuracy among all
four feature representation methods. We can see from this
figure that the ROC curve of our methods is significantly
higher than the other compared methods.

5.2.3 Comparisons with Different Classifiers

We compared the performance of our proposed NRML and
MNRML methods versus different classifiers in kinship
verification. Besides SVM, another two widely used classi-
fiers are employed: the nearest neighbor (NN) and k-nearest
neighbors (KNN) classifiers. For the KNN classifier, the
number of kwas empirically set as 11. Tables 6 and 7 tabulate
the mean verification accuracy (percent) of our NRML
and MNRML methods with different classifiers on the
KinFaceW-I and KinFaceW-II data sets, respectively. We
can see that the performance of our proposed methods are
not sensitive to the selection of classifier and different
classifiers can obtain comparable performance, which
further demonstrate the robustness of our proposed meth-
ods in practical applications.

5.2.4 Comparisons with Existing Multiview Learning

Methods

We compare our MNRML method with two existing
multiview learning methods in our kinship verification
task. The first is the multiview spectral embedding (MSE)
method [62] which extends the conventional spectral
embedding methods to handle multiview data; the second
is the multiple kernel learning method (MKL) [3] where
multiple feature representations are constructed as multiple
kernels to describe data complementarily. Table 8 shows the
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Fig. 9. The ROC curves of different methods obtained on the
(a) KinFaceW-I and (b) KinFaceW-II data sets, respectively.

TABLE 6
Classification Accuracy (Percent) of Different Methods

on the KinFaceW-I Data Set

TABLE 7
Classification Accuracy (Percent) of Different Methods

on the KinFaceW-II Data Set



mean verification accuracy of different multiview learning
methods on the KinFaceW-I and KinFaceW-II data sets.
We can see from this table that our MNRML can obtain
comparable or even better performance than the other
methods. That is because we emphasize the neighborhood
samples in the learned distance metric while others have
not effectively utilized this information.

5.2.5 Experiments on Race-Balanced Kinship Data Set

To further demonstrate that our methods are not primarily
making decisions based on race, we selected the faces in the
nonkinship face pairs such that all face pairs have the same
race. Specifically, we selected 150 East Asian faces pairs and
another 150 Caucasian faces pairs from the KinFaceW-I data
set. Each selected face pairs are with the kinship relation,
and hence there are 300 positive pairs in the selected subset.
For the same race group, each parent face image was
randomly combined with a child image who is not his/her
true child of the parent to construct a negative pair. Hence,
we have 300 positive face pairs and 300 negative pairs in
total and all face pairs have the same race in the selected
subset. We conducted kinship verification on such subset of
the KinFaceW-I data set. We followed the fivefold experi-
mental setting as discussed in Section 5.1. Table 9 shows the
mean classification accuracy of our methods with different
feature representations on this subset. As can be seen from
this table, the results of our methods are not primarily
making decisions based on race.

5.2.6 Parameter Analysis

We first investigate the effect of the parameter k of our
proposed NRML and MNRML methods in this section.
Fig. 10 shows the mean classification accuracy of NRML and
MNRML versus different number of k of our NRML and
MNRML, where Figs. 10a and 10b are the results obtained
on the KinFaceW-I and KinFaceW-II databases, respectively.
Here, the way we tuned the parameter k is similar to that of
the parameter of the SVM classifier on the training set. We
can see that our proposed NRML and MNRML can obtain
the best classification performance when k is set as 5 for both
NRML and MNRML. We can also observe that NRML and
MNRML demonstrate a stable recognition performance
versus varying neighborhood sizes. Hence, it is easy to
select an appropriate neighborhood size for NRML and
MNRML to obtain good performance in real applications.

Since NRML and MNRML are iterative algorithms, we
also evaluated their performance with different number of
iterations. Fig. 11 shows the mean verification accuracy of
NRML and MNRML versus different number of iterations,
where Figs. 11a and 11b are the results obtained on the

KinFaceW-I and KinFaceW-II databases, respectively. We
can see that our proposed NRML and MNRML can
converge to a local optimal peak in a few iterations.

Finally, we investigate the effect of the feature dimension
of l of our proposed NRML and MNRML methods. Fig. 12
plots the mean classification accuracy of NRML and
MNRML versus different number of feature dimension of
NRML and MNRML, where Figs. 12a and 12b are the
results obtained on the KinFaceW-I and KinFaceW-II
databases, respectively. We can see that our proposed
NRML and MNRML can obtain stable verification perfor-
mance when the feature dimension is larger than 20 for
NRML and 25 for MNRML, respectively.

5.2.7 Computational Complexity

We now briefly analyze the computational complexity of
the NRML and MNRML methods, which involves T
iterations. For NRML, each iteration calculates three
matrices H1, H2, and H3, and solves a standard eigenvalue
equation. The time complexity of computing these two
parts in each iteration is OðNkÞ and Oðm3Þ. Hence, the
computational complexity of our proposed NRML is
OðNkT Þ þOðm3T Þ.

For the proposed MNRML method, each iteration
involves calculating � and solving a standard eigenvalue
equation. The time complexity of implementing these two
parts in each iteration is OððK þmÞN2Þ and Oðm3Þ. Hence,
the computational complexity of our proposed MNRML is
OððK þmÞN2T Þ þOðm3T Þ.

We also list the computational times of the proposed
NRML andMNRMLmethods and compare themwith other
three metric learning methods including CSML, NCA, and
LMNN. Our hardware configuration is comprised of a
2.4 GHz CPU and a 6 GB RAM. Table 10 shows the time
spent on the training and the testing (recognition) phases by
these subspace methods, where the Matlab software, the
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Fig. 11. Classification accuracy of NRML and MNRML versus different
number of iterations on the (a) KinFaceW-I and (b) KinFaceW-II data
sets, respectively.

Fig. 10. Mean verification accuracy of NRML and MNRML versus
different values of parameter k on the (a) KinFaceW-I and
(b) KinFaceW-II data sets, respectively.

Fig. 12. Classification accuracy of NRML and MNRML versus different
feature dimensions on the (a) KinFaceW-I and (b) KinFaceW-II data
sets, respectively.



KinFaceW-I database and the nearest neighbor classifier
were used.

From Table 10, we can see that the computational
complexity of the proposed NRML and MNRML methods
for training is generally larger than other metric learning
methods. In practical applications, however, training is
usually an offline process and only recognition needs to be
performed in real time. Thus, the recognition time is usually
more our concern than the training time. As shown in
Table 10, the recognition times of the proposed methods are
comparable to other metric learning methods. Hence, the
computational complexity will not limit the real world
applications of our proposed methods.

5.2.8 Comparisons with Human Observers in Kinship

Verification

We also tested human ability in kinship verification from
facial images. From each of the above four subsets in the
KinFaceW-I and KinFaceW-II data sets, we randomly
selected 100 pairs of face samples, 50 are positive and
the other 50 are negative, and presented them to 10 human
observers (five males and five females) aged 20 to 30 years
old. These human observers have not received any training
on how to verify kinship from facial images before the
experiment. There are two parts in this experiment. For the
first part, only the cropped face regions are shown to
human observers (HumanA). For the second part, the
whole original color face images are presented to human
observers. Hence, HumanA aims to test kinship verification
ability only from face part in the image, and HumanB
intends to test the ability from multiple cues in the images
such as face region, skin color, hair, and background.
Therefore, the information provided in HumanA is the
same as that provided to the algorithms tested in this study.
Tables 11 and 12 show the accuracy of human ability on
kinship verification on the KinFaceW-I and KinFaceW-II
data sets, respectively. We can observe that our proposed
NRML method can obtain better performance than Huma-
nA, and perform slightly worse than HumanB on the
KinFaceW-I data set, which further indicates that some
other cues such as hair, skin color, and background also
contribute to kinship verification. Moreover, our methods
can achieve higher verification accuracies than both
HumanA and HumanB on the KinFaceW-II data set.

5.2.9 Experiments with Other Data Sets

To further show the efficacy of our proposed methods, we
conducted kinship verification experiments on two other
data sets: Cornell KinFace [17] and UB KinFace [60], and
compared our results with the performance of theirmethods.

There are 150 pairs of face images in the Cornell KinFace
data set. Each pair contains one parent image and one child
image, respectively. Face images in this data set are nearly
frontal and with neutral facial expressions. Among all
150 pairs, 40 percent are of father-son, 22 percent are of
father-daughter, 13 percent are of mother-son, and the
remainder are mother-daughter relations, respectively.

For the UB KinFace data set, there are 600 face images of
400 different people, corresponding to 200 different groups.
For each group, there are three images, corresponding to
the child, young parent, and old parent, respectively. The
young parent and old parent are the same person who is the
parent of the child in this group, which are face photos of

the parent when he/she was young and old, respectively.
All images in this database are images of public figures
(celebrities in entertainments, sports, and politicians) and
downloaded from the Internet search. Since there are three
images for each group, which can construct two kinship
pairs. We constructed two subsets from the UB KinFace
data set: Set 1 (200 old parent and child image pairs) and
Set 2 (200 young parent and child image pairs). Since there
are large imbalances of the four kinship relations of the UB
Kinface database (nearly 80 percent of them are father-son
relations), we have not considered separate kinship relation
verification on this data set.

Similarly to previous experimental settings, we also
extracted the LBP, LE, SIFT, TPLBP features for kinship
verification. We also adopted the fivefold cross-validation
strategy for experiments. Tables 13 and 14 tabulate the
verification rate of our proposed methods on the Cornell
KinFace and UB Kinface databases, respectively. We can
observe from these two tables that our proposed methods
notably outperform Xia’s method [60], and is comparable to
Fang’s method [17] in kinship verification experiments.

5.2.10 Self-Kinship Verification

Finally, we investigated the problem of self-kinship
verification by using two widely used face aging databases,
namely FG-NET [31] and MORPH [49] data sets. Given a
pair of face images, the objective of self-kinship verification
is to determine whether they are from the same person or
not. Hence, self-kinship verification is equivalent to the age-
invariant face verification problem.

The FG-NET face database has been widely used in
many age-related face analysis tasks such as facial age
estimation and age-invariant face recognition. This data set
contains 1,002 images from 82 subjects, and each subject has
around 12 images, captured at different ages. The MORPH
(version 2) data set is the largest face aging data set which is
publicly available. It contains about 78,000 images of over
13,000 subjects, which were captured at different ages. In
our study, we selected a subset of 26,000 images from 13,000
subjects and each subject has two images. These two images
were selected such that the age gap of them is largest for the
same person.

To evaluate the verification performance of our methods,
each face image was automatically preprocessed:

1. rotate each image and align it vertically;
2. scale each image such that the eye positions of each

face are the same;
3. crop face region and remove the background and the

hair region; and
4. resize each image into 64� 64. Fig. 13 shows

several aligned and cropped example images from
five different people from these two databases,
respectively.

For the FG-NET database, we generated all 5,808
intrapersonal and 12,000 extrapersonal pairs, respectively.
For the intrapersonal pairs, each pair of intraclass images
was selected. For the interpersonal pairs, 12,000 pairs were
randomly selected and generated from different subjects.
For the MORPH data set, we generated all 13,000
intrapersonal pairs by collecting all image pairs from the
same subjects. Fifteen thousand extrapersonal pairs are
randomly selected from images of different subjects. In our
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experiments, threefold cross validation was used, where

images from the same subject never appear in both training

and testing set in each fold. Therefore, there are 1,936

intrapersonal pairs and 4,000 extrapersonal pairs in each

fold of the FG-NET data set, and about 4,366 intrapersonal

pairs and 5,000 extrapersonal pairs in each fold of the

MORPH data set, respectively. For each face image,

we extracted the LBP, LE, SIFT, and TPLBP features,

respectively. The SVM classifier was used for verification.

We compared our methods with the following three state-

of-the-art age-invariant face verification methods:

. GOP+SVM [33]: Each face image was represented by
the gradient orientation pyramid (GOP) feature and
the SVM classifier was used for verification.

. Bayesian eigenfaces [48]: Face images were repre-
sented by the eigenspace features and the Bayesian
classifier was combined to model the intrapersonal
and interpersonal face differences. The feature
dimension of the eigenspace was selected as 200.

. Bagging LDA [32]: SIFT is used for feature repre-
sentation and the bagging LDA method is used for
verification. This method was originally designed
for age-invariant face recognition, and we consid-
ered our face verification as a binary class face
recognition problem. 20 classifiers were bagged for
the final classification.

Table 15 tabulates the equal error rates (EER) of different
methods on the FG-NET and MORPH data sets. We can see
from this table that our proposed methods notably outper-
form the other compared age-invariant face verification
methods, which can further demonstrate the effectiveness
of our proposed methods.

5.3 Discussions

We make the following five key observations from experi-
mental results listed in Tables 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, and 15, and Figs. 8, 9, 10, 11, and 12:

. LE is the best feature descriptor for kinship
verification from facial images. Different from other
hand crafted feature representation methods such as
LBP, SIFT, and TPLBP, the LE feature is directly
learned from training samples and hence it is more
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Fig. 13. Examples of face images from different people in the (a) FG-
NET and (b) MORPH databases with different age values, where
each column contains face images of the same person captured at
different age values and the number below each image is the age
value of the person.

TABLE 8
Classification Accuracy (Percent) of

Different Multiview Learning Methods on the
KinFaceW-I and KinFaceW-II Data Sets

TABLE 9
Classification Accuracy (Percent) of Our Methods on the

Race-Balanced Subset of the KinFaceW-I Data Set

TABLE 10
CPU Times (in Seconds) Used by

Different Methods on the KinFaceW-I Database

TABLE 11
Accuracy (Percent) of Human Ability on Kinship Verification
on Different Kinship Subsets of the KinFaceW-I Data Set

TABLE 12
Accuracy (Percent) of Human Ability on Kinship Verification
on Different Kinship Subsets of the KinFaceW-II Data Set

TABLE 13
Classification Accuracy (Percent) of Different Methods

on the Cornell KinFace Data Set



data-adaptive and higher verification accuracy can
be achieved.

. Our proposed NRML and MNRML methods out-
perform the other compared metric learning meth-
ods on our kinship verification tasks. That is
because our methods emphasize the neighborhood
samples in learning the distance metric while others
have not effectively utilized this information such
that more discriminative information can be
exploited. Moreover, our proposed methods are
not sensitive to the parameters and it is easy to
select appropriate parameters to obtain good per-
formance in real applications.

. Verifying human kinship relation in the same photo
can obtain higher accuracy than in different photos.
That is because face images collected from the same
photo can reduce some challenges caused by the
illumination and aging variations.

. Our proposed NRML and MNRML methods can
obtain comparable kinship verification performance
to that of human observers, which can further
demonstrate the feasibility of verifying human kin-
ship via facial image analysis and the efficacy of our
proposed methods for practical applications.

. Our proposed NRML andMNRMLmethods notably
outperform the other compared age-invariant face
verification methods, which can further demonstrate
their effectiveness in other face analysis applications.

6 CONCLUSION AND FUTURE WORK

We have proposed a neighborhood repulsed metric learn-
ing (NRML) method for kinship verification via facial
image analysis. To the best of our knowledge, this paper is
the first attempt to investigate kinship verification on the
largest kinship data sets. Experimental results have shown
that our proposed methods are not only significantly better
than state-of-the-art metric learning methods, but also
comparable to human observers in kinship verification

from facial images. How to explore more discriminative

features and combine them with our proposed NRML and

MNRML methods to further improve the verification

performance appears to be another interesting direction of

future work.
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