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Abstract

Despite the continuous efforts to mitigate spam, the volume of such messages continues to grow and identifying

spammers is still a challenge. Spam traffic analysis is an important tool in this context, allowing network administrators

to understand the behavior of spammers, both as they obfuscate messages and try to hide inside the network. This

work adds to that body of information by analyzing the sources of spam to understand to what extent they explain

the traffic observed. Our results show that, in many cases, an Autonomous System (AS) represents an interesting

neighborhood to observe, with most ASes falling into four basic types: heavy and light senders, which tend to have

many or very few spammer machines respectively, frequent small offenders, where spammer machines appear every

now and then but disappear in a short time, and conniving ASes, where most machines do not send spam, but a few

are heavy, continuous senders. Not only that, but also by grouping machines based on the campaigns that they send

together, we define the notion of SpamBands. Those bands identify groups of machines that are probably controlled

by the same spammer, and our findings show that they often span multiple ASes. The identification of AS

neighborhood types and SpamBands may simplify the combat against spam, focusing efforts at the sources as a

whole, possibly improving blacklists by grouping machines found in a same AS or SpamBands.
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1 Introduction
In the last two decades, there has been a steady increase

in the use of Internet, which led to an increase of the

problems related to the sending of spam messages. In

addition to the large volume of data generated, since the

email service providers estimate that between 40% and

80% of electronic messages are spam, many times they are

related to the propagation of phishing [1] andmalware [2].

Because of those factors, the losses caused by spam traffic

are estimated in billions of dollars [3].

To try to counter those effects, the battle against spam-

mers takes place on several fronts. For example, much

has been done to develop filters based on message con-

tent, defining rules to identify patterns of obfuscation

observed in spam messages [4]. Besides that, in recent

years, multiple efforts have focused on understanding
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spam traffic within the network. The goal in that case is

to find elements that can be used to identify the machines

that send the messages before they traverse the network

and consume resources of mail servers at the destina-

tion. This work fits in this line, analyzing where are the

machines used by spammers.

Recently, the term Internet BadNeighborhoods was cre-

ated to identify contiguous ranges of IP address space that

contain a significant number of machines with unwanted

behavior [5]. The principle behind the original concept

was that machines with similar (bad) behavior that shared

an IP prefix would suggest they belong to a same net-

work with problems. Later, the concept was extended to

refer to network segments propagating unwanted traf-

fic, regardless of the number of machines involved [6].

The granularity chosen for those analysis was that of /24

address ranges.

Our analysis is based on similar principles, but we

chose the level of Autonomous Systems (AS) to identify

possible bad neighborhoods. Autonomous Systems, by

nature, identify an IP address range under the control
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of a single entity responsible for defining usage policies,

routing, and administrative procedures to be applied to

all machines installed in that range. In this sense, two IP

addresses belonging to the same AS would have a much

greater chance of exhibiting similar behavior than two

IP addresses on subnets with adjacent addresses (the IP

space), but belonging to different ASes. After all, an AS

with security flaws in its policies is at risk of becoming

a potential Bad Neighborhood, since the probability of

machines belonging to that AS being infected and starting

to send spam is high. It should be pointed, though, that

some ASes may be under split management; that could

be better treated by considering BGP announced prefixes,

but that information was not available in the collected

data.

Our data contain spam traffic collected at various points

around the globe, which gives us multiple vantage points

over the network. By grouping the machines that generate

the traffic based on their origin AS, we created a profile of

the behavior of each Autonomous System observed dur-

ing the experiment. Our results show that the majority of

machines sending spam are concentrated in a few ASes

and that only 15 of them are responsible for over 80% of

the observed traffic. By using data mining techniques, we

observed that there are similarities between some of them,

and that it is possible to group them in four categories rep-

resenting the AS from the point of view of their role in the

distribution of spam. This finding is one of the main con-

tributions of this work, since, until then, it was common to

assume that there would be only two types of generators of

spam: “light” and “heavy” transmitters. Our characteriza-

tion indicates that in addition to spam-free and bad neigh-

borhoods (where bad behavior — spamming — is quite

common), there are also good neighborhoods, where such

behavior is not the norm, but appears from time to time,

usually rapidly disappearing shortly after its appearance in

one or another machine, and conniving neighborhoods,

where misbehaving machines were not widespread, but

limited to only a few hosts, which tend, however, to be

heavy senders.

2 Related work
This work analyzes spam based on its behavior as seen

“inside the network”, not based on data from destina-

tion mail servers. In that sense, it relates to the works

of Ramachandran and Feamster [7], one of the first to

study spam from network-level features. Although we

consider such features, since we have access to the spam

content, we combine different views. Duan, Gopalan

and Yuan [8] have recently provided a similar analysis,

although based on a single point of observation (a large

university campus).

The definition of Bad Neighborhoods, mentioned in

the introduction, is due to van Wanrooij and Pras, who

proposed the concept as an extension of the use of black-

lists in the spam detection [5]. In their study, each 24-bit

IP prefix (/24) would be a neighborhood and bad neigh-

borhoods would be those with a large number of machines

sending spam. Moreira Moura et al. [6] focused on the

analysis of these neighborhoods and extended the defi-

nition to include IP networks with few transmitters, but

with a high volume of traffic, following the classification

of “heavy” and “light” transmitters previously proposed

by Pathak, Hu and Mao [9]. In our work, we observe

that each AS can be seen as a neighborhood, because an

autonomous system naturally defines an area with simi-

lar machines, since there is a unique management for the

whole AS and a common routing policy for all machines.

Many studies analyze spam traffic using messages col-

lected at the destination mail servers. Gomes et al. [10]

showed features that can be used to separate legitimate

messages from spam messages, using data collected from

only one specific point of the network. In this work, spam

messages were collected by low-interaction honeypots

installed in 10 different countries and located in tran-

sit networks. This provided a more global view of spam

traffic, offering a different perspective.

Kokkodis and Faloutsos [11] showed results that indi-

cate that the activities of botnets are scattered in the

IP address space, reducing the effectiveness of anti-spam

filters based on addresses and hindering the work of net-

work administrators. Our work, despite confirming the

existence of spammers in a very large number of networks,

shows that most of the spam messages come from a small

number of ASes, a result that can be used in the devel-

opment of new techniques for spam detection, as in the

design of initiatives to act against such sources.

Some of our analysis is based on the concept of spam

campaigns. Our definition is based on the identification

of frequent patterns in the content, using data mining

techniques [12]. Other approaches have been proposed,

like the use of regular expressions [13]. Our approach fits

better with our processing pipeline, where multiple data

mining algorithms are applied to derive different views,

such as those in this paper.

This paper is based on previous work, so far available

only in Portuguese. In a first paper [14], we performed a

detailed analysis of spam messages collected over three

months around the world to observe Bad Neighborhoods.

With the same dataset, we developed the concept of

SpamBands [15], another way to analyze the origin of

spammers. (All the major concepts from those papers are

included here, to provide a complete source in English).

In the current work we extend our analysis of both con-

cepts to cover data from approximately one year, and

for the first time we use both concepts, Neighborhoods

and SpamBands, to study the relationship between them.

That allowed us to identify new patterns, such as the
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strong correlation between IP addresses in SpamBands

and bad neighborhoods, and a topological relationship

among spammers, since the IP addresses from a Spam-

Band usually come from just a few ASes.We hope that our

findings can help drive the spam community’s efforts to

combat spammers closer to their origin.

3 Methodology
Three aspects of our methodology deserve attention: the

collection architecture, and our techniques to identify

spam campaigns, and to define SpamBands. They are

presented next.

3.1 Collection infrastructure

The dataset used in this work was collected using twelve

low-interaction honeypots [16] installed in ten different

country codes: two in Brazil, two in the United States

and one in each of Argentina, Australia, Austria, Ecuador,

Netherlands, Norway, Taiwan and Uruguay. That means

we had collectors present in four different continents,

allowing the study to have a global view of spam traffic. By

doing that, we avoided the problem of location bias, which

may be present in several studies in the literature, whose

data often come from a single collection point. Further-

more, none of the honeypots used in the analysis showed

any signs of having been subjected to any form of attack.

The honeypots used in this paper are machines that

simulate machines of interest to spammers, such as open

SMTP mail relays and HTTP and SOCKS open proxies.

Their goal is to lure spammers to identify them as vul-

nerable machines and use them to try to deliver spam

messages. In practice, the honeypots do not deliver spam

messages to the intended recipients; instead, they are

stored locally and periodically collected to a central stor-

age. The behavior of honeypots, however, is such that it

makes the spammer believe that the delivery was suc-

cessful. That is corroborated by the fact that each most

machines continues to abuse the honeypots for all the

collection period.

It should be noted that our analysis is guided by the

traffic that was directed to our honeypots. There may be

spammers that do notmake use of proxies/relays to deliver

their messages, and those are not considered in this anal-

ysis. However, is highly unlikely that a heavy spammer,

using a dedicated server farm, would remain in activity

without such a technique: it would be easily identified

by black lists and blocked, since it uses few origin IP

addresses. On the other hand, if a botnet delivers spam

directly to the target mail servers all the time, we would

not see it in our data.

Along with each message received, additional informa-

tion is collected and stored by the system. This infor-

mation includes the protocol used by the spammer to

connect to the honeypot, (SMTP, HTTP or SOCKS), the

network prefix and AS of origin, the status of the source IP

in blacklists like Spamhaus XBL and PBL at the moment

each message was delivered, among others. All that is

obtained at the time the message is received, so that we

have a snapshot of things as they were at the moment the

spammer tried to send each message. Thus, our analy-

sis considers the information available at the time of the

transmission and not during a later query, which could

cause error. That is essential, for example, for the analy-

sis of black list contents, which might change between the

time of collection and analysis.

Later, during the analysis, some ASes deserved further

study. In those cases, based on their AS numbers, we gath-

ered data available on the Internet to get more details

about their activities. Based on the activities that were

identified during that search, we classified the ASes as

providers (general, DSL, corporative), hosting/co-location

services, etc.

3.2 Spam campaigns and spam bands

To better understand the behavior of spammers, we used

the concept of spam campaigns. A campaign is a set

of messages that share a common goal (similar con-

tent) and a common dissemination strategy [12]. We

used the FPCluster algorithm to group messages based

on their various attributes and to identify the obfusca-

tion strategies used. That algorithm builds a frequent

pattern tree, which is then used to extract the message

clustering patterns, which in turn identify the campaigns

[12,17].

Through the identification of campaigns, we detect the

influence of each orchestrated campaign on the spam traf-

fic collected, as well as the emergence of new IP addresses

that join a given campaign. Based on those observations,

Fazzion et al. [15] developed a method that can identify

groups of transmitters that are correlated, called Spam-

Bands. Since that work was published in Portuguese, the

method is described here for completeness.

The premise of SpamBands was that machines which

generate the same campaigns are controlled by the same

orchestrator, being related in terms of dissemination strat-

egy used. Thus, a SpamBand is a group of machines

that works together on the same set of campaigns. The

relationship between machines and campaigns can be

modeled as a graph G, where the machines are vertices

and there is an edge between two machines if they sent

messages associated with the same campaign. Figure 1

illustrates the construction of this graph.

From G, we can define a SpamBand as a dense sub-

graph that can be obtained by several clustering algo-

rithms in graphs in the literature which can be quite

complex and hard to calibrate [18]. Our strategy is more

simple and interactive. Initially, each SpamBand is a con-

nected component.
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Figure 1 SpamBand graph construction. The graph represents IP addresses that sent spam as vertices. There is an edge between two vertices if

they took part in the same spam campaign.

In some cases, however, one IP address may be found

connected to more than one such sub-graph. That may be

due to IP address reassignment, or use of NAT. To handle

that, in a second moment, we evaluate those cases, which

can require the split of certain connected components in

order to isolate subgraphs with higher density.

The process to identify SpamBands is presented in

Algorithm 1. The algorithm receives three parameters:

the graph (G), the minimum threshold betweenness to

be considered (threshold_bt) and the maximum number

of IP addresses that can be removed in order to split a

connected component (threshold_ips).

Algorithm 1: SpamBand (Graph G, Float threshold_bt,

Float threshold_ips)

S = ∅;

C=G.ConnectedComponents(); ;

for comp in C do

ips_to_remove = ∅ ;

for ip in comp do
if ip.Betweenness() >

threshold_bt*comp.BiggestBetweenness() then

ips_to_remove.Add(ip);

end

end

if ips_to_remove.size() >

threshold_ips*comp.NodesNumber() then

S += comp;

end

else

S += comp.RemoveNodes(ips_to_remove);

end

end

return S;

The first step is to determine the connected compo-

nents in G which constitute the initial approximation

of the SpamBands. Next, we identify dense sub-graphs

in each connected component exploring the betweenness

concept, which measures the centrality degree of a node

in the graph. This metric indicates the number of short-

est paths among all pair of nodes in the graph that

pass through a given node. Our premise is that when

some nodes have a high value of betweenness, beyond

what would be expected for a strongly connected graph,

chances are that those nodes are connecting two (or more)

sub-graphs which are, themselves, internally dense. Thus,

by removing those nodes, we are emphasizing the separa-

tion of those internally dense sub-graphs. This removal is

based on the parameters threshold_bt, which is the lower

bound of betweenness that a node may have in order to be

removed, and threshold_ips, which defines a maximum

threshold of the number of nodes that can be removed

in order to split a component. Algorithm 1 initially veri-

fies which nodes satisfy the betweenness threshold in each

connected component and next verifies if their removal

does not lead very small graphs. If it is possible to remove

the nodes, each resultant component is inserted in S. If

not, the current component is inserted in S. The algorithm

returns the set S which holds all SpamBands.

4 Collected data
Our analysis considers approximately one year of collec-

tion, from May 9, 2012, until March 31, 2013, resulting in

nearly four billion messages (14 TB). By analyzing a large

period, we avoid any impact due to an atypical behavior,

which could occur in a short period of time.

Table 1 shows an overview of the data collected by the

twelve honeypots and used in the study, broken down by

the protocol used by the spammers. During the period

of almost a year, 3.97 billion messages were collected,

which correspond to 14 TB of data. The addresses of the

machines that sent spam were associated with 149 differ-

ent country codes, which corresponded to about 60% of

all country codes. We can also notice a large number of

autonomous systems, 3,226, showing that the collection

included many subnets of origin.
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Table 1 Global vision of the data

SMTP SOCKS HTTP Total

Messages
(x106)

690 (17.4%) 2,486 (62.5%) 799 (20.1%) 3,976

IP addresses 294,072 34,397 11,449 328,050

Autonomous
systems

3,096 443 55 3,226

Country
codes

146 66 14 149

Volume (GB) 2,564 8,522 3,378 14,464

The number of IP addresses using SOCKS and HTTP

protocol is much smaller when compared to the number

of IP addresses that used the SMTP protocol. Never-

theless, the number of messages sent using HTTP and

SOCKS is larger. This shows that there is not a direct

relationship between the number of machines and the

number of messages sent. This division is a sign of the

differentiation between spammers: some adopt strategies

based on high volume over a certain protocol, while oth-

ers may send lower volumes, using more machines, over

another protocol. In fact, during our analysis we will see

that there are more factors to be considered.

5 Neighborhood analysis
In this work, we advocate that ASes can be used for the

identification of the limits of the neighborhoods, instead

of /24 prefixes, as used in the original definition [5]. That

provides a more natural aggregation of addresses, given

that fixed-length prefixes are not adequate for all cases.

To show that, in Table 1 we observe that spammessages

come from many different networks, since 3,226 distinct

autonomous systems appeared in the collected data. It is

interesting to notice that most of those spam messages

were sent by a very small number of autonomous systems,

being fifty of them responsible for over 85% of all traffic.

Thus, analyzing the behavior of spam at the source can

direct the efforts to fight spam as it can identify which

are the neighborhoods that have worst behavior, and,

consequently, that are more likely to send spam messages.

5.1 Distribution of IP addresses in autonomous systems

Figure 2(a) shows that for the majority of Autonomous

Systems, only a few devices were seen contacting the

honeypots. In almost 90% of the ASes, the number of

machines observed was smaller than 20. In Table 2, we

can clearly see the existence of a large group of AS

with a small number of IP addresses sending spam mes-

sages and another group, smaller, which contains most

of those addresses. This shows that the machines that

send spam messages are not evenly distributed across the

Autonomous Systems.

Those ASes that have fewer than 10 machines that send

spam, account for over 83% of the total. Nevertheless, they

send only 7.66% of the messages and correspond in num-

ber of machines to 1.7% of the total. Thus, we believe

that in terms of neighborhoods, these AS are not char-

acterized as bad neighborhoods, but that their security

policies are being implemented correctly, because of the

small number of spamming IP addresses and the low vol-

ume of traffic generated by them. On the other hand, 95

autonomous systems (2.94%) have more than 319,000 IP

addresses in the dataset (97.41%) and are responsible for

71% of traffic from spam, which corresponds to almost 3

billion messages. Those neighborhoods show bad behav-

ior, possibly due to weak security policies. Thus, direct

efforts to understand and improve the behavior of those

networks might have impact on the overall traffic.

Figure 2 also shows the distribution of IP addresses

present in each blacklist. The two black lists consid-

ered here are XBL, which lists IP addresses detected as

infected, and PBL, which lists IP ranges declared by ISPs

as being used for dynamic hosts — which should not send

mail directly. Finally, we consider IPs that were not found

in any of the blacklists considered (No BL). There is a very

small number of Autonomous Systems that do not have IP

addresses in XBL, about 15%, as we can see in Figure 2(b).

In addition, approximately 60% of the ASes have all their

IP addresses in XBL. This result makes us believe that

most IP addresses are detected by the XBL, but what hap-

pens is that a good portion of the ASes listed there (49%)

have only one spamming IP address (therefore, 100% of

their addresses are in the XBL).

Considering that, the information about the IP

addresses that are in the PBL and those who do not par-

ticipate in any blacklist (nobl) end up getting distorted, as

shown in Figures 2 (c) and 2 (d). In the graph of Figure 2

(c), for example, more than 70% of autonomous systems

have no IP address present in the PBL, but more than

85% of IP addresses found in the period of analysis are in

PBL as shown in Table 3. The IP addresses that are not in

any blacklist, belong mostly to a few ASes, and represent

a very small portion of the IP addresses, less than 12%.

However, this small number of machines is responsible

for over 68% of all spam traffic, as shown in Table 3.

5.2 Analysis of neighborhoods with higher transmission

power

Table 4 shows the 15 ASes that sent the most spam

messages in the period analyzed, being, by themselves,

responsible for more than 80% of all spam traffic. This

information can be incorporated into spam filters and

used by network administrators to reduce the volume of

spam, sincemessages sent by those AS tend to be spam. By

analyzing them, in spite of the fact that all send a large vol-

ume of spam, we see that there are some neighborhoods
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Figure 2 Distribution of active IP numbers per AS, as well as the distribution of the number of IPs from an AS present in the XBL, PBL black lists (or

not present in any BL). (a) CDF of the number of IP addresses per AS. (b) CDF of the percentage of IP addresses in XBL per AS. (c) CDF of the

percentage of IP addresses in PBL per AS. (d) CDF of the percentage of IP addresses that are not in any blacklist per AS.

that have very different characteristics from each other.

On the other hand, it is possible to notice that some

of them are very similar, although they have no direct

relationship.

Some autonomous systems (10297 and 29802) have sim-

ilar characteristics in virtually all aspects. They have a

small number of IP addresses in our dataset, most of them

using SOCKS and HTTP protocols to send spam, and do

not belong to any blacklist. AS 2497 is also very similar,

despite having a larger number of machines. AS 4725, in

turn, differs only by having a large number of IP addresses

in PBL blacklist. The machines of those neighborhoods

Table 2 Number of IP addresses observed per AS

IP addr. per AS (x) #AS #Msgs (x106) #IP addr.

x = 1 1,581 (49.0%) 108 (2.7%) 1,581 (0.5%)

x <10 2,705 (83.9%) 305 (7.7%) 5,635 (1.7%)

x <50 3,061 (94.9%) 797 (20.0%) 13,309 (4.6%)

x <100 3,131 (97.1%) 1,150 (28.9%) 18,159 (5.5%)

x ≥ 100 95 (2.9%) 2,825 (71.1%) 319,554 (97.4%)

behave like dedicated servers used to send spam: they use

SOCKS and HTTP protocols, meaning they do not con-

tact any mail host directly (only through proxies), each

sends a large number of messages, and most of them are

not in any blacklist.

In contrast, we find some neighborhoods with com-

pletely different characteristics, such as Autonomous Sys-

tems 3462 and 4134. Both have more than 100,000 IP

addresses in our dataset, the vast majority of machines

observed used the SMTP protocol to send spam and most

of them were in some blacklist. In addition, AS 4134

has very striking features, with more than 99% of their

IP addresses sending spam messages using the SMTP

protocol and about 17,000 of them in XBL.

Table 3 Overview of blacklists

#IP addresses #Messages (106)

XBL 66,388 (20.2%) 594 (14.9%)

PBL 282,599 (86.2%) 789 (19.8%)

No BL 41,005 (12.5%) 2,714 (68.3%)
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Table 4 15most important autonomous systems

AS Msgs (106) IP addr. IP SMTP IP SOCKS IP HTTP IP XBL IP PBL IP No BL vol. (GB) Classification

10297 1.857 182 22.5% 77.5% 77.5% 17.0% 0.0% 83.0% 5,475 hosting/co-location

3462 359 100,395 78.7% 22.1% 6.8% 7.7% 99.8% 0.1% 1,320 DSL/ISP

29802 298 25 16.0% 84.0% 84.0% 12.0% 0.0% 88.0% 781 hosting

9299 148 82 39.0% 61.0% 26.8% 34.2% 1.2% 65.9% 342 DSL/business

2497 141 1,185 0.2% 99.6% 99.0% 0.2% 19.4% 80.4% 559 hosting/clouding

4134 126 110,123 99.7% 0.3% 0.2% 15.8% 81.8% 17.1% 2,446 DSL

6648 124 54 9.3% 90.7% 40.7% 9.3% 90.7% 1.9% 279 DSL/business

4725 31 215 0.9% 99.1% 98.6% 0.9% 95.8% 3.3% 120 clouding/business

27699 31 1,382 7.7% 92.3% 0.0% 9.2% 95.2% 2.7% 114 DSL/business

18881 28 3,091 10.7% 89.3% 0.0% 8.6% 96.1% 2.0% 97 co-location/ISP

8167 25 198 38.9% 61.1% 0.0% 37.4% 34.8% 41.4% 95 clouding/ISP

4837 23 20,551 99.9% 0.1% 0.0% 26.5% 78.4% 18.5% 97 -

9924 22 1,959 1.3% 82.1% 98.6% 2.8% 99.6% 0.1% 77 -

28573 21 700 75.7% 24.3% 0.0% 46.9% 98.4% 0.9% 76 ISP

4230 20 429 21.7% 78.3% 78.3% 31.0% 67.6% 11.0% 67 hosting/ISP

5.3 Grouping of autonomous systems

Because of the evidence mentioned in Section 5.2, we

looked for a way to group the AS observed and classify

them according to their characteristics. For this, we use

the X-means clustering algorithm [19], considering the

characteristics of each neighborhood as attributes. The

algorithm has the quality of automatically setting the opti-

mum number of clusters to use, unlike other clustering

algorithms.

To perform the clustering, we used as features the char-

acteristics that better represent the Autonomous Systems

in our analysis. The attributes carry information such as

number of IP addresses observed, number of messages per

day, percentage of the IP addresses in blacklists, percent-

age of IP addresses using each protocol, and the average

number of messages sent per IP address. Those attributes

proved to be a good set to identify the neighborhoods,

because they define the major elements of behavior that

machines on those networks can present.

Table 5 exhibits the properties of each of the four groups

generated. Group 1 contains 64% of the ASes, and most of

them have a very small number of observed IP addresses.

Most of the machines in that group use SMTP proto-

col and are in XBL. Group 2 also has a small number of

IP addresses, but it is responsible for most of the spam

sent (65%). In addition, more than 98% of the messages

were sent using SOCKS and HTTP protocols, although

most of the IP addresses (84%) use the SMTP protocol

to send spam. The vast majority of messages (97%) was

sent by machines that were not in any blacklist. Group

3 differs from the others because more than 99% of its

IP addresses sent messages through the SMTP protocol

and most of them are in PBL and XBL. Finally, the fourth

group contains the ASes with a large number of machines

observed in the dataset. The majority of their IP addresses

are in PBL, and only a smaller number is in XBL. Although

most of the machines used SMTP, the highest volume of

spam was sent using the SOCKS protocol.

Table 5 Features of each group

Group 1 Group 2 Group 3 Group 4

ASes 2,064 449 359 354

Msgs (x106) 379 2,602 88 907

No. IP Addresses 8,426 16,024 11,503 301,760

Msgs/IP (x103) 45.0 162.4 7.6 3.0

Activity1 48.8 63.4 67.1 85.3

Msgs-SMTP 85.3% 1.5% 71.4% 29.2%

Msgs-SOCKS 13.5% 75.3% 23.2% 50.3%

Msgs-HTTP 1.2% 23.2% 5.4% 20.5%

Msgs-Xbl 81.9% 1.7% 68.6% 20.0%

Msgs-Pbl 2.8% 1.4% 52.0% 76.8%

Msgs-No-Bl 17.2% 97.2% 15.0% 11.7%

IPs-Xbl 83.5% 13.2% 64.7% 16.5%

IPs-Pbl 5.2% 12.9% 86.6% 89.5%

IPs-No-Bl 15.2% 77.7% 7.1% 8.8%

Volume (TB) 1.2 7.55 0.36 4.98

IPs-SMTP 97.43% 84.62% 99.19% 89.01%

IPs-SOCKS 2.67% 15.27% 0.82% 11.12%

IPs-HTTP 0.33% 9.52% 0.02% 3.44%

1Average of days, in the analyzed period, in which the machines of this group

were active.
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If we consider the neighborhoods that sent more spam

messages, studied in Section 5.2, we see that the clus-

tering placed ASes with similar characteristics in the

same group, and separated those with different behav-

iors. Autonomous Systems 10297, 29802, and 2497, whose

machines behave like dedicated servers, ended up in

group 2, responsible for most of the spam traffic, even

though having fewer IP addresses. Moreover, that group

has few machines in blacklists, which is a necessary fea-

ture for machines that send a large volume of messages —

otherwise they would not be effective.

Most machines from Autonomous Systems 3462 and

4134 behave like bots and those two neighborhoods are

part of the Group 4. That group includes ASes that have a

large number of IP addresses with most of them in black-

lists. It is also observed that most of the IP addresses in

that group sent a small amount of messages.

By analyzing the 15 neighborhoods highlighted in

Section 5.2, we found that none of them are in groups 1

or 3, as can be seen in Table 4. This result was already

expected, since the ASes in group 1 have a very small

number of IP addresses and those from group 3 have few

machines that send spam and are responsible for few spam

messages. Thus, the neighborhoods that send more spam

were allocated to the other two groups: ASes that have a

lot of IP addresses and those that send a large amount of

spam messages.

We believe these results may be used in at least two

important ways: to help guide policies used by different

network managers in the way they treat data from ASes

known to fall into a certain class, and to help the net-

work community to identify organizations that may be in

need of some orientation on how to handle their security

(those with a large number of low volume spamming IPs),

or those that may require some pressure to act against

server-heady spammers that may be among their clients.

5.3.1 Group 1

The graph in Figure 3(a) shows that a very small percent-

age of the neighborhoods of this group use the SOCKS

and HTTP protocols to send spammessages and that over

70% of the AS send less than 100 thousand of messages

in the period. Although the number of messages is small,

given that we collected for almost one year, we can see

in Table 5 that this group had a very small number of IP

addresses observed, resulting in a relatively high number

of messages by IP address.

The main characteristic of the ASes of this group is

the small number of spamming machines, as we can see

in Figure 3(b). Almost 60% of the Autonomous Systems

here have only a single IP address in the dataset and

none of them have more than one hundred IP addresses.

This explains why that group, even encompassing 64% of

the AS, is responsible for only 9.5% of the spam traffic

generated. Furthermore, most of the IP addresses in this

group are in XBL blacklist, which characterizes infected

machines, probably belonging to botnets.

The activity period of the machines in the AS of this

group show constant activity using the SMTP protocol in

almost all ASes, as shown in Figure 4(a). On the other

hand, the graph of Figure 4(c) shows that few ASes use

the HTTP protocol and only one used this protocol for

more than ten days. This large amount of messages sent by

SMTP protocol, along with a high number of IP addresses

in XBL, suggests the existence of bots. As there are few

committed IP addresses in these AS, it is possible that

those machines constitute exceptions in the security pol-

icy of an overall secure system and that, for some reason,

go unnoticed to the management of these networks.

5.3.2 Group 2

This group contains the ASes that sent more spam mes-

sages and together they are responsible for more than 65%

Figure 3 Distribution of messages sent and active IP numbers for ASes in group 1. (a) CDF of the number of messages sent per AS. (b) CDF of the

number of IP addresses per AS.
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Figure 4 Activity of Autonomous Systems in group 1, per protocol. (a) SMTP. (b) SOCKS. (c) HTTP. ASes appear ordered in the y axis. There is a mark

at position (x,y) if AS y was active on date x.

of all messages. As shown in Figure 5(a), 5% of the ASes

sent more than one million messages and are responsible

for most of the spam traffic. In this group, almost no mes-

sage is sent using the SMTP protocol, since 98% of the

messages were sent by SOCKS and HTTP protocols.

The Autonomous Systems in this group also have a

small number of spamming IP addresses — 57% of them

had only one IP address in the dataset. Moreover, a very

small percentage of neighborhoods here (2%) have more

than one hundred machines. However, even with a small

number of IP addresses, the average number of spam

messages sent by each of them is very large, more than

162 thousand, as can be seen in Table 5. Those fea-

tures (few machines, with heavy spam traffic) suggest

that most of the ASes here house machines that act as

dedicated servers to send spam, probably with the con-

nivance of the network administrators. In our opinion, an

unwanted bot that would start behaving that way would

not go unnoticed by a network administrator that did not

accept such practice, and it would not remain limited to

a few machines if the network administrator was careless

enough not to bother about it. One final interesting aspect

is that, in this group, most of the IP addresses are not in

any blacklist. Considering the volume of traffic they gener-

ate, that would only be possible if they consistently abuse

intermediary machines to hide from blacklist detection.

Compared to the other groups, the period of activity of

the AS using SOCKS and HTTP protocols are higher in

this group. We can see that there is a larger number of

ASes and they remain active for a longer period, as the

graphics of Figure 6 clearly shows.

As mentioned earlier, ASes 10297, 29802 and 2497 were

assigned to this group. Like others in the group, that were

studied, those AS are characterized by offering hosting

and co-location services, which would fit the profile just

described.

5.3.3 Group 3

Table 5 shows that in this group, over 70% of spam mes-

sages were sent using the SMTP protocol and the ASes

Figure 5 Distribution of messages sent and active IP numbers for ASes in group 2. (a) CDF of the number of messages sent per AS. (b) CDF of the

number of IP addresses per AS.
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Figure 6 Activity of Autonomous Systems in group 2, per protocol. (a) SMTP. (b) SOCKS. (c) HTTP. ASes appear ordered in the y axis. There is a mark

at position (x,y) if AS y was active on date x.

of the group are responsible for only 2.2% of all mes-

sages. The graph in Figure 7(a) shows that over 80% of

the neighborhoods here sent less than 200,000 messages,

explaining the fact that this group is responsible for a

smaller number of messages.

The graph in Figure 7(b) shows a similar behavior to

that seen in groups 1 and 2, but the number of ASes with

only one IP address is lower, just under 40%. What marks

this group is the large number of IP addresses that use

the SMTP protocol, over 99% of them, surpassing any

other group. In addition, about 64% of the machines in

this group are in XBL. This suggests the presence of bots,

but the low number of IP addresses suggests that there are

fewer compromised machines in those AS.

The graph in Figure 8(c) shows that only one AS of this

group sent spammessages by HTTP protocol, and just for

a short period of time. As expected, for the SMTP proto-

col, all the ASes were very active throughout the period,

as seen in Figure 8(a).

5.3.4 Group 4

From Figure 9(a) we can see that most of the ASes in this

group used the SMTP protocol to send spam, but the few

Autonomous Systems using SOCKS and HTTP protocols

sent more than one million messages. The neighborhoods

of this group are responsible for about 23% of all spam

traffic.

This group contains the ASes with the larger numbers

of machines observed, as can be seen in Figure 9(b), with

over 20% of neighborhoods with over 1,000 IP addresses,

in which some of them have more than 100,000 machines.

Thus, even accounting for much of the spam traffic, the

number of spam messages per IP address is the lowest

among the groups, only 3,000. Moreover, the great major-

ity of the IP address are in blacklists and use the SMTP

protocol. For all this, we have strong evidence thatmany of

the machines belonging to this group are part of botnets.

Because of the large number of machines in this situa-

tion, these AS are classified of bad neighborhoods, where,

Figure 7 Distribution of messages sent and active IP numbers for ASes in group 3. (a) CDF of the number of messages sent per AS. (b) CDF of the

number of IP addresses per AS.
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Figure 8 Activity of Autonomous Systems in group 3, per protocol. (a) SMTP. (b) SOCKS. (c) HTTP. ASes appear ordered in the y axis. There is a mark

at position (x,y) if AS y was active on date x.

apparently, management policies and network mainte-

nance are not able to prevent the proliferation of infected

machines.

Because the ASes in this group have a very large num-

ber of IP addresses, it is common for the same AS to show

the use of the three different protocols in the dissemina-

tion of spam. This behavior is explained by Figures 10(b)

and 10(c). It was expected an intense period of activity in

the use of the SMTP protocol, once machines belonging

to botnets tend to use this protocol. Therefore, the graph

of Figure 10(a) reinforces the suspicious about botnets.

ASes 3462 and 4134, which are part of this group,

have been classified as ISPs with DSL networks. This

suggests that the composition of this group is predomi-

nantly domestic users machines infected by some type of

malware.

6 SpamBands analysis
We applied the SpamBand identification algorithm

described in Section 3 to the data from each honeypot.We

found a total of 2618 SpamBands and the distribution of

those among the honeypots is shown in Figure 11(a). This

Figure reinforces the notion of orchestration by spam-

mers: all honeypots have a well-defined range of Spam-

Bands that attacked them each day, and the increase and

decrease in the number of SpamBands in that interval

suggests an orchestration in order to obfuscate the action

of groups of spammers.

Figure 11(b) shows a linear regression of the number

of SpamBands per day for each honeypot. The linear

trends reveal lines with low inclination (almost constant)

adding to the impression that the variation observed in

Figure 11(a) is regular and is due to some kind of obfusca-

tion. Another interesting result is about honeypot EC-01.

That honeypot was attacked by more SpamBands than

any other, although no clear reason for that was found.

Figure 12(a) shows that only 5% of SpamBands using

SOCKS or HTTP have more than 100 IP addresses, again

suggesting the use of dedicated infrastructure for send-

ing messages. In contrast, about 30% of total SpamBands

using SMTP have more than 100 IP addresses, which is

not surprising, since these are supposed to be botnets

Figure 9 Distribution of messages sent and active IP numbers for ASes in group 4. (a) CDF of the number of messages sent per AS. (b) CDF of the

number of IP addresses per AS.
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Figure 10 Activity of Autonomous Systems in group 4, per protocol. (a) SMTP. (b) SOCKS. (c) HTTP. ASes appear ordered in the y axis. There is a

mark at position (x,y) if AS y was active on date x.

that, in general, consist of a larger number of machines.

Observing Figure 12(b), we see an inversion: HTTP or

SOCKS SpamBands tend to send more messages than

SMTP ones. This happens precisely due to the fact previ-

ously mentioned. Since those who use SOCKS or HTTP

are probably dedicated servers, they use all their resources

to send a large number of messages. On the other hand,

those who use SMTP and are part of botnets can only send

spam moderately, to avoid their identification [20].

6.1 Relationship between SpamBands and ASes

In Figure 13, we can observe that the majority of Spam-

Bands, for all protocols, have IP addresses from just a

few ASes. This result indicates a topological relation-

ship among IP addresses of a SpamBand, where machines

from the same AS tend to send unwanted messages from

the same set of spam campaigns. Furthermore, the small

number of SpamBands that encompass IP addresses from

more than 60 neighborhoods use the SMTP protocol. This

result is expected, since SMTP is used by botnets, which

tend to have infected machines spread over more ASes.

6.1.1 SpamBands activities in different neighborhoods

As already mentioned, Autonomous Systems were classi-

fied in four groups, where groups 2 and 4 were considered

bad neighborhoods. The results in the chart of Figure 14

shows that half of the SpamBands (about 50%) have IP

addresses from Autonomous Systems that belong only to

groups 2 or 4. Then come SpamBands that use both hosts

in neighborhoods of type 2 and 4, and then those that use

only group 1. This confirms that the ASes were classified

correctly into those four groups and suggests that most

of the IP addresses in SpamBands are in bad neighbor-

hoods. Thus, this result points out that the efforts against

the spam abuse have to focus in Autonomous Systems that

are considered as bad neighborhoods.

Furthermore, most of SpamBands that contain AS from

group 2 usually use the HTTP or SOCKS protocol. This

Figure 11 SpamBands active in various honeypots over time. (a) The number of SpamBands found each day in eight different honeypots. (b) Their

linear regressions.
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Figure 12 Distribution of IPs present and messages sent by SpamBands. (a) CDF of the number of IP addresses per SpamBand. (b) CDF of the

number of messages sent per SpamBand.

was expected, once group 2 seems to have a lot of dedi-

cated server machines to send spam. On the other hand,

the SpamBands with AS in group 4 use the SMTP proto-

col. This result was also expected because most machines

in these neighborhoods seems to belong to botnets.

6.1.2 SpamBands clustering

In this section we analyze the clustering coefficient inside

the SpamBands to verify if IP addresses SpamBands inter-

act more with other IP addresses in their AS than with IP

addresses from others neighborhoods. The internal clus-

tering coefficient (ICC) of a SpamBand is the average of

the clustering coefficient in each AS considering only the

internal connections, i.e., connections among IP addresses

that belong to a same Autonomous System. On the other

hand, the external clustering coefficient (ECC) of a Spam-

Band takes the average of the clustering coefficient in

each AS considering only the external connections, i.e.,

connections among IP addresses of different Autonomous

Systems.

As shown in Figure 15, 55% of the SpamBands have ICC

higher than 0.3 while and only 42% have ECC higher than

this value. Moreover, as we can see, the standard behav-

ior is that each SpamBand have an ECC smaller than its

ICC. We conclude that inside a SpamBand, the relation-

ships between IP addresses which belong to a same AS are

Figure 13 Distribution of the number of AS per SpamBand. Show the distribution of the number of different AS that appears in a same SpamBand.
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more intense. It suggests that there is a topological cor-

relation among IP addresses inside a SpamBand, showing

that Autonomous Systems are a good way to represent

neighborhoods.

7 Conclusions
Several efforts are under way to combat spam, but this task

has beenmade difficult due to the technical sophistication

of spammers. This paper tries to shed some light on

the sources of spam messages, to help the development

of techniques and policies to fight spam at its origin.

Our results show that, although spam messages are being

sent from various networks, most of the traffic is con-

centrated in a few Autonomous Systems, and that can

be used to identify spam sources and fight them. More-

over, we grouped ASes into four categories based on their

spam dissemination behavior. Those groups shown that

we can identify good and bad neighborhoods, some with

Figure 15 SpamBands clustering within ASes. Verification of the clustering coefficient SpamBand graphs when considered the AS borders: average

internal (within AS) and external (among ASes) clustering coefficientes.
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many infected machines, others with just a few on-and-

off senders that get shut down quickly, other which are

conniving with a few heavy spammers.

By identifying machines that participate together in

a spam campaign (SpamBands), we observed that most

campaigns originated from neighborhoods of a single

type, or may include hosts in the two types of heavy send-

ing neighborhoods at the same time. All that can be used

to identify major sources of spam to help stop that kind of

traffic.

As future work, we plan to conduct further analysis

on each of the neighborhood categories found to better

understand the differences among them.We also intend to

better understand the behavior of the category considered

good neighborhoods and check whether security policies

used to define the behavior of those autonomous systems

can serve as a model to others.
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