
768 IEEE  TRANSACTIONS ON ANTENNAS  AND  PROPAGATION, VOL. AP-33, NO. 7, JULY 1985 

Neighboring-Patch  Integrals  in  Transient  Electromagnetic  Scattering 
EGON MARX 

Abstract-The  integrals  over  patches  that are close to the self-patch are 
cslcolated by expanding  the factors in the  integrand  in  power series. The 
values are computed analytically up to first order  in  the  linear sue of the 
patch. This procedure applies to patches for which the distance  between  the 
centers is of the  same  order of magnitnde as the size  of the  patch. The same 
formulas are useful in steady-state scattering  problems. 

I 
I. INTRODUCTION 

N THIS PAPER we continue to consider the problems asso- 
ciated with the numerical solution of the integral equations 

that arise in the theory of the electromagnetic scattering of 
transient fields. These integral equations involve vector and 
scalar functions defined on the surface of the scatterer, here 
assumed to be sufficiently smooth so that  the necessary deriva- 
tives are well defined. 

The integrands in these integral equations are singular, and 
the contributions of the self-patch, where the singularities occur, 
have to be treated separately from the rest of the contributions. 
We previously determined [l] these contributions to first order 
in the linear dimension of the patches for orthogonal curvilinear 
coordinates on the surface. 

The contributions to  the integrals from neighboring patches 
also deserve  special attention 121. The functions of the distance 
R between the field point and the source point can hardly be 
considered constant as the source point ranges  over the  patch; 
R varies by a  factor greater than three over a nearest neighbor 
of the self-patch. The integrals we  have to consider are no longer 
singular, as  is the case for the self-patch, and  here we have zeroth- 
order  contributions that vanish for the self-patched integrals due 
to symmetry. The linear size of the  patch is of the same order 
of magnitude as the distance between the centers of the patches. 
We should calculate these neighboring-patch integrals accurately 
if we determine that  the contributions from these integrals 
to  the overall surface integral are significant. 

In Section I1 we present the expansions of the integrals that 
occur in these equations to terms that are of fust order in the 
linear size of the patch. In Section I11  we present an example 
of these terms for  the simple  case of a sphere. Most of  the cal- 
culations and formulas that permit the actual evaluation of the 
integrals are shown in the Appendix. The notation is similar 
to the one we  used in [ 11 . 

The integrals and the results are essentially the same as those 
needed for monochromatic waves. 

II. NEIGHBORING-PATCH INTEGRALS 

The magnetic field integral equation (MFIE) and electric 
field integral equation (EFIE) for perfect conductors show the 
typical terms found in the integral equations of electromagnetic 
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scattering. The MFIE and EFIE are 

+. 1 is(?, t )  = ( 2 / k ) i i  x B'"(x', t )  - - iz 
2x 

where js is the surface current density, ps the surface  charge 
density, 7 the retarded time 

r = t - R / c ,   R = l R ' I ,   R = x - x ,  + + + I  ( 3 )  
eo the permittivity of free space, po  its permeability, c the 
s eed of light, S the surface of the conductor, iz the  unit n,o.rmal, 
B 5, the magnetic induction of the incident pulse, and E'" its 
electric field. The field point i! is in a patch S, and the source 
point 2' is in a neighboring patch S 2 ,  as shown in Fig. 1. The 
center of the patch is defined by the midvalue of the curvilinear 
coordinates. 

We fxst consider the integral 

We expand the  functions in the integrand about  the center 
2; = .'cub, ub) of the  patch S2 at t h ~  corresponding retarded 
$me 7o = c - Ro/c. We use ( 3 0 )  for R ,  ( 3 5 )  for R P 3 ,  (36)  for 
Js, and ( 3 7 )  for dS' to obtain 

4) 

e 

Q 
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I s1 

- u+ u which is  similar to  the result in (7), 

Fig. 1.  Neighboring patches SI and S, showing  the  ditferent  variables used. 
To simplify  the notation, we have  suppressed the scale factors ct and b. 

ap,@,,, 7,) I"+ du, lU+ dv' p b ~ $  + abii;tu 

at' U- u- i i 2  + 8 % -  (11) 

where  the limits of integration are 

u+ = U' 0 - 3  + 1 Au', = do * 1 Ad: 2 

u' and  are variables defined in (28),  and f , ,  K 2 ,  and K3 are 
polynomials in u' and 5 defined in (31), (33),  and (38). The 
integrals can be carried out by changing the variables of integra- 
tion to E and v' and  then using the  appropriate C(Z, m, n) from 
the  Appendix. The first term, as expected, is of zeroth  order, 
and  the  others that we have kept  are of fust order. We write 
down  the first few terms in the expansion to show some of the 
contributions; we have 

similar to (9), and 

= c(o, 0, 1)aJS(;;, T o y a t ' .  (12) 

Other integral equations  related to electromagnetic  scattering 
have the same type of terms. 

For  monochromatic fields, the expansions are somewhat dif- 
ferent because the fields are independent of t h e  and differentia- 
tion with respect to time  is  replaced by multiplication by -io. 
The surface integrals remain  unchanged and  the  contributions 
from  neighboring  patches involve the same C(1, m, n). 

111. NEIGHBORING-PATCH  INTEGRALS ON A SPHERE 

The  next term is Similar to  but of higher order  than (4), To  obtain an estimate of the size of the  error  made by  assum- 
and it gives a  fist-order  contribution only. We have  ing that  the  integrand is constant over the  patch, we compute 

some of the expressions that occur in these integrals. We con- 
i2 = d S ' 2  X sider two  neighboring  patches on a  unit  sphere,  and we choose 

ri 7) 

at' 
00 = n/3,$0 = 0: 0; = 2 3 ~ / 6 0 , &  = ~115 ,  ABo = AO' = n/20, 

The  terms that come  from the EFIE are If we assume that  the integrand of in (4) is constant, we 
obtain 

+ R, -+ 
1; =yj X J,(?b, 7,)AS2, 

RO 
(15) 
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where M2 = s 5  ObAO'A@' is the  area of the  patch S 2 .  The fac- 
tor multiplying J ,  is 

A S 2 z o I R i  = -0.099; - 0.4063 + 0.296k (16) 

We compare this result with  the  zeroth-order  terms in (7), 

- - q I , O ,  3 )2 ; /4  - C(0, 1,3)2;/& = -0.036; - 0.424; 

+ 0.321i, (17) 

a  vector that is close to the  one  in  (16).  A  complete  comparison 
would involve also+the  fn2t-order  terms, which include  terms 
proportional to 0: J ,  and aJ,/at'. 

For I2  we compare 

A S 2 z o / R ~  = -0.024; - 0.099; + O.O73i, (1 8) 

with 

-C(l, 0, 2)ji0/ab - C(0, 1,2);;/& = -0.0082 - 0.099; 

+ O.O74i, (19) 

wxch are yery clo,se. The  forms of ?3 and f4 are essentially those 
of I I  and I2 . For Is we  get excellent  agreement  between 

AS2 fRo z 0.125  (20) 

and 

c(O,O,  1) = 0.126.  (21) 

The  importance of the  discrepancies  in  these  individual  terms 
depends on the  total number of patches that  contribute  to  the 
integral and the relative  size  of the field and  its derivatives  in the 
different  patches. In a  stepping-in-time  procedure,  the  number 
of. patches  that  contribute to the integrals increases  gradually 
starting from  the  time  the wave first hits  the scatterer, and we 
can have sigdkant errors at early times. 

N. CONCLUSION 

The method developed here allows us to  compute  more 
accurately  the  contributions to singular surface integrals from 
patches close to  the self-patch in an arbitrary  system of orthogo- 
nal  curvilinear  coordinates on the surface. 

The error  made  by  approximating  the  integrand by its value 
at  the  center of the  patch is not neghgible, and  the  need to 
take  these  corrections into account  depends on the overall 
accuracy that is required,  the  method of integration,  and  the 
nature  of  the fields. 

APPENDIX 
In this Appendix, we give the details of the  expansions  of  the 

surface fields and  the  computations of the  neighboring-patch 
integrals. 

We consider two patches, SI and S2, close together on a sur- 
face S. The field point x' is in SI and has  coordinates uo and UO. 
The  source  point 2' is in S, and  has  coordinates u' and u'. The 
center 2; of the  patch S2 has  coordinates ub and ub, and we 
defiae 

- , ' - I '  u = u  -2lo.U = u  -uo.  (22) 

2' = 3; + ;;E + j;L. + ; (3:,u2 + 2j;.:uuZ + ?vvi7) + 
We expand the  functions  about  the  point 3;; for  instance, 

(23) 

where the derivatives  such as 2: are evaluated  at x'b. We then 
have 

R = X  - X = R o  - X,U - XvU-$(X,& + + +, + +,- +,- +, -2 

+ 2jZ&G + ;;$) + .... (24) 

We also expand 3,  about 2; and obtain 

do = 2 - x, = -x,AuO - ? v A ~ o  + 4 [ ; :u(aUo)2  +, +, 

+ 2 ~ ~ v A u 0 A ~ 0  + ~ L , ( A U O ) ~ ]  + .-, (25) 

where 

Auo = ub - ~ 0 ,  AVO = do - Uo. (26) 

The  quantities bo, Au,, U, and T are  all  small, and we assume 
that they  are of the same order of magnitude for neighboring 
patches. We combine (24) and (25) to obtain 

R = - (Auo + Ti)?, - (Avo + @;; + 3 { [(Au0)' - E']$,, 
+ 

+ ~(AuOAUO - UZ));t:, + [(At+,)' - $];LU) + .-.. (27) 

We use the  expansion  (25)  for Jo because otherwise t h i s  
constant  vector  remains  in  the integrals that have to be evaluated. 
These integrals become more  complicated  and  they involve  small 
constants  that  may cause problems  in  numerical  computations. 
An expansion based  on (24) instead of (27) may  be useful  in an 
intermediate region  where the  expansion (25) is inaccurate but 
i? stu varies significantly as x" ranges  over ~ 2 .  

We defme the new  variables 

E = ab(AUo+ i7), i ? = & ( A ~ o  + Z), (28) 

where 

ab = I?, I,& = Ixv I, +, 
(29) 

and rewrite  (27) as 
+ 

= -Z;L/ab - i7?uI& + K ,  , (30) 

where 

2, = f [(%Auo/ab - ii'/~$)x':, 
+ 2(ZAuo/ab + ij4uo//3b - ii i j / ~ Y & & > ~ ~ ~  

+ (2ZAuo/& - 7?/Pbz)%v1. (31) 

From this equation we obtain 

R~ -2 + 8 - K ~ ,  (32) 

where 

K 2  = K ; ( ~ Z ~ ~ U ~ / C Y ~  - ii3/ab2) 

+ K ;  [2Z2Avo/ab + (iii?Auo - ' i24&)(2/& - l/&)] 

+ K ;  [2f?Auo/& + (ZijA~o - ii3/&)(2/a: - 1/13:)] 

+ Kb(2f?AUo//&.- $/fib2), 133) 

and 
, +, +, , + I + ,  r + , + t  , + , + I  

K , = X , ' X u u , K Z = X U ~ X , v , K 3 = X v ' X , u ~ K 4 = X v ' X u u .  

(34) 
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From (32) we obtain 74 

R' % (E2 + $)"/' [l  - (v/2)K2/(E2 + $)I. (35) 

A surface field, which  is  a function  of  the retarded time 
T = r - R/c, can also be expanded  about  the  point ;k at the  time 
T~ = t - R,/c. For instance, the surface current  density becomes 

is (?I ,  7) 

=A(?;, 7,) + (2' - 2,) - V'iJi'b, 7,) 

= is(?,, 7,) + ( X ' l i l +  Fui) 0'?,(2,, 70) 

+ (. - 70)a?,(j;;, Toyat' + ... 

+{ [ ( 4 ~ ~ ) ~ / a 2  + (AU, )~ /P: ]  1 / 2  

- (2 + b)l /2}C-la&jt;? 7,)lat'. (3 6) 

The expansion of  the surface element dS' at  the  point 2' is 

dS' = a'$ du' du' 

= [.b + ( $) ,G+ ($),E+ ..-I 

Fig. 2. Region of integration  in  the  ki-plane. 

p1 = C- csc 9, p 2  = E+ sec 9: p3 = 5+ csc 6, p4 = u'- sec 6. 

(44) 

The integrations over 4 can be done using the integrals - [& + ($),G + ($),Vi -] du' dd 1 1 + sin $ 

d$ sec $ = - log ~ 

= (ab&, + K3)du' dd,  (37) 2 1 - s i n ~ '  
(45) 

+ K ~ A U ~ ) C Y ~ / & .  (38) - u- (51 + i?-)(52 - E+> 
2 (51 - u'- Ni72  + u'+> The  quantities a' and 8' are the magnitudes of the  tangent  vectors 

z,, and ;,, at ?', and  their derivatives follow from (29) and 

C(0, 0, 1) = - log 

(34); we evaluate  them at the  point 2; and  obtain 
. ,  

(aa'lau'), = K ' , / c Y ~ :  (adlad), = K ; / ( Y ~ ,  (ag'lau'), = K>/&,, 

(39) (ap'/au'), = K:/&. u+ - (53 + G+)(54 - c-1 
We need to be  able to  do integrals of  the  form + - log 

2 (53 - Z+)(54 + c-1 

where 
(47) 

Et = Ctb(4uo 1 3 Au'), Et = &(AU, k $ A d ) ,  (41) 
where 

Au' and Au' being the  coordinate increments of  the  patch S2. 

in the Eplane .  For instance, 

51 = <ii'_ + z y 2 ,  c2 = (z: + i Y ) ' / 2 :  

We do these  integrals by transforming to polar coordinates 53 = (ii: + zt)1/2, p4 = (Z' + q ) l I 2 .  

C(O.0, 1 )  = f: lmi2 d$ l p i d p ,  (42) of . integration) when calculating C(0, 0, 3), we start  the integra- 

(48) 
- _  TO avoid the divergence  of l/p at p = 0 (not in the original  region 

i=l  61 tlon at an arbitrary  radius p o  < Pii, i = 1 , 2 , 3 , 4  SO that 

where the  limits of integration are  (see  Fig. 2) 

$1 = $42 = $1 = arctan ( i L / G - ) ,  
- - 
- - 

= 52 = 42 = arctan ( i j - f i+) ,  

5 2  2 = r& 1 = & = arctan (C+/ij+), 
- 

$3 2 = Q~ = 44 = arctan (C+/L), 
- 

(43) We do  the integrals C(1, 0, 3) and C(0, 1, 3) in rectangular 
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coordinates, and obtain 

We do C(2, 0, 3), C(1, 1, 3), and C(0, 2,3)  in polar coordinates, 
and obtain 

u+ (53 + E+)& - E-) 
2 (F3 - E+)(54 + 5-1 ' 

+ - log 

q1, 1 , 3 )  = -51 + 5 2  - 5 3  + 5 4 ,  (53) 

Other  integrals are computed in a similar way. Those needed for 
the expansions in Section 11 are 

C ( l , O ,  2) = i;+ arctan + is, log 
ii+(E+ - E )  5 3  

E: + E+iL P4 

1 



1 MARX:  NEIGHBORING-PATCH  INTEGRALS 773 

A relationship that is useful for deriving or verifying these REFERENCES 
integrals is [l]  E. Marx,  “Self-patch  integrals in transient  electromagnetic  scattering,” 

c ( 1  -I- 2 ,  ?n, 2 )  c ( 1 ,  m -I- 2, n 2) = c(l, m, n)- (66) [2] D. S. Jones, Mefhorls in Electrornugnetic Wuve Propagation. 
IEEE Trans. Antennas Propagut., thk issue, pp. 763-767. 

Oxford:  Clarendon,  1979, p.  506. ’ 
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TM Scattering  by  a  Dielectric  Cylinder in the  Presence of a Half-Plane 

Abstract-The  problem considered is the  transverse  magnetic (TM) 
scattering by a dielectric cylinder in the  presence af a perfectly conducting 
balf-plane. An integral equation, involving the half-plane Green’s function 
in its kernel, is obtained for the equivalent volume currents  representing 
the dielectric cylinder. This integral equation is solved by. the  method of 
momenfs. Numerid results are  compared with measurements for the echo 
width of a dielectric slab .on a half-plane. The dielecthc slab surface 
impedance and the fields inside the dielectric are also shown. 

T 
I. INTRODUCTION 

HIS PAPER WILL present  a  method  of  moments (MM) 
solution [ l ]   to  the  two-dimensional  problem  of  transverse 

magnetic  (TM) scattering by a dielectric cylinder of arbitrary 
cross  section  near a  perfectly  conducting half-plane. In a conven- 
tional MM solution to this problem,  one replaces all matter (half- 
plane  and dielectric) by free space  and  equivalent currents. The 
advantage  of this approach is that the resulting  integral equation 
for  the  currents will  involve the relatively simple  free-space 
Green’s function. A second approach is to replace  only a  portion 
of the  matter by  free  space  and  equivalent currents. The 
advantage  of this approach is that  the  number of unknowns 
in  the MM solution is  reduced. The disadvantage is that 
the resulting  integral equation will  involve the Green’s func- 
tion  for  that  part of the  matter which  was not replaced  by 
free  space  and  equivalent currents. This second approach  can be 
termed an  “/Green’s function  solution. When the geometrical 
theory of diffraction (GTD) is used  as a high frequency approxi- 
mation to the Green’s function,  it is termed an MMjGTD solution 

chose to employ  this “/Green’s function approach  since the 
half-plane  Green’s function is  well-known  and  available in a 
computationally  efficient  form. 

Many authors have studied the problem  of scattering by a 
dielectric cylinder. For example, Richmond presented  an MM 
solution  for scattering  by a dielectric cylinder  of arbitrary cross- 
section‘shape,  for TM [3] and  transverse electric (TE) [4] po- 
lariz’ations,  and  using the volume current  approach.  Scattering 
by dieiectric. cylinders  using the surface current  approach  has 
been studied  by Morita [5] and  by Wu and  Tsai [6]. Other 
approaches include  Waterman’s extended  boundary  condition 
method  [7] and the  unimoment  method  by Chang and Mei [SI. 
The’work  deschbed  here is new in that if  includes the  effects of 
a perfectly  conducting half-plane in the vicinity of the dielectric 
cylinder.  The  method applies for  the cases  where the dielectric 
cylinder  contacts  the surface of the  half-plane, or even  com- 
pletely surrounds  the half-plane  edge. 

In Section I1 the integral equation  for  the equivalent  volume 
polarization  currents is obtained.  An MM solution to this equa- 
tion is presented. The  half-plane  Green’s function is  given,  and 
efficient  methods  for  its evaluation  are  discussed. Section I11 
defines the details of the pulse  basis  and point  matching MM 
solution. A comparison  between  measured  and computed echo 
width of a rectangular dielectric cylinder on  a half-plane is given. 
Computed values for the electric fields inside  the dielectric, 
as  well  as the surface  impedance  of a dielectric slab on the half- 
plane  edge  are  also  shown. 

[2]. Here  we employ  the  second  approach. In particular, only 11. THEORY 
the dielectric cyclinder  will  be  replaced  by  free  space and equiva- 
lent  currents. As a result, the integral equation  for  the electric A. Derivation ofthe Integral Equafjon 
volume polarization  currents representing the dielectric cylinder 
will  involve the half-plane  Green’s function in its kernel. We This section will  develop an integral equation  for  the two- 

dimensional  scattering  by a dielectric cylinder in  the vicinity 

NOOOi4-78-C&9 and by Rockwell  International  Corporhon  under  Contract the region R is  a dielectric cylinder with permeability  and permit- 
tivity ( p o ,  e). The impressed electric and  magnetic currents are 

h-hg, me oho state university,  1320 mnear Road, ~ ~ i ~ ~ ~ ,  OH denoted ( J ,  M i ) .  The  ambient medium  is homogeneous  with 
L4M-11073-907. 
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43212. parameters (po, eo). All fields and  currents are  two-dimensional 
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