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Abstract. A neighborly map is a simplicial 2-complex which decomposes a closed 
2-manifold without boundary, such that any two vertices are joined by an edge (1-cell) 
in the complex. We find and describe all the neighborly maps with Euler characteristic 
X > - 10 (i.e., genus O < 6, if orientable) or, equivalently, all the neighborly maps 
with V < 12 vertices. 

I. Introduction 

We consider triangulations of compact closed 2-manifolds without boundary. Such 
a triangulation is neighborly if any two of its vertices are joined by a (unique) edge. 
A neighborly triangulation of such a manifold is called also a neighborly map, or 
neighborly manifold. (Compare [6]). 

Neighborly maps play an important role in the generalization of the four-color 
theorem known as the map color theorem (see [ 11]). The question of their existence 
is known in the literature also as "the thread problem" [10, p. 334]. 

Neighborly maps are also related to the problem of geometrical embedding of 
simplicial 2-manifolds. The question whether every triangulation is geometrically 
ernbeddable in R 3 seems to be open for every orientable 2-manifold except the 
sphere. Orientable neighborly maps of genus g > 6 are canonical candidates for 
possible counterexamples and would yield otherwise very. interesting polyhedra. 
However, for every nonorientable 2-manifold with boundary there exists a triangu- 
lation, which does not allow a geometric embedding (even no geometric immer- 
sion) in R 3 (see [7]). 

From Euler's formula V - E + F = )~ and from V(V - 1) = 2E = 3F for a 
neighborly map we get V 2 - 7V + 6X = 0, thus 

V = (7 + v / ~ -  24)0/2, 
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where V, E, F denote the number of vertices, edges, and facets, respectively, and 
X denotes the Euler characteristic. As V > 4 and Z < 2 are integers it follows that 
for V ==- 2 (mod 3) neighborly maps cannot exist. Because orientable 2-manifolds 
have even Euler characteristic the only numbers of vertices which can occur for 
a neighborly orientable map are of the form V - 0, 3, 4, or 7 (mod 12), (see also 
[11]). Franklin [9] proved that the Klein bottle does not possess any neighborly 
triangulation. Ringel, Youngs, and coauthors proved [11] that any other 2- 
manifold of Euler characteristic X (whether orientable or not) for which 

V = (7 + w4/49 - 24X)/2 

is an integer, possesses a neighborly triangulation with V vertices. 
The first pairs of numbers (V, ~) satisfying the ab~ove equation with Z < 2 are 

(4, 2), (6, 1), (7, 0), (9, - 3), (10, - 5), (12, - 10). 
In the present work we describe an algorithm that constructs all the neighborly 

triangulations of a given 2-manifold. More accurately, given an integer V, the 
algorithm constructs all the neighborly maps, whether orientable or not, with V 
vertices. However, the amount of computer time increases very fast with V, and 
already for V = 12 it is practically not applicable (even if restricted to the 
orientable--or nonorientable---case only). Thus our investigation is confined to 
V < 12. The case V = 4 yields the tetrahedron and is trivial. The cases V = 6, 7 
seem to be well known, and they are treated here (in Section 2, and summarized 
in Theorem 1) mainly as an exemplification of our algorithm. This treatment, 
however, yields a new proof of Franklin's result concerning the Klein bottle. The 
7-vertex triangulation of the torus has been known to M6bius and has been 
realized as a polyhedron in I~ 3 by Cshsz~r. It turns out that the tetrahedron and 
the M6bius-Csfisz~tr torus are the only orientable neighborly maps for Z < - 10. 
The algorithm is described in Section 2. In Section 3 it is applied to the cases 
V = 9, 10. Altogether we find two neighborly maps with 9 vertices (Z = - 3 )  and 
14 neighborly maps with 10 vertices (X = - 5 ) ,  all nonorientable. They are 
described in detail in Tables 1, 2, and 3. Finally, in Section 4, we discuss the 
automorphism groups of these 16 maps. 

2. The Algorithm 

Let N be a connected simplicial 2-complex with V vertices. Then its body I NI is 
a 2-manifold and N is a neighborly map on INI iff: 

(a) every edge (1-simplex) in N belongs to precisely two triangles (2-simplices) 
in N; 

(b) the link of every vertex in N is a simple circuit of length V - 1. 

If N is such a neighborly map and D is a subcomplex of N, we say that D is full 
if each vertex and edge in D is contained in some triangle in D. An edge in D is 
covered if it belongs to precisely two triangles in D. Obviously a full subcomplex 
D of the neighborly map N satisfies: 

(a') every edge in D belongs to one or two triangles in D; 
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(b') the link of every vertex in D is either a simple circuit of length V - 1 or  a 

union of disjoint open simple paths.  

Also, D = N iff D satisfies (a) or  (b) (with N replaced by D). (If it satisfies one of 
them then it also satisfies the other.) 

For  every V > 4, such that  :t.= (7V - -  V 2 ) / 6  is an integer, our  algori thm is 
supposed to find all the neighborly maps  with V vertices (and Euler characteristic 
X) whether orientable (for Z even) or  not. The vertices of each such m a p  N are 
labeled 0, 1 . . . . .  V -  1, and the (cyclic) order  of the vertices in link(0, N) is 1, 
2 . . . . .  V -  1. Thus  the simplicial 2-complex C composed  of  the triangles 012, 
023 . . . . .  0(V - 2)(V - 1), 0(V - 1)1 and their faces is a full subcomplex of  each 
such N. 

The algori thm is a branching process which starts with the complex D -- C and 
adds to it triangles (over the set { 1, 2 . . . . .  V - 1}) one at a time, in a corallike 
manner  (compare  [2]). Each added triangle covers an existing edge which was 
uncovered and is added together with its faces. Branching occurs when an edge 
that is to be covered may  be covered in more  than one way. 

More  specifically, in each intermediate step we get a full connected 2-complex 
D. An uncovered edge e in D is chosen, and a triangle A over  {1, 2 . . . . .  V -  1} 
that contains e and is not yet in D is taken as a candidate  to be added (with its 
faces) to D. A is a " g o o d "  candidate iff O w A (more exact, D w { 6 : 6 e A } )  
satisfies both  condit ions (a') and (b'), otherwise it fails. A branching occurs here if 
there is more  than one good candidate to cover the edge e. If there is no good 
candidate at all, it is a failure of the present branch and we return to the previous 
branching point. A branch ends successfully if in the resulting complex D all the 
edges are covered, i.e., D satisfies condit ion (a), therefore also condit ion (b), and 
is a neighborly map. 

Obviously,  a neighborly m a p  with Vvertices has F = V ( V  -- 1)/3 triangles, thus 
exactly V ( V  - 1)/3 - (V - 1) = (V - 1)(V - 3)/3 triangles must  be added to the 
starting complex C to yield a neighborly map.  The process can be made  more  
efficient by considering the symmetries of  D when looking for a candidate to cover 
an edge in D. 

We now exemplify this a lgori thm in the cases V = 6 (~ = 1) and V = 7 (g = 0). 
We use the symbol  Aab to indicate that  a triangle A = abc fails to be a good  
candidate to cover the edge ab because the edge is in three triangles in D w A ,  
and condit ion (a') is therefore violated. Ba indicates that  A -~ abc fails because 
link(a, D w A )  contains a circuit of length < V - 1, and condit ion (b') is violated. 
Cab indicates that  a branch ends in a failure because the edge ab in the complex 
D obtained so far is uncovered,  and cannot  be covered. 

The Case V = 6 

The triangles in C are 012, 023, 034, 045, and 051. Start ing with D = C we want  
to cover 12. By the symmet ry  of C we m a y  assume just  two candidates:  123 and 
124. 123 fails ( B 2 )  , s o  we take D = C w {124}. The  candidates to cover  14 are 143 
and 145. 145 fails (Bs), so the new D is C w {124, 143}. T o  cover  24, 243 fails (A34) 
and we take A = 245. T o  cover  13 in D = C w {124, 143, 245} we cannot  use 132, 
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which has already been rejected, and we take/x,  = 135. Finally, to cover 25, the 
only possibility is A = 253. Now N = C u {124, 134, 245, 135, 235} is indeed a 
neighborly map with Z = 1- -a  neighborly map on the projective p l a n e - a n d  the 
only such map. 

The Case V = 7 

Here the triangles in C are 012, 023, 034, 045, 056, 061, and eight triangles have 
to be added to yield a neighborly map either on the torus or on Klein's bottle. 
The triangles 123 and 126 fail to cover 12 (B2) (resp. B~), thus the only candidates 
to cover 12 are 124 and 125. Because of the symmetry of C we may ignore 125, 
and we take D = C u {124}. Now there are three candidates to cover 14: 143, 145, 
and 146. 146 fails (B 0. The candidate 143 yields the following branching: 

124 

245 (B4) 

1 4 3 - - 2 4 6 - - 1 3 5 - - 2 6 3 4 6 5  (Cl 5) 

136 (B1) 265 (C46) 

(In most cases we ignore triangles which readily fail to be candidates, and the first 
two vertices of each candidate z~ indicate the edge that is to be covered by A.) 
Here, as we see, each branch fails. Finally, the candidate 145 yields the following 
branching: 

124---145--246-- 153--263~463 (C13) \ 
265--463--136--532.  

The last branch does not end in a failure. It does indeed yield a neighborly map 
with 7 vertices and X = 0, g = 1. It is readily checked that this map  is orientable, 
and is therefore a torus (see [1, p. 217]). As orientability has not been assumed a 
priori, it proves that the Klein bottle has no neighborly triangulation. Thus we 
have proved: 

Theorem 1. The projective plane and the torus yield a unique neighborly map each. 
There is no neighborly map on the Klein bottle. 

3. The Maps with 9 and 10 Vertices 

Using a computer,  1 we applied this algorithm to 9 vertices (X = - 3 )  and we 
obtained 32 neighborly m a p s - - n o t  necessarily combinatorialty distinct. The 32 

1 Most of the programming for this section has been done by Yossi Friedman to whom we wish 
to extend our thanks. 
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maps have been reduced to just three when the symmetries induced by rotations 
and reflections of the complex C = star(0, N) were incorporated in the program. 
This new version of the program has been applied to 10 vertices (X = - 5 )  and 
after a 14-hour run on Vax 750 it yielded 116 maps. 

Two of the three maps with 9 vertices were shown to be isomorphic to each 
other, and the third is not isomorphic to them. Thus there are exactly two 
neighborly maps with 9 vertices, and we denote them N(9, 1) and N(9, 2). They 
are described in Tables 1 and 2. In Table 1 they are described by means of the 
list of their triangles, as they originally came out from the computer. (Note that 
they differ in just four triangles--a fact that is used in [3].) In Table 2 the maps 

Table 1. The two neighborly maps with 9 vertices (Euler 
characteristic Z = - 3). 

Triangles common to N(9, 1), N(9, 2) 

Additional triangles 

in N(9, 1) in Nt9, 2) 

012 023 034 045 056 067 078 146 157 147 156 
018 124 136 137 158 238 245 347 356 346 357 
257 267 268 358 468 478 

Table 2. The two neighborly maps with Euler characteristic 
Z = - 3  given by the links of their vertices and their automorphism 
groups, j . a l a 2 . . . a ,  means that  the link of vertex j is a l a z . . . a  8. 
x, y, and z stand for the permutations x=(02X31X76), 

y = (810X752}(634), z = (036217X458), respectively. 

Symmetry group, 
Map N(9, i) Links FP-matrix order, generators 

i =  
0.65432187 22425334 
1.08573642 22425334 
2.75410386 22425334 Z 6 
3.28561740 22425334 6 
6.14827053 22425334 z 
7.34806251 22425334 
4.12503786 23453524 
5.71836042 23453524 
8.97462351 23453524 

0.12345678 25253344 
1.85637420 25253344 
2.30145768 25253344 
3.85716402 25253344 $3 x Z 3 
4.12503687 25253344 18 
5.61837240 25253344 x, y 
6.48270513 25253344 
7.48062531 25253344 
8.07462351 25253344 
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are given by the lists of the links of their vertices. The description by the links of 
the vertices, rather than by the list of triangles, simplifies the investigation of the 
automorphism group of the maps. 

To check the 116 maps with 10 vertices for isomorphism is of course much 
more complicated. For  this purpose, we use the fingerprint-matrix which has been 
introduced in I-3]. Here we recall the definition. 

Let N be a neighborly map  with V vertices and x a vertex of N. Let k := V - 1 
and Y~Y2 . . . . .  Yk be the link o fx  (i.e., x y  i_ ~Yi are triangles of the map for i = 1 . . . . .  k 
where Yo "= Yk). Let yi_ ly~zi with z~ # x be a triangle of N. Then there is a unique 
number tp(/) with 2 < ~p(/) < V - 4 with zl = Yi+q,(i) or with z i = Y i + q , ( i J - k ,  because 
N is neighborly. 

Now we define the fingerprint-vector (FP-vector) of x to be the first (smallest) 
tuple among 

{(¢p(i), ~p(i + 1),. . . ,  tp(k), q~(1) . . . . .  tp(i - 1))1i = 1 . . . . .  k} 

w {tp(/), tp(i - 1) . . . . .  tp(li, ~p(k) . . . . .  ~p(i + 1)[i = 1 . . . . .  k}, 

where ~p(/) := V - 2 - ~p(i) with respect to the lexicographic ordering (of tuples of 
natural numbers). From the definition follows immediately that the FP-vector  of 
a vertex does not depend on the labeling of the vertices nor on the chosen 
representation of the link. 

Now the fingerprint-matrix (FP-matrix) FP(bO of N is the V x (V - 1)-matrix 
in which the rows are the FP-vectors ordered lexicographically (the first row is 
the lexicographically smallest FP-vector  and so on). Thus by construction two 
neighborly maps which are isomorphic have identical FP-matrices. Conversely, in 
all our examples of neighborly maps, two neighborly maps with the same 
FP-matrix are isomorphic. Whether this holds in general is an interesting open 
problem. 

For each of the 116 maps under consideration, the FP-matrix has been 
calculated. It turned out that the 116 maps split into 14 equivalence classes with 
respect to the FP-matrices, and that the maps within each equivalence class are 
isomorphic to each other. Thus there are precisely 14 distinct neighborly 2- 
manifolds with 10 vertices. We denote them by N(10,/), i _< i _< 14, the order being 
according to the lexicographic order of the FP-matrices. These 14 maps are 
described in Table 3 by means of the links of their vertices, and their FP-matrices 
are given. 

We have thus completed the proof of 

Theorem 2. There are precisely two neighborly 2-maniJblds with 9 vertices 
(Z = - 3 )  and precisely 14 neighborly 2,manifolds with 10 vertices (~( = -5 ) .  They 
are listed in Tables 2 and 3. 
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Table 3. The 14 neighborly maps with Euler characteristic ~( = - 5  
given by the links of their vertices. Legend for permutations: 

a = (01X23X45X67), b = (012)(345X678), c = (01X23X67X89), 
d = (012345678), e = identity, f = (01234X56789), 
9 = (01)(29)(37)(45), h = (12)(38)(47)(56), j = (01X23X45)(78), 
k = (012)(469)(578). 

Map N(10, i) Links FP-matrix 

Symmetry group, 
order, generators, 

and relations 

i - -  
0.537289641 222223444 
1.426389750 222223444 
2.807953416 234256364 
3.816942507 234256364 Z 2 
4.785932106 236246244 2 

t 
5.684923017 236246244 a 
6.475821390 236446245 a 2 = e 
7.564830291 236446245 
8.913745620 245246346 
9.254360817 246363525 

0.271695384 222334524 
1.360794285 222334524 
2.704183956 223355335 
3.150829476 223355335 Z 2 
4.756802193 223444626 2 

2 5.647813092 223444626 a 
6.013725489 233536245 a2=e 
7.102634589 233536245 
8.403215796 234563625 
9.341786052 263355264 

0.637241598 222336334 
1.672504839 222346344 
2.385170496 222446645 
3.706281954 223335336 
4.537920186 223446336 

3 Trivial 
5.346782109 223446356 
6.192308457 224245356 
7.165894302 233533536 
8.231460975 234245255 
9.805316247 242453634 

0.437281695 222346355 
1.480627935 222346355 
2.356170894 222346355 
3.042519687 223363334 Z3 
4.150329768 223363334 3 

4 
5.623140987 223363334 b 
6.574839012 234623524 b3=e 
7.856491203 234623524 
8.637592014 234623524 
9.174285063 255255255 

Continued 
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Map N(10,/) Links FP-matrix 

Symmetry group, 
order, generators, 

and relations 

0.824159673 
1.350496827 
2.179365408 
3.89264517O 
4.635201987 
5.243109786 
6.185234709 
7.603129584 
8.561203947 
9.506148327 

0.653871294 
1.025983467 
2.109763485 
3.805796241 
4.287590613 
5.128603749 
6.327140589 
7.392610845 
8.703196524 
9.736815402 

0.378195426 
1.690854372 
2.857160493 
3.560714829 
4.513867920 
5.814093672 
6.847530219 
7.894652130 
8.469701523 
9.478610532 

0.498576321 
1.479356820 
2.184695730 
3.602748519 
4.738265901 
5.492708316 
6.245187039 
7.250689143 
8.216790534 
9.625408713 
0.914275638 
1.253867409 
2.364078519 
3.947518062 
4.958620173 
5.960731284 
6.971842305 
7.820534169 
8.903164527 
9.801234567 

222426445 
222426445 
235236244 
235236244 
236363334 
236363334 
242464635 
245336426 
245336426 
262634445 

222444625 
223344224 
224256355 
234246264 
235346426 
235536245 
236253334 
236363425 
245264536 
246263345 

222446645 
222446645 
225334426 
225334426 
234246456 
235636425 
236346446 
236346446 
236463535 
236463535 

223364634 
224224424 
225236244 
225336424 
235236446 
236345336 
236453524 
242526245 
244263634 
246363534 
223423524 
223423524 
223423524 
223423524 
223423524 
223423524 
223423524 
223423524 
223423524 
333333335 

Z2 
2 
J 

j2 ~ e  

Trivial 

Z2 
2 
¢ 

c 2 = e  

Trivial 

Z9 
9 
d 

d g = e  

Continued 
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Map N(t0, i) Links FP-matrix 

Symmetry group, 
order, generators, 

and relations 

10 

11 

12 

13 

14 

0.961752483 
1.928706534 
2.405819736 
3.908627415 
4.026573198 
5.316470289 
6.238790154 
7.329681054 
8.304952176 
9.035841276 

0.364528719 
1.907386542 
2.341968057 
3.271856094 
4.239876051 
5.836140279 
6.153047928 
7.310846952 
8.613594702 
9.576210348 

0.637492815 
1.480539267 
2.809164537 
3,152706489 
4.526381709 
5.879423106 
6.985034217 
7.859614032 
8.965720143 
9,576831204 

0.162937458 
1.537296084 
2.357190648 
3.251709468 
4.826397051 
5.896723140 
6.201957834 
7.986521304 
8.597632410 
9.021658743 

0.782561349 
1.860372459 
2.671480539 
3.104685297 
4.215763098 
5.238741960 
6.018347295 
7.126458093 
8.207536194 
9.704815623 

224224224 
224224224 
224224224 
224224224 
233556345 
233556345 
233556345 
233556345 
233556345 
233556345 

224425525 
225236345 
225346234 
234236244 
234426426 
236263334 
236363424 
245262534 
246263344 
255355526 

234425526 
234425526 
234425526 
234425526 
234425526 
236445526 
236445526 
236445526 
236445526 
236445526 

246246246 
246246246 
246246246 
246246246 
246246246 
246246246 
246246246 
246246246 
246246246 
246246246 

253453626 
253453626 
253453626 
255534526 
255534526 
255534526 
255534526 
255534526 
255534526 
264264264 

A 4 
12 

c, k 
k 3 = c 2 = ( c k )  3 = e 

Trivial 

Zs 
5 

f 
f S ~  e 

A~ 
6O 

f,a 
f5 = g2 = (fg)3 = e 

$3 
6 

b , h  

b 3 = h 2 = (bh) 2 = e 
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4. Automorphism Groups 

The automorphism groups of our 16 neighborly 2-manifolds with 9 and 10 vertices 
have been checked both by hand and by computer. The results are as follows: 

9 Vertices 

N(9, 1). The automorphism group is Z 6. It is generated by the permutation 
z = (0 3 6 2 1 7)(4 5 8). There are four orbits of triangles each of length 6 generated 
by the triangles 0 1 2, 0 3 4, 0 4 5, 0 5 6. 

N(9, 2). 
follows: 

The automorphism group is $3 x Z3. It is of order 18 and acts as 

8 3 

0 2 4  
Z 3 3 1 5 

7 6 8 

The rows can be permutated cyclically and the columns can be permutated 
arbitrarily. Generators of this group are 

and 

Note that 

x := (0'2)(3 1)(7 6) 

y := (8 1 0)(7 5 2)(6 3 4). 

u := (0 2 4)(3 1 5)(7 6 8) = yxy- ix ,  

v := (0 3 7)(2 1 6)(4 5 8) = xyxy, 

y = U - l U -  1, 

showing that the permutation group S 3 × Z 3, generated by x, u, v, can be 
generated also by x and y. After a suitable relabeling of the vertices we get the 
automorphism group of N(9, 1) as a subgroup of the automorphism group of 
N(9, 2), because xy = (0 8 3 4 7 5)(6 1 2) is conjugate to z in $9. 

10 Vertices 

Each of the maps N(10, 3), N(10, 6), N(10, 8), and N(10, 11) has the trivial group 
as its symmetry group. (Note that in each of the corresponding FP-matrices no 
two rows are identical.) 
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We use the following notation for some permutations over the set {0, 1 . . . . .  9}: 

a = (01)(23)(45)(67), 

b = (012)(345X678), 

c = (01)(23)(67)(89), 

d = (012345678), 

e = identity, 

f = (0t234)(56789), 

# = (01X29X37)(45), 

h = (12X38)(47)(56), 

j = (01)(23X45)(78), 

k = (012)(469)(578). 

In each of the maps N(10, 1), N(10, 2), N(10, 5), and N(10, 7), the group Z 2 (the 
cyclic group of order 2) generated by a acts as the symmetry group, with the 
vertices 8 and 9 fixed. 

In N(10, 4) the symmetry group is Z a, generated by b, and the vertex 9 is a 
fixed point. 

N(10, 9) has Z9, the cyclic group of order 9, as its symmetry group, with d as 
generator and 9 as fixed point. 

The group of N(10, 10) is of order 12. It is the alternating group A 4 with 
generators b, c, and relations c 2 = b 3 = (bc) 3 = e (bc reads: first c and then b). This 
follows from the fact that the group must preserve the set of vertices {0, 1, 2, 9} 
(as read from the FP-matrix), it is transitive on the ordered pairs from this set, 
and any correspondence (i,j) ~ (k, l) of such ordered pairs determines a unique 
automorphism of the map. Note that N(10, 10) is closely related to a certain 
polyhedron of genus 3 having the same automorphism group. More precisely, 
when replacing in N(10, 10) the six triangles 456, 457, 678, 679, 849, and 895 by 
the four triangles 469, 478, 568, and 579 we get a triangulation of an orientable 
manifold of genus 3 having the same automorphism group. This triangulated 
2-manifold can be realized as a polyhedron of genus 3 in ~3 (without self- 
intersections) as has been shown in [5]. 

The relabeling of the vertices of the orientable 2-manifold of genus 3 derived 
from N(10, 10) to the vertices of the polyhedron described in [5] is given by the 
permutation (0123457)(698). 

The group of N(10, 12) is of order 5. It is the cyclic group Z 5 with f as generator 
and with no fixed point. 

Most interesting is the group of N(10, 13). On one hand, it is "of order < 60. (It 
follows from the FP-matrix that for each two vertices i, j there are at most six 
automorphisms mapping i on j.) On the other hand, the group has the generators 
f, 9 with the relations f5  = 92 = (f9)3 = e, and these define the alternating group 
A5 (known also as the icosahedral group) which is of order 60. Thus the symmetry 
group of N(10, 13) is As. It operates transitively on the vertices and on the triangles. 

It is worth noting that N(t0, 13) can be obtained from the hemidodecahedron 
(the dodecahedron with antipodal points being indentified) by replacing each of the 
six pentagons by the unique triangulated M6bius strip with 5 vertices and with 
the same boundary as the pentagon. This type of construction has also been 
described in [4]. More geometrically, we can get N(10, 13) from the regular 
dodecahedron by replacing each pair of opposite pentagons by the ten triangles 
on the boundary of the convex hull of the union of the two pentagons. This yields 
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a starpolyhedron of genus 6. Finally, we get N(10, 13) by identifying pairs of points 
with respect to the center of symmetry. Note that the (geometric) symmetry group 
of the starpolyhedron operates transitively on the vertices and on the faces. 

Finally, the symmetry group of N(10, 14) is of order 6. It is the symmetric group 
$3, generated by b, h with the relations h 2 = b 3 = (bh) 2 = e and with 9 as fixed 
point. 

All this information about the symmetry groups of the neighborly maps with 
9 and 10 vertices is summarized in Tables 2 and 3. 
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