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Abstract: The theory of chemical reaction networks is a branch of mathematics that aims to mimic 

real-world behavior.  This research area has drawn many researchers' attention, primarily due to its 

biological and empirical chemistry applications.  The fascinating problems that emerge from the 

mathematical structures involved have kindled the interest of pure mathematicians.  In this paper, we 

estimate a few topological indices such as SK index, SK1 index, SK2 index, Modified Randić index, 

and Inverse Sum Index for the Graphene structure based on the neighborhood degree and obtain results 

based on both sum and products of the cardinality of edge partitions corresponding to 4 different 

Graphene structures.  We also present the 3D representations of the indices using MATLAB. 

Keywords: graphene; SK; SK1; SK2; Modified Randić Index; Inverse Sum Index. 

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative 

Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). 

1. Introduction 

Chemical reaction network theory is a field of applied mathematics that aims to mimic 

real-world chemical structure-activity.  It has gained an increasing scientific community 

following since its start in the 19th century, predominantly because of organic chemistry and 

theoretical chemistry developments. It has also received much attention from pure 

mathematicians because of the computational design problems that have emerged.  

Cheminformatics is an active research area where quantitative structure behavior and structure-

property relations predict nanomaterial biological activities and properties [1 - 4]. A few 

physicochemical characteristics and topological indices have been used in research findings to 

predict organic molecules' bioactivity [5-7]. 

In a chemical graph, vertices represent atoms or molecules, and edges represent the 

atoms or molecules' chemical bonding.  The degree of a vertex represents the number of edges 

that are incident on that vertex [8].  The maximum degree in any chemical graph is 4.  The 

notion of a degree in graph theory is closely (but not identically) related to the concept of 

valency in chemistry. 

Graphene is an allotrope of carbon molecules that are constructed on a honeycomb grid 

(hexagonal pattern).  Graphene is the most durable compound material.  It has good heat and 

electric conductive strength.  In comparison with graphite, its magnetic property is high and 

nonlinear. 

 Topological indices are numerical parameters associated with a graph that characterize 

its topology.  These indices are usually graphed invariant.  The topology of chemical structures 
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is described by these indices.  The neighborhood degree of a node a  V, indicated as (a) / a, 

is the sum of degrees of all adjacent nodes of the node  a.  Here, the neighboring nodes of a 

node are the set of nodes at a distance 1 to the node. 

Many researchers [9 - 35]  have defined and estimated topological indices of molecules 

such as graphene, graphene transformations, and their applications. 

This paper estimates a few topological descriptors like SK, SK1, SK2 indices, Modified 

Randić index, and Inverse Sum Index based on the neighborhood degree and obtain results 

based on both sum and products the cardinality of edge partitions corresponding to 4 different 

Graphene structures.  We also present the 3D representations of the indices using MATLAB. 

 We define a few new neighborhood degree-based topological indices denoted as 

𝑆𝐾𝑁
𝜁
(G), 𝑆𝐾1𝑁

𝜁
(G), 𝑆𝐾2𝑁

𝜁
(G), 𝑚𝑅𝑁

𝜁
(G), 𝐼𝑆𝐼𝑁

𝜁
(G) as follows: 

𝑆𝐾𝑁
𝜁
(G) = ∑ [

 (𝑢)+ (𝑣) 

2
]𝑢𝑣 ∈𝐸(𝐺)           ( 1 ) 

 

𝑆𝐾1𝑁
𝜁
(𝐺) = ∑ [

 (𝑢) ∗  (𝑣) 

2
]𝑢𝑣 ∈𝐸(𝐺)              ( 2 ) 

 

𝑆𝐾2𝑁
𝜁
(G) = ∑ [

  (𝑢)+ (𝑣)

 2
]
2

𝑢𝑣 ∈𝐸(𝐺)           ( 3 ) 

 

𝑚𝑅𝑁
𝜁
(G) =  ∑ [

1 

𝑚𝑎𝑥 {  (𝑢), (𝑣)}
]𝑢𝑣 ∈𝐸(𝐺)             ( 4 ) 

 

𝐼𝑆𝐼𝑁
𝜁
(G)  = ∑ [

 (𝑢 ) ∗  (𝑣)

 (𝑢 ) +  (𝑣)
]𝑢𝑣 ∈𝐸(𝐺)         ( 5 ) 

where 𝛿(𝑢) =  ∑ 𝑑𝑒𝑔(𝑣)𝑣 𝜖𝑁(𝑢) , 𝑁(𝑢) is the Neighborhood set of the vertex u. 

Figures 1 - 4 shows the structure of graphene. 

 
Figure 1. Graphene when x > 1 and y > 1. 

 
Figure 2. Graphene when x = 1 and y > 1. 

 
Figure 3. Graphene when x > 1 and y = 1. 
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Figure 4. Graphene when x = 1 and y = 1. 

 The edges of graphene can be partitioned into 4 types depending on the number of 

layers and the number of benzene rings, taking into consideration the neighborhood degrees 

of the vertices of each edge denoted by Έ((u),(𝐯)) / Έ(δu,δv). The edge partitions are given in 

the following tables : 

Table 1. Έdge Partition when x > 1 y > 1. 
Έ(𝛅𝐮,𝛅𝐯) (4, 5) (5, 5) (5, 7) (5, 8) (6, 7) (7, 9) (8, 8) (8, 9) (9, 9) 

|Έ(𝛅𝐮,𝛅𝐯)| 4 x 8 2x-4 4y- 8 2y x-2 2x-4 3xy - 4x - 4y + 5 

Table 2. Έdge Partition when x = 1 y > 1. 

Έ(𝛅𝐮,𝛅𝐯) (4, 4) (4, 5) (5, 7) (6, 7) (7, 7) 

|Έ(𝛅𝐮,𝛅𝐯)| 2 4 4 4y - 8 y  - 1 

 

Table 3. Έdge Partition when x > 1 y = 1. 

Έ(𝛅𝐮,𝛅𝐯) (4, 4) (4, 5) (5, 5) (5, 7) (5, 8) (7, 8) (8, 8) 

|Έ(𝛅𝐮,𝛅𝐯)| 2 4 x - 2 4 2x - 4 2 2x - 5 

 

Table 4. Έdge Partition when x = 1 y = 1. 

Έ(𝛅𝐮,𝛅𝐯) (4, 4) 

|Έ(𝛅𝐮,𝛅𝐯)| 6 

2. Materials and Methods 

 Our main computational results include the neighborhood degree-based topological 

indices of graphene structure.  We computed the results with the help of the edge partition 

method and graph-theoretical concepts.  The results are depicted graphically using MATLAB 

2019 in Figures 5 – 14. 

3. Results and Discussion 

Theorem 2.1: The SKN
ζ
(G) index of graphene with x rows and y benzene rings is 

𝑆𝐾𝑁
𝜁
= {

39𝑥 − 38𝑦 + 27𝑥𝑦 − 57                  𝑖𝑓 𝑥 > 1, 𝑦 > 1
33𝑦 + 39                                               𝑖𝑓 𝑥 = 1, 𝑦 > 1
34𝑥 − 11                                              𝑖𝑓 𝑥 > 1, 𝑦 = 1
   24                                                        𝑖𝑓 𝑥 = 1, 𝑦 = 1

 

Proof: We establish the proof for the following four cases: 

Case 1: We use the edge partition for x > 1, y > 1 given Table 1 in equation 1 and 

obtain, 

NSK
 = |Έ(4,5)| [

9

2
]  + |Έ(5,5)| [

10

2
]  + |Έ(5,7)| [

12

2
]  +|Έ(5,8)| [

13

2
]+ |Έ(6,7)| [

13

2
] + |Έ(7,9)| [

16

2
] + 

|Έ(8,8)| [
16

2
]  + |Έ(8,9)| [

17

2
] + |Έ(9,9)| [

18

2
]   

      = 4 [
9

2
]  + x [

10

2
]  + 8 [

12

2
]  + (2x - 4) [

13

2
]  + (4y - 8) [

13

2
]  + (2 y) [

16

2
]  + (x - 2) [

16

2
]  + (2x - 

4) [
17

2
] + (3xy - 4x - 4y + 5) [

18

2
]   
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= 39x − 38y + 27xy − 57. 

Case 2: Using the edge partition for x = 1, y > 1 given in Table 2 in equation 1 we 

obtain,  

NSK  =  |Έ(4,4)| [
8

2
]  + |Έ(4,5)| [

9

2
]  + |Έ(5,7)| [

12

2
]  + |Έ(6,7)| [

13

2
]  + |Έ(7,7)| [

14

2
] 

       =   2 [
8

2
]  + 4 [

9

2
]  + 4 [

12

2
]  + (4y - 8) [

13

2
]  + (y - 1) [

14

2
]  

   = 33y + 39. 

Case 3: Using the edge partition for x > 1, y = 1 given in Table 3 in equation 1 we 

obtain, 

NSK
 =  |Έ(4,4)| [

8

2
]  + |Έ(4,5)| [

9

2
]  + |Έ(5,5)| [

10

2
]  + |Έ(5,7)| [

12

2
]  + |Έ(5,8)| [

13

2
]  + |Έ(7,8)| 

[
15

2
] + |Έ(8,8)| [

16

2
]  

   =   2 [
8

2
]  + 4 [

9

2
] + (x - 2) [

10

2
]  + 4 [

12

2
]  + (2x - 4) [

13

2
]  + 2 [

15

2
] + (2x - 5) [

16

2
] 

  = 34x - 11. 

Case 4: Using the edge partition for x = 1, y = 1given in Table 4 in equation 1 we obtain,  

NSK  =  |Έ(4,4)| [
8

2
]   

   =  24. 

 

Figure 5. 3D Representation of  NSK
.  

Result 2.1: The product version of 𝑆𝐾𝑁
𝜁
(G) is 

 𝑆𝐾𝑁
𝜁

= 

{
 

 
212335 ∗ 132 (𝑥 − 2)2𝑦(2𝑦 − 4)17(𝑥 − 2)(27𝑥𝑦 − 4𝑦 − 4𝑥 + 5)  𝑖𝑓 𝑥 > 1, 𝑦 > 1

2733(26𝑦 − 4)(7𝑦 − 7)                                                                                 𝑖𝑓 𝑥 = 1, 𝑦 > 1

210345213(𝑥 − 2)2(2𝑥 − 5)                                                                         𝑖𝑓 𝑥 > 1, 𝑦 = 1
   24                                                                                                                      𝑖𝑓 𝑥 = 1, 𝑦 = 1
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Figure 6. 3D Representation of 
NSK

.  

Theorem 2.2: The SK1N
ζ

 index of graphene with x rows and y benzene rings is 

𝑆𝐾1𝑁
𝜁
= 

{
  
 

  
 
309𝑥 + 290𝑦 + 3𝑥𝑦 − 547

2
            𝑖𝑓 𝑥 > 1, 𝑦 > 1

217𝑦 − 133

2
                                        𝑖𝑓 𝑥 = 1, 𝑦 > 1

233𝑥 − 166

2
                                       𝑖𝑓 𝑥 > 1, 𝑦 = 1

   48                                                       𝑖𝑓 𝑥 = 1, 𝑦 = 1

 

Proof: We establish the proof for the following four cases : 

Case 1: We use the edge partition for x > 1, y > 1 given in Table 1 in equation 2 and 

obtain,  

𝑆𝐾1𝑁
𝜁

= |Έ(4,5)| [
20

2
]  + |Έ(5,5)| [

25

2
]  + |Έ(5,7)| [

35

2
]  + |Έ(5,8)| [

40

2
]  + |Έ(6,7)| [

42

2
]  + |Έ(7,9)| 

[
63

2
]  + |Έ(8,8)| [

64

2
]  + |Έ(8,9)| [

72

2
] + |Έ(9,9)| [

81

2
]   

      = 4 [
20

2
]  + x [

25

2
]  + 8 [

35

2
]  + (2x - 4) [

40

2
]  + (4y - 8) [

42

2
]  + (2 y) [

63

2
]  + (x - 2) [

64

2
]  + 

(2x - 4) [
72

2
] + (3xy - 4x - 4y + 5) [

81

2
]   

= 
309𝑥+290𝑦+3𝑥𝑦−547

2
. 

Case 2: Using the edge partition for x = 1, y > 1 given in Table 2 in equation 2 we obtain,  

𝑆𝐾1𝑁
𝜁

=  |Έ(4,4)| [
16

2
]  + |Έ(4,5)| [

20

2
]  + |Έ(5,7)| [

35

2
]  + |Έ(6,7)| [

42

2
]  + |Έ(7,7)| [

49

2
] 

       =  2 [
16

2
]  + 4 [

20

2
]  + 4 [

35

2
]  + (4y - 8) [

42

2
]  + (y - 1) [

49

2
]  

   = 
217𝑦−133

2
. 

Case 3: Using the edge partition for x > 1, y = 1 given in Table 3 in equation 2 we obtain,  
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𝑆𝐾1𝑁
𝜁

= |Έ(4,4)| [
16

2
]  + |Έ(4,5)| [

20

2
]  + |Έ(5,5)| [

25

2
]  + |Έ(5,7)| [

35

2
]  +|Έ(5,8)| [

40

2
]  +|Έ(7,8)| 

[
56

2
] + |Έ(8,8)| [

64

2
]    =  2 [

16

2
]  + 4 [

20

2
] + (x - 2) [

25

2
]  + 4 [

35

2
]  + (2x - 4) [

40

2
]  + 2 [

56

2
] + (2x 

- 5) [
64

2
] 

  = 
233𝑥−166

2
. 

Case 4: Using the edge partition for x = 1, y=1given in Table 4 in equation 2 we obtain,  

 𝑆𝐾1𝑁
𝜁

=  |Έ(4,4)| [
16

2
]  =  48. 

 
Figure 7. 3D Representation of   𝑆𝐾1𝑁

𝜁
. 

Result 2.2: The product version of 𝑆𝐾1𝑁
𝜁
(G) is 

 𝑆𝐾1𝑁
𝜁

= 

{
 
 

 
 2

14355573𝑥𝑦 (𝑥 − 2)3(4𝑦 − 8)(3𝑥𝑦 − 4𝑦 − 4𝑥 + 5)                                𝑖𝑓 𝑥 > 1, 𝑦 > 1

273 ∗ 5274(4𝑦 − 8)(𝑦 − 1)                                                                                 𝑖𝑓 𝑥 = 1, 𝑦 > 1

2175572(𝑥 − 2)(2𝑥 − 4)(2𝑥 − 5)                                                                    𝑖𝑓 𝑥 > 1, 𝑦 = 1
   48                                                                                                                           𝑖𝑓 𝑥 = 1, 𝑦 = 1

 

 
Figure 8. 3D Representation of  𝑆𝐾1𝑁

𝜁
. 
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Theorem 2.3: The SK2N
ζ
(G) index of Graphene with x rows and y benzene rings is 

𝑆𝐾2𝑁
𝜁
= 

{
 
 

 
 
936𝑥𝑦 − 660𝑥 − 871𝑦 + 846

2
            𝑖𝑓 𝑥 > 1, 𝑦 > 1

218𝑦 − 130                                                𝑖𝑓 𝑥 = 1, 𝑦 > 1
475𝑥 − 339

2
                                              𝑖𝑓 𝑥 > 1, 𝑦 = 1

   96                                                              𝑖𝑓 𝑥 = 1, 𝑦 = 1

 

Proof: We establish the proof for the following four cases : 

Case 1: We use the edge partition for x > 1, y > 1 given in Table 1 in equation 3 and obtain, 

 𝑆𝐾2𝑁
𝜁
=  |Έ(4,5)| [

9

2
]
2
 + |Έ(5,5)| [

10

2
]
2
+ |Έ(5,7)| [

12

2
]
2
  + |Έ(5,8)| [

13

2
]
2
 + |Έ(6,7)| [

13

2
]
2
 + 

|Έ(7,9)| [
16

2
]
2
  + |Έ(8,8)| [

16

2
]
2
  + |Έ(8,9)| [

17

2
]
2

 + |Έ(9,9)| [
18

2
]
2
   

      = 4 [
9

2
]
2
  + x [

10

2
]
2
  + 8 [

12

2
]
2

 + (2x - 4) [
13

2
]
2
   + (4y - 8) [

13

2
]
2
  + (2 y) [

16

2
]
2
  + (x - 2) [

16

2
]
2
  

+ (2x - 4) [
17

2
]
2

 + (3xy - 4x - 4y + 5) [
18

2
]
2

  

 = 
936𝑥𝑦−660𝑥−871𝑦 +846

2
. 

Case 2: Using the edge partition for x = 1, y > 1 given in Table 2 in equation 3 we obtain,  

𝑆𝐾2𝑁
𝜁
=  |Έ(4,4)| [

8

2
]
2
 +|Έ(4,5)| [

9

2
]
2
  + |Έ(5,7)| [

12

2
]
2
  + |Έ(6,7)| [

13

2
]
2
  + |Έ(7,7)| [

14

2
]
2
 

       =  2 [
8

2
]
2
  + 4 [

9

2
]
2

 + 4 [
12

2
]
2
  + (4y - 8) [

13

2
]
2

 + (y - 1) [
14

2
]
2
 

   = 218𝑦 − 130. 

Case 3: Using the edge partition for x > 1, y = 1 given in Table 3 in equation 3 we obtain,  

𝑆𝐾2𝑁
𝜁
= |Έ(4,4)| [

8

2
]
2
+|Έ(4,5)| [

9

2
]
2
+|Έ(5,5)| [

10

2
]
2
+|Έ(5,7)| [

12

2
]
2
+ |Έ(5,8)| [

13

2
]
2
 + |Έ(7,8)| 

[
15

2
]
2
 + ||Έ(8,8)| [

16

2
]
2
  

          =  2 [
8

2
]
2
  + 4 [

9

2
]
2
 + (x - 2) [

10

2
]
2
  + 4 [

12

2
]
2
  + (2x - 4) [

13

2
]
2
  + 2 [

15

2
]
2
  + (2x - 5) [

16

2
]
2
 

          = 
475𝑥−339

2
. 

Case 4: Using the edge partition for x = 1, y = 1 given in Table 4 in equation 3 we obtain, 

𝑆𝐾2𝑁
𝜁
=  |Έ(4,4)| [

8

2
]
2
 =  96. 
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Figure 9. 3D Representation of   SK2N

ζ
. 

Result 2.3: The product version of 𝑆𝐾2𝑁
𝜁
(G) is 

 𝑆𝐾2𝑁
𝜁

= 

{
 

 
21631052134172𝑥𝑦 (𝑥 − 2)3(𝑦 − 2)17(𝑥 − 2)(3𝑥𝑦 − 4𝑦 − 4𝑥 + 5)   𝑖𝑓 𝑥 > 1, 𝑦 > 1

2936132(𝑦 − 2)(49𝑦 − 49)                                                                                𝑖𝑓 𝑥 = 1, 𝑦 > 1

2133854132(𝑥 − 2)2(2𝑥 − 5)                                                                            𝑖𝑓 𝑥 > 1, 𝑦 = 1
   96                                                                                                                             𝑖𝑓 𝑥 = 1, 𝑦 = 1

 

 
Figure 10. 3D Representation of  𝑆𝐾2𝑁

𝜁
. 

Theorem 2.4: The 𝑚𝑅𝑁
𝜁
(G) index of Graphene with x rows and y benzene rings is  

𝑚𝑅𝑁
𝜁
= 

{
 
 
 

 
 
 
959𝑥 − 950𝑦 − 840𝑥𝑦 + 266

2520
                                𝑖𝑓 𝑥 > 1, 𝑦 > 1

50𝑦 + 41

70
                                                                      𝑖𝑓 𝑥 = 1, 𝑦 > 1

196𝑥 + 167

280
                                                               𝑖𝑓 𝑥 > 1, 𝑦 = 1

   
3

2
                                                                                 𝑖𝑓 𝑥 = 1, 𝑦 = 1

 

Proof: We establish the proof for the following four cases : 
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Case 1: We use the edge partition for x > 1, y > 1 given in Table 1 in equation 4 and 

obtain,  

𝑚𝑅𝑁
𝜁
=  |Έ(4,5)| [

1

𝑚𝑎𝑥{4,5}
] + |Έ(5,5)| [

1

𝑚𝑎𝑥{5,5}
]  + |Έ(5,7)| [

1

𝑚𝑎𝑥{5,7}
] +|Έ(5,8)| [

1

𝑚𝑎𝑥{5,8}
] + 

|Έ(6,7)| [
1

𝑚𝑎𝑥{6,7}
] + |Έ(7,9)| [

1

𝑚𝑎𝑥{7,9}
]  + |Έ(8,8)| [

1

𝑚𝑎𝑥{8,8}
]  + |Έ(8,9)| [

1

𝑚𝑎𝑥{8,9}
] + |Έ(9,9)| 

[
1

𝑚𝑎𝑥{9,9}
]   

 = 
959𝑥−950𝑦−840𝑥𝑦+266

2520
 . 

Case 2: Using the edge partition for x = 1, y > 1 given in Table 2 in equation 4 we 

obtain,  

 𝑚𝑅𝑁
𝜁
=  |Έ(4,4)| [

1

𝑚𝑎𝑥{4,4}
] + |Έ(4,5)| [

1

𝑚𝑎𝑥{4,5}
]  + |Έ(5,7)| [

1

𝑚𝑎𝑥{5,7}
] +|Έ(6,7)| [

1

𝑚𝑎𝑥{6,7}
]+ 

|Έ(7,7)| [
1

𝑚𝑎𝑥{7,7}
] 

           =  
50𝑦+41

70
. 

Case 3: Using the edge partition for x > 1, y = 1 given in Table 3 in equation 4 we 

obtain,  

𝑚𝑅𝑁
𝜁
= |Έ(4,4)|  [

1

𝑚𝑎𝑥{4,4}
]+ |Έ(4,5)| [

1

𝑚𝑎𝑥{4,5}
]+ |Έ(5,5)| [

1

𝑚𝑎𝑥{5,5}
]+ |Έ(5,7)| [

1

𝑚𝑎𝑥{5,7}
]+ |Έ(5,8)| 

[
1

𝑚𝑎𝑥{5,8}
]  + |Έ(7,8)| [

1

𝑚𝑎𝑥{7,8}
] + |Έ(8,8)| [

1

𝑚𝑎𝑥{8,8}
]   

         = 
196𝑥+167

280
. 

Case 4: Using the edge partition for x = 1, y = 1 given in Table 4 in equation 4 we 

obtain,  

𝑚𝑅𝑁
𝜁
=  |Έ(4,4)| [

1

𝑚𝑎𝑥{4,4}
]  

   = 
3

2
 . 

 
Figure 11. 3D Representation of   𝑚𝑅𝑁

𝜁
. 

Result 2.4: The product version of 𝑚𝑅𝑁
𝜁
(G) is 
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 𝑚𝑅𝑁
𝜁

= 

{
 
 
 
 

 
 
 
 
𝑥𝑦(𝑥 − 2)3(𝑦 − 2)(3𝑥𝑦 − 4𝑦 − 4𝑥 + 5)

22325272
                                                                                𝑖𝑓 𝑥 > 1, 𝑦 > 1

25(𝑦 − 1)(𝑦 − 2)

5 ∗ 73
                                                                                                                            𝑖𝑓 𝑥 = 1, 𝑦 > 1

(𝑥 − 2)2(2𝑥 − 5)

25527
                                                                                                                           𝑖𝑓 𝑥 > 1, 𝑦 = 1

 
3

2
                                                                                                                                                       𝑖𝑓 𝑥 = 1, 𝑦 = 1

 

 
Figure 12. 3D Representation of  𝑚𝑅𝑁

𝜁
. 

Theorem 2.5 : The 𝐼𝑆𝐼𝑁
𝜁
(G) index of graphene with x rows and y benzene rings is  

𝐼𝑆𝐼𝑁
𝜁
= 

{
 
 
 

  
 
49716𝑥 − 44523𝑦 + 214812𝑥𝑦 − 133228

15912
                                   𝑖𝑓 𝑥 > 1, 𝑦 > 1

3843𝑦 − 1121

234
                                                                                         𝑖𝑓 𝑥 = 1, 𝑦 > 1

19485𝑥 − 6184

1170
                                                                                        𝑖𝑓 𝑥 > 1, 𝑦 = 1

  12                                                                                                                  𝑖𝑓 𝑥 = 1, 𝑦 = 1

  

Proof: We establish the proof for the following four cases: 

Case 1: We use the edge partition for x > 1, y > 1 given in Table 1 in equation 5 and 

obtain,  

𝐼𝑆𝐼𝑁
𝜁
=  |Έ(4,5)| [

4∗5

4+5
]+ |Έ(5,5)| [

5∗5

5+5
] + |Έ(5,7)| [

5∗7

5+7
]  + |Έ(5,8)| [

5∗8

5+8
]  + |Έ(6,7)| [

6∗7

6+7
] + 

|Έ(7,9)| [
7∗9

7+9
]  + |Έ(8,8)| [

8∗8

8+8
]  + |Έ(8,9)| [

8∗9

8+9
] + |Έ(9,9)| [

9∗9

9+9
]   

 = [
80

9
] + x [

25

10
] + [

70

3
] + (2x - 4) [

40

13
] +  (4y - 8) [

42

13
] + [

63𝑦

8
] + 4*(x-2) + (2x - 4) [

72

17
] + 

(3xy - 4x - 4y + 5) [
9

2
]  

 = 
49716𝑥−44523𝑦+214812𝑥𝑦−133228

15912
 . 
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Case 2: Using the edge partition for x = 1, y > 1 given in Table 2 in equation 5 we 

obtain, 

𝐼𝑆𝐼𝑁
𝜁
=  |Έ(4,4)| [

4∗4

4+4
] + |Έ(4,5)| [

4∗5

4+5
]  + |Έ(5,7)| [

5∗7

5+7
]  + |Έ(6,7)| [

6∗7

6+7
]  +|Έ(7,7)| [

7∗7

7+7
] 

       = 
3843𝑦−1121

234
. 

Case 3: Using the edge partition for x > 1, y = 1 given in Table 3 in equation 5 we 

obtain, 

𝐼𝑆𝐼𝑁
𝜁
= |Έ(4,4)| [

4∗4

4+4
]+ |Έ(4,5)|  [

4∗5

4+5
]+ |Έ(5,5)| [

5∗5

5+5
]+  |Έ(5,7)| [

5∗7

5+7
]+ |Έ(5,8)| [

5∗8

5+8
]  + |Έ(7,8)| 

[
7∗8

7+8
] + |Έ(8,8)| [

8∗8

8+8
]  

  = 
19485𝑥−6184

1170
. 

Case 4: Using the edge partition for x = 1, y = 1 given in Table 4 in equation 5 we 

obtain, 

 𝐼𝑆𝐼𝑁
𝜁
=  |Έ(4,4)| [

4∗4

4+4
] = 12.  

 
Figure 13. 3D Representation of   𝐼𝑆𝐼𝑁

𝜁
. 

Result 2.4: The product version of ISIN
ζ
(G) is 

 𝐼𝑆𝐼𝑁
𝜁

= 

{
 
 
 

 
 
 
213345473𝑥𝑦(𝑥 − 2)3(𝑦 − 2)(3𝑥𝑦 − 4𝑦 − 4𝑥 + 5)

13217
                               𝑖𝑓 𝑥 > 1, 𝑦 > 1

285273(𝑦 − 1)(𝑦 − 2)

3213
                                                                                      𝑖𝑓 𝑥 = 1, 𝑦 > 1

2155372(𝑥 − 2)2(2𝑥 − 5)

3413
                                                                               𝑖𝑓 𝑥 > 1, 𝑦 = 1

12                                                                                                                            𝑖𝑓 𝑥 = 1, 𝑦 = 1
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Figure 14. 3D Representation of   𝐼𝑆𝐼𝑁

𝜁
. 

4. Conclusions 

 The computation of various topological indices of graphs associated with chemical 

graphs enables the analysis of molecules and study of how the indices relate to the molecular 

properties.  We estimated a few topological indices based on the neighborhood degree and 

obtained results based on both the sum and products of the cardinality of edge partitions 

corresponding to 4 different Graphene structures.  We also presented the 3D representations 

(Figures 5 – 14) of these indices using MATLAB.  We envisage applying these definitions to 

the line graph, subdivision graphs, and total graphs of the Graphene structure in future work.  

Further, we would establish the relationship between these indices and some chemical 

properties of graphene. 
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