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Abstract

The task in referring expression comprehension is to

localise the object instance in an image described by a

referring expression phrased in natural language. As a

language-to-vision matching task, the key to this problem

is to learn a discriminative object feature that can adapt to

the expression used. To avoid ambiguity, the expression nor-

mally tends to describe not only the properties of the refer-

ent itself, but also its relationships to its neighbourhood. To

capture and exploit this important information we propose

a graph-based, language-guided attention mechanism. Be-

ing composed of node attention component and edge atten-

tion component, the proposed graph attention mechanism

explicitly represents inter-object relationships, and proper-

ties with a flexibility and power impossible with compet-

ing approaches. Furthermore, the proposed graph attention

mechanism enables the comprehension decision to be visu-

alisable and explainable. Experiments on three referring

expression comprehension datasets show the advantage of

the proposed approach.

1. Introduction

A referring expression is a natural language phrase that

refers to a particular object visible in an image. Refer-

ring expression comprehension thus requires to identify the

unique object of interest, referred to by the language ex-

pression [29]. The critical challenge is thus the joint under-

standing of the textual and visual domains.

Referring expression comprehension can be formulated

as a language-to-region matching problem, where the re-

gion with highest matching score is selected as the pre-

diction. Learning a discriminative region representation

that can adapt to the language expression is thus critical.

The predominant approaches [7, 15, 16] tend to represent

the region by stacking various types of features, such as
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The child held by a woman beside a table

Directed Relational Graph with Attention Masks

The child held by a woman beside a table

Language Self Attention

Language-guided 

Graph Attention

Region 

Proposal
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Figure 1. A directed graph is built over the object instances of the

image, where nodes correspond to object regions and edges (par-

tially visualised) represent relationships between objects (blue and

red edges denote intra- and inter-class relationships respectively).

Graph attention predicts the attention distribution over the nodes

as well as the edges, based on the decomposed information present

in the expression. Summarising the attended object and its high-

lighted neighbours enables more discriminative feature. Higher

transparency here denotes a lower attention value.

CNN features, spatial features or heuristic contextual fea-

tures, and employ a LSTM to process the expression sim-

ply as a series of words. However, these approaches are

limited by the monolithic vector representations that ig-

nore the complex structures in the compound language ex-

pression as well as in the image. Another potential prob-

lem for these approaches, and for more advanced modular

schemes [5, 27], is that the language and region features are

learned or designed independently without being informed

by each other, which makes the features of the two modal-

ities difficult to adapt to each other, especially when the

expression is complex. Co-attention mechanisms are em-

ployed in [3, 32] to extract more informative features from

both the language and the image to achieve better matching

performance. These approaches, however, treat the objects

in the image in isolation and thus fail to model the rela-

tionships between them. These relationships are naturally

important in identifying the referent, especially when the

expression is compound. For example, in Fig. 1, the expres-

sion “the child held by a woman beside a table” describes

11960



not only the child but her relationships with another person

and the table. In cases like this, focusing on the properties

of the object only is not enough to localise the correct ref-

erent but we need to watch the neighbourhood to identify

more useful clues.

To address the aforementioned problems, we propose to

build a directed graph over the object regions of an image

to model the relationships between objects. In this graph

the nodes correspond to the objects and the edges repre-

sent the relationships between objects. On top of the graph,

we propose a language-guided graph attention network

(LGRAN) to highlight the relevant content referred to by

the expression. The graph attention is composed of two

main components: a node attention component to highlight

relevant objects and an edge attention component to identify

the object relationships present in the expression. Further-

more, the edge attention is divided into intra-class edge at-

tention and inter-class edge attention to distinguish relation-

ships between objects of the same category and those cross-

ing categories. Normally, these two types of relationships

are different visually and semantically. The three types of

attention are guided by three corresponding language parts

which are identified within the expression through a self-

attention mechanism [5, 27]. By summarising the attended

sub-graph centred on a potential object of interest, we can

dynamically enrich the representation of this object in order

that it can better adapt to the expression, as illustrated in

Fig. 1.

Another benefit of the proposed graph attention mech-

anism is that it renders the referring expression decision

both visualisable and explainable, because it is capable of

grounding the referent and other supporting clues (i.e. its

relationships with other objects) onto the graph. We con-

duct experiments on three referring expression datasets (Re-

fCOCO, RefCOCO+ and RefCOCOg). The experimental

results show the advantage of the proposed language-guided

graph attention network. We outperform the previous best

results on almost all splits, under different settings.

2. Related Work

Referring Expression Comprehension Conventional re-

ferring expression comprehension is approached using a

CNN/LSTM framework [7, 15, 16, 28]. The LSTM takes as

input a region-level CNN feature and a word vector at each

time step, and aims to maximize the likelihood of the ex-

pression given the referred region. These models incorpo-

rate contextual information visually, and how they achieve

this is one of the major differentiators of the various ap-

proaches. For example, the work in [7] uses a whole-image

CNN feature as the region context, the work in [16] learns

context regions via multiple-instance learning, and in [28],

the authors use visual differences between objects to repre-

sent the visual context.

Another line of work treats referring expression com-

prehension as a metric learning problem [14, 15, 18, 25],

whereby the expression feature and the region feature are

embedded into a common feature space to measure the

compatibility. The focus of these approaches lies in how

to define the matching loss function, such as softmax

loss [14, 18], max-margin loss [25], or Maximum Mutual

Information (MMI) loss [15]. These approaches tend to use

a single feature vector to represent the expression and the

image region. These monolithic features ignore the com-

plex structures in the language as well in the image, how-

ever. To overcome this limitation of monolithic features,

self-attention mechanisms have been used to decompose the

expression into sub-components and learn separate features

for each of the resulting parts [6, 27, 30]. Another poten-

tial problem for the aforementioned methods is that the lan-

guage and region features are learned independently with-

out being informed by each other. To learn expression fea-

tures and region features that can better adapt to each other,

co-attention mechanisms have been used [3, 32]. These

methods process the objects in isolation, however, and thus

fail to model the object dependencies, which are critical in

identifying the referent. In our model, we build a directed

graph over the object regions of an image to model the re-

lationships between objects. On top of that, a language-

guided graph attention mechanism is proposed to highlight

the relevant content referred to by the expression.
Graph Attention In [24] graph attention is applied to

other graph-structured data, including document citation

networks, and protein-protein interactions. The differences

between their graph attention scheme and ours are three-

fold. First, their graph edges reflect the connections be-

tween nodes only, while ours additionally encode the re-

lationships between objects (that have properties of their

own). Second, their attention is obtained via self-attention

or the interaction between nodes, but our attention is guided

by the referring statement. Third, they update the node in-

formation as a weighted sum of the neighbouring represen-

tations, but we maintain different types of features to repre-

sent the node properties and node relationships. In terms

of building a graph to capture the structure in the struc-

tural data, our work is also related to graph neural networks

[4, 8, 11, 12, 22]. Our focus in this paper is on identifying

the expression-relevant information for an object for better

language-to-region matching.

3. Language-guided Graph Attention Net-

works (LGRANs)

Here we elaborate on the proposed language-guided

graph attention networks (LGRANs) for referring expres-

sion comprehension. Given the expression r and an im-

age I , the aim of referring expression comprehension is

to localise the object o⋆ referred to by r from the object
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Figure 2. Overview of the proposed language-guided graph attention networks for referring expression comprehension. The network is

composed of three modules: language-self attention module, language-guided graph attention module, and matching module.

set O = {oi}
N
i=1 of I . The candidate object set is given

as ground truth or obtained by an object proposal genera-

tion method, such as region proposal network [17], depend-

ing on the experimental setting. We evaluate both cases in

Sec. 4.

As illustrated in Fig. 2, LGRANs is composed of three

modules: (1) the language self-attention module, which

adopts a self-attention scheme to decompose the expres-

sion r into three parts that describe the subject, intra-class

relationships and inter-class relationships, and learn the

corresponding representations s
sub, sintra and s

inter; (2)

the language-guided graph attention module, which builds

a directed graph over the candidate objects O, highlights

the nodes (objects), intra-class edges (relationships between

objects of the same category) and inter-class edges (rela-

tionships between objects from different categories) that are

relevant to r under the guidance of ssub, sintra and s
inter,

and finally obtains three types of expression-relevant repre-

sentations for each object; (3) the matching module, which

computes the expression-to-object matching score. We now

describe these modules in detail.

3.1. Language Self­Attention Module

Languages are compound and monolithic vector rep-

resentations (such as the output of a LSTM at the final

state) ignore the rich structure in the language. Inspired

by the idea of decomposing compound language into sub-

structures in various vision-to-language tasks [2, 5, 6, 27],

we decompose the expression into sub-components as well.

To fulfill their purpose referring expressions tend to de-

scribe not only the properties of the referent, but also its

relationships with nearby objects. We thus decompose the

expression r into three parts: subject rsub, intra-class rela-

tionship rintra, and inter-class relationship rinter.

There are mainly two language parsing approaches: off-
the-shelf language parsers [2] or self-attention [5, 6, 27].

The child held by a woman beside a table

Hidden vector sequence 

Word embedding sequence 

Word sequence 

The child held by a 

woman beside a 

table

Bi-LSTM

The child held by a 

woman beside a 

table

The child held by a 

woman beside a 

table

Component 

weights

Component  

representations

Figure 3. Illustration of the language self-attention module.

In this paper, we apply the self-attention scheme due to its
better performance. Fig. 3 shows the high-level idea of our
language attention mechanism. Given an expression r with
T words r = {wt}

T
t=1, we first embed the words’ one-

hot representations into a continuous space {et}
T
t=1 using

a non-linear mapping function fe. Then {et} are fed into a
Bi-LSTM [20] to obtain a set of hidden state representations
{ht}

T
t=1. Next, three individual fully-connected layers fol-

lowed by softmax layers are applied to {ht} to obtain three
types of attention values, being subject attention {asubt }Tt=1,
intra-class relationship attention {aintrat }Tt=1 and inter-class
relationship attention {aintert }Tt=1. As the attention values
are obtained by the same way for all three components, for
simplicity we only show the details for the calculation of
the subject component rsub. Let

a
sub
t =

exp(w⊺

suba
ht)

∑T

i=1
exp(w⊺

suba
hi)

, (1)

where wsuba denotes FCa
sub in Fig. 3. Then, the atten-

tion values are applied to the embedding vectors {et} to

derive three representations: s
sub, sintra and s

inter. Here
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we choose s
sub for illustration:

s
sub =

T∑

t=1

asubt · et. (2)

Inspired by [27], we apply another linear mapping FCw

to the pooled embedding vector, e =
∑T

t=1 et, to de-

rive three weights [wsub, wintra, winter]. These serve as
the weights for [rsub, rintra, rinter] in expression-to-region
matching, that will be introduced in Sec. 3.3. Again we
present how to obtain wsub only,

w
sub =

exp(w⊺

subw
e)

exp(w⊤

subw
e) + exp(w⊤

intraw
e) + exp(w⊤

interw
e)

,

(3)

where wsubw , wintraw
, winterw denote linear mappings.

3.2. Language­guided Graph Attention Module

The language-guided graph attention module is the key

of the network. It builds a graph over the objects of an im-

age to model object dependencies and identifies the nodes

and edges relevant to the expression to dynamically learn

object representations that adapt to the language expression.

3.2.1 Graph construction

Given the object or region set O = {oi}
N
i=1 of an image

I , we build a directed graph G = {V, E} over O, where

V = {vi}
N
i=1 is the node set and E = {eij} is the edge set.

Each node vi corresponds to an object oi ∈ {O} and an

edge eij denotes the relationship between oi and oj . Based

on whether the two nodes connected by an edge belong to

the same category or not, we divide the edges into two sets:

intra-class edges E intra and inter-class edges E inter. That

is, E = E intra ∪ E inter and E intra ∩ E inter = ∅. Assume

c(vi) denotes the category of vi, the two types of edges can

be represented as, E intra = {eij : c(vi) = c(vj)} and

E inter = {eij : c(vi) 6= c(vj)}.

Considering that an object typically only interacts with

objects nearby, we define edges between an object and its

neighbourhood. Specifically, given a node vi, we rank the

remaining objects of the same category, {vj : c(vj) =
c(vi)}, based on their distances to vi and define the intra-

class neighbourhood N intra
i of vi as the top k ranked intra-

class objects. Similarly, we define the inter-class neighbour-

hood N inter
i of vi to be the top k ranked objects that belong

to other categories. For a node vi, we define an edge be-

tween vi and vj if and only if vj ∈ N intra
i or vj ∈ N inter

i .

A bigger k leads to a denser graph, and to balance the effi-

ciency and representation capacity, we set k = 5.

We extract two types of node features for each node

vi: appearance feature vi and spatial feature li. To ob-

tain the appearance feature, we first resize the correspond-

ing region oi to 224 × 224 and feed it to VGG16 net

[21]. The Conv5 3 features V ∈ R7×7×512 are pooled

over the height and width dimensions to obtain the rep-

resentation vi ∈ R512. The spatial feature li is ob-

tained as in [29], which is a 5-dimensional vector, encod-

ing the top-left, bottom-right coordinates and the size of

the bounding box with respect to the whole image, i.e.,

li = [xtl

W
, ytl

H
, xbr

W
, ybr

H
, w·h
W ·H

]. The node representation is

a concatenation of the appearance feature and spatial fea-

ture, i.e. x
obj
i = [vi, li]. It has been shown that the rela-

tive spatial feature between two objects is a strong repre-

sentation to encode their relationship [31]. Similarly, we

model the edge between vi and vj based on their relative

spatial information. Suppose the centre coordinate, width

and height of vi are represented as [xci , yci , wi, hi], and

the top-left coordinate, bottom-right coordinate, width and

height of vj are represented as [xtlj , ytlj , xbrj , ybrj , wj , hj ],
then the edge representation is represented as, eij =

[
xtlj

−xci

wi
,
ytlj

−yci

hi
,
xbrj

−xci

wi
,
ybrj

−yci

hi
,
wj ·hj

wi·hi
].

3.2.2 Language-guided Graph attention

The aim of graph attention is to highlight the nodes and
edges that are relevant to the expression r and consequently
obtain object features that adapt to r. The graph attention is
composed of two parts: node attention and edge attention.
Furthermore, the edge attention can be divided into intra-
class edge attention and inter-class edge attention. Mathe-
matically, this process can be expressed as,

{Aobj
,A

intra
,A

inter} = f({xobj
i }, {ei,j}, s

sub
, s

intra
, s

inter),
(4)

where Aobj , Aintra, and A
inter denote node attention val-

ues, intra-class edge attention values, and inter-class edge

attention values respectively. The series of s are the at-

tended features from the language part. The function f is a

graph attention mechanism that is guided by the language,

which will be introduced as following three parts.

The node attention The node attention mechanism is in-

spired by the bottom-up attention [1], which enables atten-

tion to be calculated at the level of objects and other salient

image regions [23, 33]. Given the node features {xobj
i }Ni=1,

where x
obj
i = [vi, li], and the subject feature s

sub of r in

Sec. 3.1, the node attention is computed as,

v
e
i = fv

emb(vi)

l
e
i = f l

emb(li)

x
e,obj
i = [ve

i , l
e
i ]

x
a,obj
i = tanh(Wa

s,subs
sub +W

a
g,objx

e,obj
i )

A
obj
i

′
= w

⊺

a,objx
a,obj
i

A
obj
i =

exp(Aobj
i

′
)

∑N

j exp(Aobj
j

′
)
,

(5)
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where fv
emb and f l

emb are MLPs used to encode appearance

and local features of vi separately, Wa
g,obj and W

a
s,sub map

the encoded node feature x
e,obj
i and subject feature s

sub of

r into vectors of the same dimensionality, wa,obj calculates

the attention values {Aobj
i

′
} for {vi}, and all these attention

values {Aobj
i

′
}Ni=1 are fed into a softmax layer to obtain the

final attention values, Aobj = {Aobj
i }.

The intra-class edge attention We obtain the attention

values for intra-class edges E intra and inter-class edges

E inter in similar ways. Given an intra-class edge ei,j ∈
E intra and the intra-class relationship feature s

intra of the

expression r, the attention value for ei,j is calculated as,

e
intra
ij = f intra

emb (eij)

e
a,intra
ij = tanh(Wa

s,intras
intra +W

a
g,intrae

intra
ij )

Aintra
ij

′
= w

⊺

a,intrae
a,intra
ij

Aintra
ij =

exp(Aintra
ij

′
)

∑
k∈N intra

i
exp(Aintra

ik

′
)
,

(6)

where f intra
emb is a MLP to encode the edge feature, Wa

g,intra

and W
a
s,intra map the encoded edge feature and intra-class

relationship feature s
intra of expression r into vectors of

the same dimensionality, wa,intra calculates the intra-class

attention values for eij , and these attention values are nor-

malised among the intra-class neighbourhood N intra
i of vi

via a softmax.

The inter-class edge attention The attention value for

inter-class edge eij ∈ E inter is calculated under the guid-

ance of the inter-class relationship feature s
inter of expres-

sion r,

e
inter
ij = f inter

emb ([eij ,x
obj
j ])

e
a,inter
ij = tanh(Wa

s,inters
inter +W

a
g,intere

inter
ij )

Ainter
ij

′
= w

⊺

a,intere
a,inter
ij

Ainter
ij =

exp(Ainter
ij

′
)

∑
k∈N inter

i
exp(Ainter

ik

′
)
,

(7)

where f inter
emb is a MLP. Comparing Eq. 6 and Eq. 7, the

features used to represent the intra-class relationship and

inter-class relationship are different. When the subject vi
and object vj are from the same category, we only use their

relative spatial feature eij to represent the relationship be-

tween them. However, when vi and vj are from different

classes (e.g. man riding horse) we need to explicitly model

the object vj and thus we design the relationship represen-

tation to be the concatenation of the edge feature eij and the

node feature x
obj
j .

3.2.3 The Attended Graph Representation

With the node and edge attention determined under the

guidance of the expression r, the next step is to obtain the fi-

nal representation for the object by aggregating the attended

content. Corresponding to the decomposition of the expres-

sion, we obtain three types of features for each node: object

features, intra-class relationship features, and inter-class re-

lationship features.

The node representation for vi will be updated to x̂
obj
i ,

x̂
obj
i = A

obj
i x

e,obj
i , (8)

where A
obj
i denotes the node attention value for vi and

x
e,obj
i is the encoded node feature in Eq. 5.

The intra-class relationship representation x̂
intra
i will be

the weighted sum of the intra-class edge representations,

x̂
intra
i =

∑

j∈N intra
i

Aintra
ij e

intra
ij , (9)

where N intra
i denotes the intra-class neighbourhood of

vi, A
intra
ij denotes the intra-class edge attention value and

e
intra
ij is the encoded intra-class edge feature in Eq. 6.

The inter-class relationship representation x̂
inter
i is ob-

tained as the weighted sum of the inter-class edge represen-

tations,

x̂
inter
i =

∑

j∈N inter
i

Ainter
ij e

inter
ij , (10)

where N inter
i denotes the inter-class neighbourhood of

vi, A
inter
ij denotes the inter-class edge attention value and

e
inter
ij is the encoded inter-class edge feature in Eq. 7.

3.3. Matching Module and Loss Function

The matching score between the expression r and an ob-
ject vi is calculated as the weighted sum of three parts: sub-
ject, intra-class relationship, and inter-class relationship,

p
obj
i = tanh(Wm

s,subjs
obj)⊺ tanh(Wm

g,obj x̂
obj
i )

p
intra
i = tanh(Wm

s,intras
intra)⊺ tanh(Wm

g,intrax̂
intra
i )

p
inter
i = tanh(Wm

s,inters
inter)⊺ tanh(Wm

g,interx̂
inter
i )

pi = w
subj

p
obj
i + w

intra
p
intra
i + w

inter
p
inter
i ,

(11)

where each expression component feature and object com-

ponent feature are encoded by a MLP (linear mapping +

non-linear function tanh(·)) respectively before a dot prod-

uct. The weights of the three parts are obtained from r as in-

troduced in Sec. 3.1. The probability for vi being the refer-

ent is probi = softmax(pi), where the softmax is applied

over all of the objects in the image. We choose CrossEn-

tropy as the loss function. That is, if the ground truth label

of r is l(r) ∈ [0, · · · , N − 1], then the loss function will be,

L = −
∑

r

log(probl(r)). (12)
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Table 1. Structures of MLPs. The number after linear and DP (dropout) denotes the dim of the hidden layer and the dropout ratio.

MLPs Illustration Structure

fe encoding one-hot representations of words in 3.1 linear (512)+ReLU

fv
emb,f l

emb encoding the visual and spatial features of nodes in Eq. 5 linear(512)+BN+ReLU+DP(0.4)+linear(512)+BN+ReLU

f intra
emb ,f inter

emb encoding the intra and inter-class edge features in Eq. 6, 7 linear(512)+BN+ReLU+DP(0.4)+linear(512)+BN+ReLU

4. Experiments

In this section, we introduce some key implementation

details, followed by three experimental datasets. Then we

present some quantitative comparisons between our method

and existing works. Further, an ablation study shows the ef-

fectiveness of the key aspects of our method. Finally, visu-

alisation for LGRANs are shown.

4.1. Implementation details

As mentioned in Sec. 3.2.1, we use VGG16 [21] pre-

trained on ImageNet [19] to extract visual features for the

objects in the image. In this paper, several MLPs are

adopted to encode various feature representations. The de-

tails of these MLPs are illustrated in Tab. 1. The dimen-

sionalities of the final representations of language repre-

sentations {sm} and object representations {xm
i } are all

512, where {m} denote different components. The train-

ing batch size is 30, which means in each training iteration

we feed 30 images and all the referring expressions associ-

ated with these images to the network. Adam [10] is used as

the training optimizer, with initial learning rate to be 0.001,

which decays by a factor of 10 every 6000 iterations. The

network is implemented based on PyTorch.

4.2. Datasets

We conduct experiments on three referring expression

comprehension datasets: RefCOCO [9], RefCOCO+ [9]

and RefCOCOg [15], which are all built on MSCOCO [13].

The RefCOCO and RefCOCO+ are collected in an itera-

tive game, where the referring expressions tend to be short

phrases. The difference between these two datasets is

that absolute location words are not allowed in the expres-

sions in RefCOCO+. The expressions in RefCOCOg are

longer declarative sentences. RefCOCO has 142,210 ex-

pressions for 50,000 objects in 19,994 images, RefCOCO+

has 141,565 expressions for 49,856 objects in 19,992 im-

ages, and RefCOCOg has 104,560 expressions for 54,822

objects in 26,711 images.

There are four splits for RefCOCO and RefCOCO, in-

cluding “train”, “val”, “testA”, “testB”. “testA” and “testB”

have different focus in evaluation. While “testA” has mul-

tiple persons, “testB” has multiple objects from other cat-

egories. For RefCOCOg, there are two data partition ver-

sions. One version is obtained by randomly splitting the

objects into “train” and “test”. As the data is split by ob-

jects, the same image can appear in both “train” and “test”.

Another partition was generated in [16]. In this split, the

images are split into “train”, “val” and “test”. We adopt this

split for evaluation.

4.3. Experimental results

In this part, we show the experimental results on Ref-

COCO, RefCOCO+ and RefCOCOg. Accuracy is used as

evaluation metric. Given an expression r and a test image I

with a set of regions {oi}, we use Eq. 11 to select the region

with highest matching score with r as the prediction opred.

Assume the referent of r is o⋆, we compute the intersection-

over-union (IOU) between opred and o⋆ and treat the predic-

tion correct if IOU > 0.5. First, we show the comparison

with state-of-the-art approaches on ground-truth MSCOCO

regions. That is, for each image, the object regions {oi}
are given. Then, we conduct ablation study to evaluate the

effectiveness of two attention components and their combi-

nation, i.e. node attention, edge attention and graph atten-

tion. Finally, the comparison with existing approaches on

automatic detected regions are given.

Overall Results Tab. 2 shows the comparison between

our method and state-of-the-art approaches on ground-truth

regions. As can be seen, our method outperforms the other

methods on almost all splits. CMN [6] and MattNet [27]

are relevant to our method in the sense that they aban-

don the monolithic language representations and use self-

attention mechanism to decompose the language into dif-

ferent parts. However, their approaches are limited by the

static and heuristic object representations, which are formed

as the stack of multiple features without being informed by

the expression query. We use graph attention mechanism

to dynamically identify the content relevant to the language

and therefore producing more discriminative object repre-

sentations. ParallelAttn [32] and AccumulateAttn [3] both

focus on designing attention mechanisms to highlight the

informative content of the language as well as the image to

achieve better grounding performance. However, they treat

the objects to be isolated and fail to model the relationships

between them, which turn out to be important for identify-

ing the object of interest.

Ablation Study Next, we conduct an ablation study to

further investigate the key components of LGRANs. Specif-

ically, we compare the following solutions:

• Node Representation (NodeRep): this baseline uses

LSTM to encode the expression and uses the encod-
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Table 2. Performance (Acc%) comparison with state-of-the-art approaches on ground-truth MSCOCO regions.

“Speaker+listener+reinforcer” and “speaker+listener+reinforcer” mean using the speaker or listener module of a joint module [29] to do

the comprehension task respectively. All comparing methods use VGG16 features.

Methods

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val* val test

MMI [15] - 71.72 71.09 - 58.42 51.23 62.14 - -

visdif [28] - 67.57 71.19 - 52.44 47.51 59.25 - -

visdif+MMI [28] - 73.98 76.59 - 59.17 55.62 64.02 - -

NegBag [16] 76.90 75.60 78.00 - - - - - 68.40

CMN [6] - 75.94 79.57 - 59.29 59.34 69.3 - -

listener [29] 77.48 76.58 78.94 60.5 61.39 58.11 71.12 69.93 69.03

speaker+listener+reinforcer [29] 78.14 76.91 80.1 61.34 63.34 58.42 72.63 71.65 71.92

speaker+listener+reinforcer [29] 78.36 77.97 79.86 61.33 63.1 58.19 72.02 71.32 71.72

VariContxt [30] - 78.98 82.39 - 62.56 62.90 73.98 - -

ParallelAttn [32] 81.67 80.81 81.32 64.18 66.31 61.46 69.47 - -

AccumulateAttn [3] 81.27 81.17 80.01 65.56 68.76 60.63 73.18 - -

MattNet [27] 80.94 79.99 82.3 63.07 65.04 61.77 73.08 73.04 72.79

Ours-LGRANs 82.0 81.2 84.0 66.6 67.6 65.5 - 75.4 74.7

Table 3. Ablation study of key components of LGRANs.

Methods

RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

NodeRep 77.6 77.7 77.8 61.5 62.8 58.0 67.1 68.4

GraphRep 80.2 79.4 81.5 63.3 64.4 61.9 70.5 72.1

NodeAttn 81.4 80.4 82.8 65.8 66.2 64.2 72.4 73.2

EdgeAttn 81.9 80.8 83.3 65.9 66.7 64.9 73.9 74.5

LGRANs 82.0 81.2 84.0 66.6 67.6 65.5 75.4 74.7

ings of node features to represent the objects, i.e. x
e,obj
i

in Eq. 5.

• Graph Representation (GraphRep): apart from node

representation, graph representation uses two other

types of edge representations: pooling of the intra-

class edge features x̂
pool,intra
i =

∑
j∈N intra

i
e
intra
ij ,

where e
intra
ij is the intra-class edge feature encod-

ing in Eq. 6, and pooling of inter-class edge feature

x̂
pool,inter
i =

∑
j∈N inter

i
e
inter
ij , where e

inter
ij is the

inter-class edge feature encoding in Eq. 7.

• NodeAttn: on top of graph representation, NodeAttn

applies node attention as introduced in Sec. 3.2.3.

• EdgeAttn: different from graph representation that di-

rectly aggregates the edge features, EdgeAttn applies

edge attention to the edges, as introduced in Sec. 3.2.3.

• LGRANs: this is our full model, which applies both

node attention and edge attention on the graph.

Tab. 3 shows the ablation study results. The limitation

for the baseline “Node Representation” is that it treats the

objects to be isolated and ignores the relationships between

objects. The “Graph Representation” considers the re-

lationships between objects by pooling the edge features

Table 4. Performance (Acc%) comparison with state-of-the-art ap-

proaches on automatically detected regions. All comparing meth-

ods use VGG16 features.

Methods

RefCOCO RefCOCO+ RefCOCOg

testA testB testA testB val*

MMI [15] 64.9 54.51 54.03 42.81 45.85

NegBag [16] 58.6 56.4 - - 39.5

CMN [6] 71.03 65.77 54.32 47.76 57.47

listener [29] 71.63 61.47 57.33 47.21 56.18

spe+lis+Rl [29] 69.15 61.96 55.97 46.45 57.03

spe+lis+RL [29] 72.65 62.69 58.68 48.23 58.32

VariContxt [30] 73.33 67.44 58.40 53.18 62.30

ParallelAttn [32] 75.31 65.52 61.34 50.86 58.03

LGRANs 76.6 66.4 64.0 53.4 62.5

directly. It observes some improvement comparing to the

baseline. “NodeAttn” takes a step further by applying the

region level attention to highlight the potential object de-

scribed by the expression and this further improves the per-

formance. Orthogonal to “NodeAttn”, “EdgeAttn” iden-

tifies the relationships relevant to the expression and this

strategy results in a boost up to 3.4%. “GraphAttn” is our

full model. As can be seen, it consistently outperforms the

other incomplete solutions above.

Automatically detected regions Finally, we evaluate the

performance of LGRANs using automatically detected ob-

ject regions from Faster R-CNN [17]. Tab. 4 shows the re-

sults. Comparing to using ground-truth regions, the per-

formance of all methods drops, which is due to the qual-

ity of the detected regions. In this setting, LGRANs still

performs consistently better than other comparing methods.

This shows the capacity of LGRANs in fully automatic re-

ferring expression comprehension.
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The giraffe that is standing tallest Node attention Intra-class relationship attention

A woman wearing beige dress holding 

umbrella at a picnic

Node attention Inter-class relationship attention

A female in a santa claus costume riding as 

passenger behind a santa clad man on a motorcycle

Inter-class relationship attention Intra-class relationship attention

Intra-class relationship attention

Node attention

Figure 4. Visualisation for LGRANS. Three examples with variant difficulty levels are shown. For each example, the original image (the

referent, its intra- and inter-class neighbourhood are marked by yellow, blue and red boxes respectively) with referring expression (subject,

intra- and inter-class relationships are marked by yellow, blue and red), the node attention maps, the inter- and intra-class edge attention

maps are given from left to right. We visualise a relationship between referent and other objects by highlighting the other objects that

interact with the referent. For example, for relationship “woman holding umbrella”, we highlight “umbrella”. Since the giraffe example

contains giraffe regions only, no inter-class relationships exist. Within each region, the attention value is smoothed by a 2D Gaussian kernel

with the centre to be the region centre. Best viewed in colour.

4.4. Visualisation

In contrast to conventional attention schemes that apply

on isolated image regions, e.g. uniform grid of CNN feature

maps [26] or object proposals [1], LGRANS simultaneously

predict attention distributions over objects and inter-object

relationships.

Fig. 4 shows three examples with variant difficulty lev-

els. In the first example, node attention highlights all three

giraffes and thus cannot distinguish the referent. To iden-

tify the tallest giraffe, it needs to compare one giraffe to

the other two. As seen, the intra-class relationship atten-

tion highlights the relationships to the other two giraffes

and provides useful clues to make correct localisation. In

the second example, there are four women in the image.

Node attention puts attention on people and excludes other

objects, e.g. bag, bottle, umbrella. Then inter-class rela-

tionship attention identifies a relevant relationship between

the referent and an umbrella. Since there are no intra-class

relationships present in the expression, the intra-class edge

attention values almost evenly distribute on other persons.

In the last example, the intra-class attention and inter-class

attention identify man and motorcycle respectively, which

correspond to “behind a Santa clad man” and “on a motor-

cycle”. In these examples, the useful information present

in the expression is highlighted and this explains why an

object is selected as referent.

5. Conclusion

We proposed a graph-based, language-guided attention

networks (LGRANs) to address the referring expression

comprehension task. LGRANs is composed of two key

components: a node attention component and an edge atten-

tion component, both guided by the language attention. The

node attention highlights the referent candidates, narrowing

down the search space for localising the referent, and the

edge attention identifies the relevant relationships between

the referent and its neighbourhood. Based on the attended

graph, we can dynamically enrich the object representation

that better adapts to the referring expression. Another bene-

fit of LGRANs is that it renders the comprehension decision

to be visualisable and explainable.
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