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Nematic-Isotropic Phase Transition: An Extended Mean Field Theory
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The small magnitude of (T, —T )/T„where T, is the nematic-isotropic phase transition temperature
and T denotes the virtual transition temperature, has been a long-standing puzzle in the physics of
liquid crystals. We show that by extending the mean field theory to include the isotropic, density-
dependent component of the molecular interaction the magnitudes of both (T, —T*)/T, and the density
change at the transition automatically become in accord with the experimental values. In addition, the
theory yields a value of dT, /dp, where p denotes pressure, that is on the same order as the experiment.

PACS numbers: 61.30.Cz, 64.70.Md

As one of the earliest findings which indicated the ex-
istence of the liquid crystalline phase, the nematic-iso-
tropic (N I) trans-ition has been a topic of active theoret-
ical and experimental studies over the past few decades
[1]. Despite such interest, however, there still remain to-
day some puzzling aspects of the phase transition that
lack theoretical explanation [2). One of these is the small
magnitude of the observed (T, —T*)/T, —0.1%, where
T, is the N-I transition temperature and T* denotes the
virtual transition temperature, or the supercooling tem-
perature. Theoretical predictions so far have generally
been 1 to 2 orders of magnitude higher than the experi-
mental range. Such discrepancy naturally raises many
questions regarding our understanding of the N-I transi-
tion.

A fruitful approach to the theory of the N-I transition
is based on the insightful contribution of Maier and
Saupe (MS) [3], who observed that the nematic phase
can arise from the anisotropic component of the inter-
molecular interaction which satisfies the symmetry of the
nematic phase. In the simplest implementation of this
approach, one writes the Maier-Saupe Hamiltonian of
the intermolecular interaction as

H = t'tp g P2(cosOI& ),
where 00 denotes a density-dependent interaction
strength, P2 denotes the second Legendre polynomial, i,j
are molecular indices, and 0;J denotes the angle between
the axes of two rodlike molecules i and j. The mean field
approximation and other theories based on the MS Ham-
iltonian all give a reasonable account of the entropy of
the N-I transition as well as the temperature dependence
of the orientational order [1-3], defined as Pq(cosO),
where the overbar denotes thermodynamic averaging, and
0 is the angle between the molecular axis and the axis of
uniaxial symmetry. However, due to the fact that the
MS Hamiltonian focuses only on the orientational com-
ponent of the interaction, it does not predict the density
variation observed at the N-I transition. This neglect of
the density change in the MS-type theories is based on

the implicit assumption that the effects of the orientation-
al transition can be treated, at least to a good approxima-
tion, independently from those of the density variation.

In this work, we show that not only does the presence
of density change at the N-I transition argue for the
necessary presence of the density-dependent, isotropic
component of the intermolecular interaction in the ne-
matic Hamiltonian [4], but the incorporation of that ex-
tra part also materially affects the character of the N-I
transition. In particular, the predicted magnitude of
(T, —T*)/T, is lowered to the experimental range, while
at the same time the theory also yields the right magni-
tudes both for the density variation across the N-I transi-
tion as well as for the variation of T, with pressure.
These features of the new extended theory are achieved
without degrading those positive aspects of the predic-
tions already demonstrated by the MS Hamiltonian. The
extended theory is therefore both conceptually as well as
quantitatively closer to the reality of the N-I transition.
Hence, it points to a solution for the T, —T* puzzle.

Consider the interaction potential V~2 between two axi-
ally symmetric rodlike molecules. Pople [5] has demon-
strated that V~2 may be written in general as an expan-
sion of the following form:

Y12 4tr 2 UI, I (r) YI, (Ol
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(2)

( VI 2) =g UII (r )PI (cosOI )PI (cosOq) .
Im

(3)

Here 0 is now defined relative to an external symmetry
axis, generally taken as the director n of the nematic
phase. Since the nematic phase gives no preference be-
tween the heads and tails of the molecules, the I sum in

where Yi (O', p') are the spherical harmonics, r is the
center-to-center intermolecular separation, and O', p' are
the polar and azimuthal angles of the long axis of a rod-
like molecule, defined relative to the intermolecular sepa-
ration vector r. By first averaging over all orientations of
the intermolecular vector r and then averaging over &2, &I,
one obtains [1]
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Eq. (3) is restricted to even values. Therefore, the two
leading terms of (V~q) are given by

( VI 2) Up(r ) +U2(r )P2(cos6 1)P2(cosI12) + (4)

At this point the Maier-Saupe mean field theory [3] may
be obtained by first neglecting the Up(r) term, and then

replacing Pz(cos02) by its average value. Below we show

the eAects of including both terms.
We choose for Up(r) the Lennard-Jones potential [6],

r w ]2 r

(sa)
r r

whereas for U2(r) the form is chosen as

Up(r) =4c

U2(r) = —br (sb)

which is the same as that proposed by Maier-Saupe [3] if
n =6. Here e, b, and n are constants. Since either e or
b can be fixed by T„and we will restrict ourselves to con-
sider n =6 or 12, that leaves only b/c as the dimension-
less adjustable parameter in the theory. To perform fur-
ther averaging on (V~2) so as to obtain the mean field ex-
perienced by molecule 1, we follow the approach of
Lennard-Jones and Devonshire (LJD) [7]. First, it is

necessary to note that due to the form of Up(r), there is

in general an equilibrium separation a between the mole-
cules. The L3D approach consists of focusing on one
molecule, denoted as molecule 1, and inscribing its posi-
tion inside a sphere of radius a (not necessarily located at
its center). By considering an isotropic distribution of the
nearest-neighbor positions over the sphere, the resulting
approximate eff'ective potential seen by molecule 1 has a
minimum at the center of the sphere, denoted the "equi-
librium" position (by LJD). Let s be the distance of mol-
ecule 1 from the center of the sphere, the equilibrium po-
sition. The eAective potential may be parametrized as a
function of s. The parameter a is then determined self-
consistently through the minimization of free energy with
respect to the molecular volume, as will be seen later.
This procedure has been done in some detail by
Lennard-Jones and Devonshire [7]. Following their ap-
proach and the later improvement to include the eAect of

3

PV(x,y) = g a;g;(;(x,y), (7)

where we have removed the subscript 1 from x] and y],
p= 1/kT, T being the temperature and k Boltzmann's
constant, and g~ =L(y), (2=M(y), (3=W(y)P2(x) are
the three functions whose averages, g~, gq, and g3, yield
the three order parameters of the theory. The thermo-
dynamic averaging, denoted by the overbar, is given by
the following operation:

next-nearest neighbors [8], we have generalized the LJD
calculation to two molecules with the anisotropic interac-
tion of Eq. (4). While details of the calculation are to be
given elsewhere, here we note that the main point of the
generalization is to allow molecule 1's nearest neighbors
also to deviate from their respective equilibrium positions
(which are isotropic over the spheres), so the resulting
problem becomes symmetrical with respect to any pair of
nearest neighbors that includes molecule 1. If the other
molecule in the pair is denoted molecule 2, then the result
is given by

((V]2)) = 12cm[L(y~)u L(yq) —2M(y&)u M(y2)]

b
W(y ) )P2(x ) ) W(yz)P2(x2),n

where we have assumed no correlation between the
position Auctuations of molecule 1 and those of molecule
2 from their respective equilibrium positions. Here x
=cosO, y =(s/a), u =(a/a) is the normalized molecu-
lar volume,

L(y) =X(y)+X(0), M(y) =A, (y)+At(0),
X(y) =l(y)+l(y/2)/128+2l(y/3)/729,
Al. (y ) =m (y ) +m (y/2 )/1 6+ 2m (y/3 )/27,

l and m are the LJD functions defined as

l(y) = (1+12y+ 25.2y + 12y +y ) (I —y) ' —1,

m(y) =(1+y)(1 —y) —I, P2(x) =(3x —1)/2, and
W(y) =L(y) if n =12 and M(y) if n =6. From Eq. (6)
one can obtain the mean field V directly by averaging
over the coordinates y2 and x2..

t c t I

Jy dy J dx&(x, y)p(x, y),

p(x, y) =exp[ —pV(x, y)l Jy'dy'J~ dx'exp[ —pV(x', y')],

(Sa)

with c =0.30544413, and the coe%cients a],a2, a3 are
defined as a~ =12/u r, a2 =24/u r, and a3= —bp/u"r
We have used i to denote the dimensionless temperature
kT/c, and bp=b/c . The internal energy E and the en-

tropy S per molecule are given by
3

PE= —Yah ~ (9a)
2 i ]

S = —k1np. (91 )
It is easy to verify that if one forms the free energy
F =E —TS, then the condition dF/rJB; =0 directly yields

! the self-consistent Eq. (Sa). Also, 6(pF)/rJp=E, as ex-
pected from thermodynamics. For pressure calculations,
on the other hand, we have to minimize Gibb's free ener-
gy G =F —pa, where the pressure p is defined by—(BF/Bu )a

It should be noted that g3 = W(y)Pq(x) means P2(x)
is not one of the primary order parameters in the present
theory that emerge directly from the solution of the self-
consistent equations (7). Instead, P2(x) has to be evalu-
ated according to Eqs. (8a) and (Sb) after the self-

1272



VOLUME 70, NUMBER 9 PH YSICAL REVIEW LETTERS 1 MARCH 1993

consistent solutions of g~, g2, g3 (and hence the mean field
V) are obtained. That implies even in the limit of
sm 0, the present theory diAers from the MS mean
field theory because the self-consistent equation for g3
cannot be reduced to that of the MS mean field theory
for P2.

Numerical solution of Eq. (8), supplemented by the
condition of minimum free energy, has been carried out.
The solution of g;, i =1-3, would then enable the direct
evaluation of other averaged quantities, such as the
nematic orientational order parameter P2 and entropy
—k lnp. In the vicinity of the N-I transition, two minima
of F are generally found as a function of u. The N-I
transition temperature r, is defined by the condition that
the two minima are equal at ~„whereas i* is defined by
the point where the minimum with the higher u disap-
pears. As a result of the weak nature of the N-I transi-
tion found in the calculation, numerical procedures have
been installed to insure accuracy to 10

For definitiveness, we wish to fix the parameter n in ac-
cordance with the experimental data on 4-methoxyben-
zylidene-4'-butylaniline (MBBA). Since it is known that
tllnT, /oilnu= —n/3 [9], and the experimental data on

MBBA show [10] 8lnT, /el lnu = —3.9, we choose n =12.
That leaves only the dimensionless bp as the adjustable
parameter. A curious fact is that as long as bp & 0.5, the
calculated value of the P2 jump at the N-I transition, as
well as the entropy change hS, are within a few percent
of the mean field MS theory. Therefore P2 and hS are
not sensitive functions of bp. Since in these respects the
extended theory closely approximates the MS mean field

theory, we will not pursue them further. However, both
the percentage volume change at the transition, Au/u,
and (T, —T*)/T, are sensitive functions of bo. Since
(T, —T*)/T, for MBBA is —0.1% [11,12], we choose to
fix ho=0. 1 so that (T, —T*)/T, =0.12%. This should be
contrasted with (T, —T*)/T, =10% for the MS mean
field theory. The predicted Au/u for the same value of bo
is 0.08%, which compares well with the experimental
values of 0.11% [3]. At the same time, the theory also
yields a linear behavior for the variation of T, with

pressure, just as seen experimentally, with a slope
of dT, /dp =2x 10 (o /k). From the value of u

=(a/cr) =0.9 at T„ the density of MBBA, 1.049 g/cm
(at 22'C) [13], and its molecular weight, 274, one esti-
mates that o=0.84x10 cm. By combining the con-
stants, one obtains dT, /dp=7 K/kbar, which is on the
same order as the experimental value of 20-40 K/kbar
[14-16], but noticeably smaller. Since the value of
dT, /dp depends on cr, the discrepancy between theory
and experiment may indicate a strong short-range order
so that the unit participating in the transition actually
constitutes 3-6 molecules. This possibility is to be fur-
ther discussed below. However, in view of the mean field
nature of the present theory and the fact that we did not
attempt to fine tune all the parameters due to the uncer-
tainties in the experimental values of Au/u and

(T, —T*)/T„ the overall agreement achieved on three
independent pieces of data with a single choice of bp =0.1

is a satisfying corroboration of the theory.
To further demonstrate the reasonableness of our ap-

proach, we observe that by plotting (T, —T*)/T, vs

Au/u, the parameter bo can be eliminated and one ob-
tains a curve with only n as adjustable. For n =12, this
curve is shown in Fig. 1 together with data on MBBA, 4-
n-pentyl-4'-cyanobiphenyl (5CB) [17-20], and 4 n-
octyl-4'-cyanobiphenyl (8CB) [12,21,22], which have
both T* and h, u data. Since for each material there can
be diAerent experimental values on T* and h, u, we choose
to cross plot all the combinations for each material. It is
seen that whereas the data points for MBBA and 8CB
clutter about the theoretical curve, the data for 5CB seem
to imply a curve with a much steeper slope. An examina-
tion of the q =tllnT, /Sinu data shows that whereas for
MBBA and 8CB [22], q = —3.9 and —4.3, respectively,
for 5CB, q

= —7.6 [23], which would imply n ) 12
for 5CB, and consequently a theoretical curve of (T,
—T*)/T, vs Au/u with a much steeper slope. The ob-
served trend is therefore qualitatively consistent with
what is expected theoretically.

It should be noted that the present theory diA'ers in the
underlying physics from the approach which attributes
the lowering of (T, —T*)/T, from its MS mean field

value as resulting from Auctuation eAects intrinsic to the
MS Hamiltonian [24,25]. Since Auctuation is inherently
a higher-order effect (than the mean field approxima-
tion), it is logical to argue that one must first incorporate
the lower-order eAects that should be present, such as the
isotropic, density-dependent component of the interac-
tion, before assessing the eff'ects due to fluctuations.
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F16. l. A cross plot of (T, —T*)/T, vs fractional volume
change at the nematic-isotropic transition. The solid line is the
theoretical curve with n = 12. The experimental data on
MBBA, 5CB, and 8CB are indicated by bars extending from
the largest value of measured (T, —T*)/T, to the lowest.
There are two measured values of fractional volume change for
8CB, 0.23% and 0.35%. Both are plotted. The theoretical
curve for n =6 is also shown, indicated by the dashed line. The
agreement with MBBA and 8CB data is clearly inferior to that
of n =12.
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Also, if the fluctuation eAects were truly significant
enough to lower (T, —T*)/T, by I or 2 orders of magni-
tude, the critical exponents observed in pretransitional
phenomena should show noticeable deviation from their
mean field values. However, such deviation was not ob-
served. Another side benefit of the present approach is
that the incorporation of the density eAects produces
many other testable predictions that can either corro-
borate or refute the theory.

The form of U2(r) ——r ' deserves some comments.
It has long been observed that the steric repulsion be-
tween anisotropic molecules, which should definitely be
present physically, can produce a first-order N-I transi-
tion as a function of density [26]. The strength of the
N Itransit-ion, as evidenced by Au/u, is generally propor-
tional to the degree of anisotropy. With the aspect ratio
of liquid crystal molecules, it is predicted theoretically
that the N-I transition that results from excluded-volume
considerations would have a Au/u that is order of magni-
tude larger than the observed value. A speculative solu-
tion [27,28] to this dilemma is to propose the existence of
transient clusters of molecules that have very strong
short-range order, which can result from the attractive
part of the intermolecular interaction that may be either
chemical or dispersive (n =6) in nature. One implication
of this picture is that the anisotropy of the resulting clus-
ters of molecules, which now serve as the basic units of
interaction, can be much smaller than that of the indivi-
dual molecules, thus eA'ectively reducing Au/u across the
N -I transition. Another indirect support for clusters
comes from our estimate of dT, /dp, which suggests that a
cluster of three to six molecules can best account for the
experimental value of dT, /dp, as noted earlier. With this
physical picture in the background, one possible interpre-
tation of U2(r) ——r ' is that it represents the effective
interaction between the clusters, and the —r ' depen-
dence may indicate an entropic origin for such an attrac-
tive interaction. This could be so because the value of
n =12 is generally associated with steric repulsive part of
the intermolecular interaction, yet in considering the sta-
tistical eAects of the many molecules constituting the two
interacting clusters, the free energy can favor parallel
alignment of the two clusters precisely from the con-
sideration of excluded volume. If this is the case, then
U2(r) could be weakly temperature dependent since it no
longer represents true intermolecular interaction, but
may actually incorporate entropic effects of the interact-
ing clusters.
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data used in this work.
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