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Nematic twist-bend phase with nanoscale
modulation of molecular orientation
V. Borshch1, Y.-K. Kim1, J. Xiang1, M. Gao1, A. Jákli1, V.P. Panov2, J.K. Vij2, C.T. Imrie3, M.G. Tamba4,

G.H. Mehl4 & O.D. Lavrentovich1

A state of matter in which molecules show a long-range orientational order and no positional

order is called a nematic liquid crystal. The best known and most widely used (for example, in

modern displays) is the uniaxial nematic, with the rod-like molecules aligned along a single

axis, called the director. When the molecules are chiral, the director twists in space, drawing a

right-angle helicoid and remaining perpendicular to the helix axis; the structure is called a

chiral nematic. Here using transmission electron and optical microscopy, we experimentally

demonstrate a new nematic order, formed by achiral molecules, in which the director follows

an oblique helicoid, maintaining a constant oblique angle with the helix axis and experiencing

twist and bend. The oblique helicoids have a nanoscale pitch. The new twist-bend nematic

represents a structural link between the uniaxial nematic (no tilt) and a chiral nematic

(helicoids with right-angle tilt).
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N
ematic liquid crystals with fluid-like arrangements of
molecules that pack parallel to each other are widely used
in display and other applications because of the unique

combination of orientational order and fluidity. In the uniaxial
nematic (N) phase, rod-like molecules are on average parallel to
the single director n̂, but their centres of mass are arranged
randomly, as in an isotropic fluid (Fig. 1a). The director is a
nonpolar entity, n̂ � � n̂, even if the molecules have dipole
moments. Chiral molecules prefer to twist with respect to each
other, forcing n̂ to follow a right-angle helicoid, either left-handed
or right-handed (Fig. 1c). In 1973, Meyer1 predicted that polar
molecular interactions that favour bend deformations might lead
to a twist-bend nematic (Ntb) phase, in which the director draws
an oblique helicoid, maintaining a constant oblique angle
0oy0op/2 with the helix axis z:

n̂ ¼ sin y0 cosj; sin y0 sinj; cos y0ð Þ ð1Þ

here j ¼ ttbz is the azimuthal angle, ttb ¼ 2p=ptb, ptb is the pitch
of the helicoid (Fig. 1b). Note that equation (1) describes also N
(when y0 ¼ 0) and N* (when y0 ¼ p=2) phases (Fig. 1). Unlike
the case of N*, formation of Ntb does not require molecular
chirality; thus one should expect it to contain coexisting domains
of left and right chirality2. Instead of chirality, Ntb can be
facilitated by bent (banana-like) shapes of molecules, as was
demonstrated analytically by Dozov2 and Shamid et al.3, and in
molecular simulations by Memmer4. A similar structure, but with
the hexatic order coupled to twist-bend deformation, has been
predicted by Kamien5.

Experimentally, no Ntb phase was reported for the bent-core
materials6. Instead, some unusual behaviour, including a first-
order phase transition between two seemingly uniaxial N phases,
was detected in materials formed by polymer7,8 and dimer
molecules9–20 in which rigid cores are connected by a flexible
aliphatic tail with an odd number of methylene groups. Although
the high-temperature phase was easily identifiable as a standard
uniaxial N phase, the nature of the low-temperature phase (often
denoted Nx) remains a subject of intensive exploration, revealing
hints that are consistent with the Ntb structure. For example,
X-ray diffraction (XRD) shows no periodic variation of the
electronic density in the low-temperature phase11,14, suggesting
that the molecular centres of mass are distributed randomly
in space; this excludes the smectic type of order. On the other
hand, the optical textures show features such as focal conic

domains14,20. As demonstrated by Friedel21 in 1922, focal conics
appear in liquid crystals with one-dimensional positional order.
This order can be caused by periodically changing density, as in
smectics, or by ‘wave surfaces’ of the director twist, as in N*, with
no density modulation22. Focal conics should be expected14 in
Ntb, as ptb is fixed by the molecular interactions that favour twist-
bend packing. Unlike the case of N*, in which the large pitch
makes it possible to trace the helicoidal packing optically, no such
clear evidence was presented so far for the Ntb candidates.
Macroscopic stripes with a period in the range of 1–100 mm often
observed in dimer materials10,11,14 do not represent a
thermodynamically stable state, as the period depends strongly
on the cell thickness11. Recently, Clark’s group established by
freeze-fracture transmission electron microscopy (FFTEM) a
periodic director modulation in the Ntb phase of cyanobiphenyl
material M1 (Fig. 2a)19; the period of 8 nm was not associated
with the smectic periodicity. Another important feature, a
structural chirality of M1 at the short timescales
of nuclear magnetic resonance response, was demonstrated by
Beguin et al.15

In this work, we present the result of a comprehensive
experimental exploration of the N states in two different families
of dimeric materials. The main result is that in addition to the N
phase, both classes feature an Ntb phase with the local director
(defined as the average orientation of the dimeric arms) shaped as
an oblique helicoid (Fig. 1b). The oblique helicoidal structure of
Ntb is evidenced by FFTEM textures of Bouligand arches23 of two
distinct types. The local director is modulated along the helicoidal
axis with a period of about 8–9 nm, which is 2–3 orders of
magnitude shorter than typically found in the chiral N* phase.
The tendency of the molecules to form local bend-twist
configurations as a condition of the N–Ntb transition is confirmed
by the temperature dependence of the bend modulus K3
measured in the N phase: K3 decreases near the transition into
the Ntb phase to the anomalously low levels. Electro-optic
response in an alternating current (AC) electric field shows that
the field-induced reorientation of Ntb allows splay and saddle-
splay of the optic axis but not bend nor twist; as a result, the bend
Frederiks transition is dramatically different in the two phases.
The effect is a natural consequence of the equidistance of layers,
ptb ¼ const.

Results
Materials. The studied materials M1 and M2 are shown in
Fig. 2a. M1 material, 100,700-bis(4-cyanobiphenyl-40-yl)heptane
(CB7CB), was synthesized as described in ref. 24. The dimer has a
longitudinal dipole moment at each arm. M1 shows a positive
dielectric anisotropy ea ¼ ek � e?40 in the N phase (the
subscripts indicate directions parallel to n̂ and perpendicular to
it). M2 is a mixture, of a dimer 1,5-Bis(20,30-difluoro-400-pentyl-
[1,10:40,100-terphenyl]-4-yl)nonane (DTC5C9) (for synthesis, see
Supplementary Methods and Supplementary Fig. S4) and a
monomer 20,30-difluoro-4,400-dipentyl-p-terphenyl (MCT5; added
to improve alignment, reduce viscosity and working tempera-
tures); weight proportion is DTC5C9 (70wt%):MCT5 (30%). The
dielectric anisotropy of M2 is negative, eao0, which allows us to
illustrate a dramatic difference of elastic properties and dielectric
response of N and Ntb by exploring the bend Frederiks transi-
tion22 between the homeotropic and distorted state of the optic
axis in both phases.

Optical textures and birefringence. M1 and M2 show a similar
phase diagram: a uniaxial N at high temperatures T and a dif-
ferent phase Ntb at lower T . In cells with homeotropic alignment
(achieved by an inorganic passivation layer NHC AT720-A

Na b c

z z z

x y x y x y

N*Ntb

Figure 1 | Schematics of local director arrangements in nematics.

(a) Nematic N phase, uniaxial alignment, y0¼0, (b) Ntb, with oblique

helicoid 0oy0op/2 and (c) chiral nematic N* phase, right helicoid,

y0op/2 (the twist is right-handed or left-handed, depending on molecular

chirality.
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(Nissan Chemical Industries, Ltd.), the N texture observed
between two crossed polarizers is uniformly dark, as it should be,
as the optic axis n̂ is along the direction of observation. In the Ntb

state, the texture remains dark, that is, the material remains
optically uniaxial.

In planar cells (aligned by rubbed polyimide PI2555 films (HD
Microsystems)), the phase transition N–Ntb on the temperature
decrease in both M1 and M2 is evidenced by a propagating front
after which a texture of stripes is established. These range from
faint stripes of sub-micrometre scale to macroscopic stripes, 10–
100mm wide. These stripes are not thermodynamically stable. By
applying an AC electric field of a frequency 10 kHz (parallel to n̂
in M1 and perpendicular to n̂ in M2), we eliminate the stripes to
achieve an optically homogeneous state. If the field is removed
and the temperature is fixed or raised, the stripe pattern does not
reappear. These uniform states were used to determine
birefringence Dn ¼ ne � no40 in both phases (Fig. 2b).
Equation (1) predicts that Dn decreases in the Ntb phase, by a
factor 1� 3y20=2

� �

; see Methods. For M2, the decrease of Dn is
about 7% from its maximum value in the N phase, which allows
us to estimate the tilt as y0 � 17� at 79 �C. If the temperature of
the homogeneous sample is reduced, the stripes typically
reappear. This behaviour is consistent with a Helfrich–Hurault
undulation (buckling) instability observed in smectics and N*,
and is caused by the temperature-induced decrease in layers
periodicity (pitch)22. We conclude that the true layered nature of
Ntb must be associated with (optically) invisible submicron
features.

Elastic constants in N phase. Uniform planar and homeotropic
alignment was used to determine the elastic constants of M2 by
the Frederiks effect, that is, material reorientation by an applied
10 kHz electric field (for the elastic constants of a similar material,
see ref. 25). When the field is parallel to n̂ in the homeotropic N
cell, n̂ starts to tilt above some threshold voltage26

Uth ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K3= e0 eaj jð Þ
p

, which yields the value of K3, as ea is

known (Fig. 2b). The splay constant K1 is determined by the
threshold fields of realignment in planar cells27. Behaviour of K1
is typical for N materials, whereas that of K3 is not, as K3
decreases to a very low value 0.77 pN as the temperature is
lowered towards the N–Ntb transition (Fig. 2c); similarly, small K3
was recently measured for a mixture of dimers20.

Dielectric reorientation of optic axis in N and Ntb. The
homeotropic cells of M2 with a vertical AC field allow us to trace
an important difference in the Frederiks reorientation of the N
and Ntb phases. In the N phase, (Fig. 3a) once U4Uth, the optic
axis realigns gradually and everywhere, as in the second-order
transition. As the tilt direction is degenerate, it results in umbilics,
that is, defects of winding numbers � 1 and þ 1 (ref. 28). The
þ 1 umbilics show an in-plane bend of n̂, which is expected, as
K3ooK1 . The same experiment in Ntb reveals a completely
different scenario. Reorientation of the optic axis starts only at
isolated sites of the sample, associated with dust particles or
surface irregularities. The nucleating regions in the shape of
axisymmetric focal conic domains29 coexist with the homeotropic
surrounding (inset in Fig. 3b); they expand if the voltage is higher
than some threshold ~Uth. The deformations of the optic axis are
of splay and saddle-splay type (Fig. 3b).

The profile of optical retardation measured across the domain
of reoriented Ntb reaches a maximum at the centre of the domain
(Fig. 3c), indicating that the tilt of the optic axis is at a maximum
in the centre. Thus, the pattern is similar to the field-induced
reorientation in smectic A (ref. 29) and N* (ref. 30) phases
with eao0, in which the layers’ equidistance allows splay and
saddle-splay, but prohibits bend and twist of the layers’ normal.
The threshold voltage ~Uth of expansion in layered liquid crystals
is determined mostly by the balance of surface anchoring
at the plates and the dielectric reorienting torque, so that29,30

~Uth ¼ 2
ffiffiffiffiffiffiffiffi

dW
e0 eaj j

q

/
ffiffiffi

d
p

, where W is the surface anchoring strength

and d is the cell thickness; the dependence ~Uth /
ffiffiffi

d
p

agrees with
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Figure 2 | Properties of Ntb materials. (a) Structural formulae and phase diagrams of M1 and M2. (b) Temperature dependence of birefringence and

dielectric anisotropy of M2. (c) Temperature dependence of K1 and K3 for M2.
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the experiment (Fig. 3d). In the N phase, the Frederiks voltage
threshold does not depend on d. The peculiar character of the
dielectric response provides another argument in favour of
periodic nature of Ntb at the scales much shorter than the visible
scales.

Nanoscale periodic arrangement of molecular orientation. The
layered structure of Ntb phase is clearly evidenced in FFTEM
images of Pt/C replicas of fractured M1 (Fig. 4a, Fig. 5a,b) and
M2 (Fig. 4b, Fig. 5c). Most of them show a one-dimensional
layered structure with a period B8–9 nm, corresponding to the
pitch ptb of director deformations, in agreement with the findings
by Chen et al.19 for M1. In M1, the regularly observed value of ptb
is 8.05 nm (Fig. 4a), whereas in M2, ptb ¼ 9.3 nm (Fig. 4b). Fre-
quent observation of layers that are perpendicular to the fracture
plane (Fig. 4a,b) correlates with the theoretical predictions and
experiments31 on freeze-fractured N and N*, in which the
fracture plane tends to be parallel to n̂, as it minimizes the density
of molecules in the cut surface. In the Ntb phase, the surface with
the minimum molecular density is not flat, but modulated with a
period ptb. This leads to a shadowing effect and explains why
oblique deposition of the Pt/C film yields the period ptb (Fig. 6a).
On rare occasions, FFTEM textures of M1 exhibit rather unusual
patterns with a period smaller than 8 nm, for example, 7.7 nm
(Fig. 5b), 7.4, 4.8 and 3.4 nm (Supplementary Fig. S1). It is
unlikely that all of these small periods can be explained by
absence of shadowing effect when the oblique deposition direc-
tion happens to be perpendicular to the wave vector ttb of the Ntb

helix (Fig. 6b). Most likely, these small periods are associated with
packing of different conformers that are known32 to exist in
dimer materials similar to M1 and M2. The energy difference
between the conformers is very small32; thus, some of them might
form twist-bend structures with the period different from ptb ¼
8–9 nm of the prevailing conformer.

Our XRD study shows that the pitch of 8–9 nm of the Ntb

phase in M2 is not associated with the smectic-like modulations,
as the intensity of X-ray scattering is featureless in the range
5–14 nm (Fig. 7a). Smaller repeat distances of B2.2 nm are
observed in both N and Ntb phases, but the correlation length of
these is relatively small, up to 9 nm (Fig. 7a), indicating that the

long-range structure of both N and Ntb is nematic (Fig. 7b,c)
rather than smectic like. One should not exclude the possibility of
cybotactic clusters, embedded into the Ntb phase. Recently, Meyer
et al.18 explored the flexoelectric effect in M1 and suggested that
its features are consistent with an oblique helicoidal structure
with ptb¼ 7 nm, if one assumes standard values of the
flexoelectric coefficients. This estimate is very close to the
periodicities directly seen in Figs 4a,b and 5 and Supplementary
Figs S1 and S2.

Oblique helicoidal geometry of director. The second important
type of FFTEM textures is that one of periodic arches (Fig. 4c,d).
These arches are very different from the celebrated Bouligand
arches23 of the cholesteric N* liquid crystals. In N*, each arch
corresponds to a rotation of n̂ by p and any two adjacent arches
are indistinguishable from each other, as should be for a right-
angle helicoid. In the Ntb phase, the geometry is very different
(Figs 4c,d and 8), as the underlying structure is an oblique heli-
coid rather than a right-angle helicoid. Little is known that in the
appendix of the original paper23, in addition to the N* arches,
Bouligand et al.23 also considered asymmetric arches for a
hypothetical fractured system of oblique helicoids. We extend his
approach to the specific case of equation (1), written for the unit
director field. Suppose that the plane of fracture (xy0) is tilted
around the axis x (Fig. 1b) by an angle c measured between the
new axis y0 and the original axis y. The director components
in the fracture plane are nx ¼ cos ttbz sin y0 and ny0 ¼
sin ttbz sin y0 cosc� cos y0 sinc. The local orientation of the
director projection in the obliquely fractured Ntb phase is then
given by the equation

dx
dy0

¼ cos ttby0 sincð Þ sin y0
sin ttby0 sincð Þ sin y0 cosc� cos y0 sinc

;

with the solution

x� x0 ¼
ln 2 cosc sin y0 sin ttby

0 sincð Þ� tanc cot y0½ �j j
ttb sinc cosc

ð2Þ

Here x0 is the shift of one arch with respect to the other.
Equation (2) distinguishes three types of the Bouligand arches
that should be observed in a material with oblique helicoidal
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structure: type I for coy0 (Fig. 8a) with alternating wide and
narrow arches, type II for c4y0, with a wavy structure (Fig. 8b)
and intermediate type III, with c ¼ y0, which is hard to
distinguish from the classic symmetric N* arches (Fig. 8c). The
type I and II arches, never seen in the chiral nematic N* phase,
are readily distinguishable in the textures of the Ntb phase, Fig. 4c
and 4d, respectively. In type I, inset in Figs 4c and 8a, the director
imprint rotates in the entire range (0–2p) of azimuthal angles in
the fracture plane, but the odd and even arches are of a different
width, l0;p 6¼ lp;2p. Type II represents a wavy structure that
extends in the direction normal to the helicoidal axis but do not
explore the entire range of azimuthal orientations (Figs 4d and
8b, and Supplementary Fig. S3) in contrast to other types of
Bouligand arches where the azimuthal reorientation is by p
within each arch. Observation of type I and type II arches
provides a clear evidence of the oblique helicoidal structure of the
Ntb phase.

Non-uniform textures of Ntb. FFTEM textures show that the
Ntb structure is sometimes modulated not only in the direction
of helix axis but also along other directions, in particular, in the
xy plane perpendicular to the helix axis (Figs 4a and 5,
Supplementary Figs S1–S3). For example, in Fig. 4a, the periodic
arrangements of twist-bend director have a limited width of about
20–30 nm. The domains are separated by structureless boundaries
(indicated by yellow arrows in Fig. 4a), with no clear periodicity
on the scales of ptb, apparently of an N type. The modulation

might be caused by defects such as grain boundaries, screw dis-
locations parallel to the helicoidal axis and by coexistence of left-
handed and right-handed twisted domains. Homochiral domains
have been indeed observed in electro-optical studies12,17,18, but at
a much larger (supramicron) scale. One should expect that the
spatial extension of the homochiral domains is determined by the
kinetic history of sample preparation, confinement conditions
and other factors such as the presence of the electric field12.
Further exploration is needed to understand the exact
mechanisms behind the modulated structures seen in Fig. 4a.
Such a work is in progress.

Besides the domain textures of Ntb with abruptly changing
orientation of the helix axes ttb (Fig. 5a,c), one also observes
regions with smooth splay-type reorientation of ttb, marked in
Fig. 5b. Splay deformation seen in FFTEM textures at the
nanoscale is consistent with the idea that the deformed Ntb

structure tends to preserve the pitch of helicoid and with the
observation of splay and saddle-splay deformations on the optical
(micrometre) scales (Fig. 3b). Predominance of splay and saddle-
splay in the distorted configurations of ttb, combined with the
very small (nanometres) period of the oblique helicoidal structure
makes the polarizing microscope textures of the Ntb phase very
similar to those of the smectic phases.

Discussion
The structural, elastic, optical, dielectric and electro-optical
properties of the two different families of dimer compounds

1/8.05 nm –1

1/9
.3

 n
m
–1

Figure 4 | FFTEM textures of Ntb with uniform and arched structures. (a,b) FFTEM textures and corresponding fast Fourier transform (FFT) patterns of

(a) M1 with pitch ptb¼ 8.05 nm and (b) M2 with ptb¼9.3 nm, viewed in the planes parallel to the optic axis. The arrows in a point towards domain

boundaries of average extension 26 nm, which are roughly perpendicular to the Ntb layers. Presence of domains is also revealed by a diffuse intensity

pattern in FFT, marked by a white arrow in a. (c,d) FFTEM image of Bouligand arches in M1 formed as imprints of the oblique helicoidal structure

onto the fracture plane that is (c) almost perpendicular and (d) almost parallel to the helicoid axis of Ntb. The insets show the corresponding schemes of

Bouligand arches of two types in Ntb, calculated for (c) y0¼ 17�, c¼ 5� and (d) y0¼ 20�, c¼ 57�. Scale bars, 100 nm.
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clearly demonstrate the existence of the Ntb phase with a local
twist-bend structure. The results underscore a complex interplay
between the flexible nature of the achiral dimeric molecules with
aliphatic chains containing an odd number of methylene groups

and their chiral nanoscale organization. The prevailing element of
the Ntb order is an oblique helicoid (sometimes also called a
conical helicoid; Fig. 1b), formed by the local director, associated
with the average orientation of the dimers’ arms. The Ntb structure
reveals itself in the unique shape of the Bouligand arches that are
either asymmetric (type I, Figs 4c and 8a) or not fully developed in
the sense of director rotations in the fracture plane (type II,
Figs 4d and 8b, and Supplementary Fig. S3). These two types of
arches are different from the classic cholecteric arches that are
always symmetric and fully developed23. The type I and II arches
were originally proposed by Bouligand et al.23 as a hypothetical
imprint of chiral fibrilles in chromosomes of Dinoflagellates but
were not observed so far (although a chiral conical phase of helical
flagella has been demonstrated by optical microscopy33).

The tranmission electron microscopy (TEM) measurements
reveal that the periodic modulations of the director along the
helical axis has a very short period, about 8–9 nm for both studied
materials M1 and M2. These data compare well with the TEM
data by Chen et al.19 and estimates based on electro-optic
response18 of M1. Although one does observe a typical period of
8–9 nm, there are also examples of much shorter periodicity, from
7.7 to 3.4 nm. Another aspect of nanostructural organization that
deserves further studies is a modulation in the direction more or
less perpendicular to the helicoidal axes that can be caused by
structural defects such as screw dislocations and by coexisting
left- and right-twisted domains.

By exploring the dielectric response, we demonstrated that the
classic Frederiks effect in the homeotropic cells is very different
when staged in the normal N phase and in the Ntb phase because
of the tendency of twist-bend director modulations to keep
equidistance. The temperature dependence of the bend modulus
and its very low value near the N–Ntb phase transition put
a new challenge to our understanding of molecular mechanisms
of elastic properties of liquid crystals. A closely related issue
is the relationship between the Ntb structure and double-twist
structure of the so-called blue phases that are known to be
stabilized by the dimeric molecules34. Finally, practically nothing
is known about the hydrodynamics of the Ntb phase (apart
from the fact that it is much more viscous than its high-
temperature N neighbour). Further studies of the Ntb phase
promise a dramatic improvement of our understanding of the
long-range orientational order, which shows new intriguing facets
at the nanoscale.

After this paper has been submitted and reviewed, we learned
that a modulated orientation of molecules with a period of 14 nm,
consistent with the structure of the Ntb phase, has been observed
in the bent-core material by Chen et al.35

t tb

7.7 nm

8.2 nm

8.4 nm
curved

Figure 5 | FFTEM textures of non-uniform Ntb samples. (a) M1 (CB7CB)

quenched at 95 �C, showing layered structures of different orientations.

The period of most domains varies between 8.0 and 8.2 nm. (b) M1 with

splay distortions of the helix axis and atypical periodicity of 7.7 nm.

Enlarged portions of the texture are displayed in Supplementary Figs S1 and

S2. (c) M2, exhibiting domains with layered structure oriented along

different directions. The period of the layered structure varies between 8.6

and 10.3 nm. Scale bar, 200 nm (in all images).
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Figure 6 | Scheme of oblique deposition onto the fracture surface

of Ntb. (a) General case, the fracture surface corresponds to minimum

density of molecules; period of replica ptb; (b) hypothetical limiting case,

period of replica is two times smaller than the helix pitch; deposition

direction is orthogonal to the wave vector of the helix.
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Methods
Sample preparation for optical and electro-optical studies. Experimental cells
were assembled from parallel glass plates with transparent indium tin oxide elec-
trodes. For planar (tangential) alignment, the substrates were spin coated with
polyimide PI2555 (HD MicroSystems); homeotropic alignment was achieved by an
inorganic passivation layer NHC AT720-A (Nissan Chemical Industries, Ltd). The
temperature was controlled with the Linkam controller TMS94 and a hot stage
LTS350 (Linkam Scientific Instruments) with precision 0.01 �C. In all the experi-
ments on dielectric reorientation (Frederiks transitions) of n̂, we used the AC
electric field of frequency 10 kHz. An AC voltage was applied using function
generators DS345 Stanford Research System or Keithley 3390. The voltage was
amplified by a wide-band amplifier 7602 Krohn–Hite and measured with a
Keithley 2000 multimeter. A polarizing microscope OptiPhot2-Pol, Nikon
Instruments, Inc. was used for orthoscopic observations. The maps of the in-plane
optical axis orientation and phase retardation were obtained by using the Abrio
PolScope set-up assembled on the basis of Nikon Eclipse E600 Pol microscope.

Elasticity measurement in the N phase. The cell thickness used in the experi-
ment was 20 mm for the homeotropic cell and 19.9 mm for the planar cell. The cells
were filled with the liquid crystal material in the isotropic state and a well-aligned
N phase was obtained on cooling. For the dielectric characterization, we used an
LCR meter HP4284A (Hewlett Packard) that measures the capacitance of the
sample. The effective dielectric permittivity across the homeotropic cell of thickness
d was calculated as e ¼ C � d= e0 � Að Þ, where A is the electrode area and C is the
measured capacitance of the cell filled with liquid crystal mixture. The dielectric
permittivity parallel to the director, e jj , was determined from the capacitance
measured at low voltages from the homeotropic cell. The perpendicular component
e? was measured using the planar cell.

To determine the bend elastic constant K3 , we followed the Saupe technique,
in which one uses a single homeotropic cell and determines the voltage dependence
of its capacitance when the material has a negative dielectric anisotropy. The
bend elastic constant is obtained by measuring the Frederiks threshold,
K3 ¼ e0 � eaj j � Uth=pð Þ2 . The Frederiks transition of homeotropic sample was
also triggered by the magnetic field directed perpendicularly to the director. The
threshold Bth3 was determined by measuring cell capacitance versus field strength.
Using the expression K3 ¼ d � Bth3=pð Þ2Dw=m0 , and comparing the bend constant
to the value obtained in the electric Frederiks effect, we determined the diamagnetic
anisotropy Dw ¼ e0 � m0� eaj j � Uth= d � Bth3ð Þð Þ2 . For example, Dw ¼ 2�10� 6 at
130 �C.

The elastic constant of splay K1 was obtained by exploring the Frederiks
transition of planar sample in the magnetic field. The magnetic field was set
normally to the cell and to the planar director; the director reorientation threshold
was monitored by measuring the capacitance. The splay elastic constant is defined
as K1 ¼ d � Bth1=pð Þ2Dw=m0 .

Birefringence. By averaging the tilted director field in equation (1) for
y040, the effective birefringence of the conical helix in Ntb phase is related
to the corresponding quantity D�n¼ �ne � �no in the N phase with unwound
helix y0 ¼ 0 (presumed to be at the same temperature)

Dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�n2e � �n2e � �n2o
� �

sin2 y0
q

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�n2o þ 1
2 �n2e � �n2o
� �

sin2 y0
q

� D�n 1� 3
2 y

2
0

� �

.

Sample preparation for freeze-fracture TEM. To prepare the replica specimens
for FFTEM, we put B0.6ml of material between two copper planchettes. The
sandwich structure was heated (125 �C for M1 and 155 �C for M2) to obtain iso-
tropic phase, and then cooled down and kept at deep Ntb phase temperature for
5min, 95 �C for M1 (TM1

NNtb
¼ 103 �C) and 80 �C for M2 (TM1

NNtb
¼ 88 �C). The

sample was quenched by plunge freezing in liquid nitrogen, with a high cooling rate
41,000 �C s� 1, to avoid further phase transitions, and was quickly transferred into
a freeze-fracture vacuum chamber (BalTec BAF060) where the assembly was kept at
� 140 �C. Inside the chamber, a built-in microtome was used to break the assembly
and expose the fractured surface. Approximately 4-nm-thick Pt/C was then
deposited onto the fractured surface at a 45� angle to create shadowing of the surface
structure, followed by an B20-nm-thick C deposition from the top to form a
continuous supporting film. The samples were then warmed up and removed from
the freeze-fracture machine. The liquid crystal material was dissolved in chloroform,
whereas the replica film (often flakes) was picked up and placed onto carbon-coated
TEM grid and observed using room temperature TEM (FEI Tecnai F20).

Synchrotron XRD studies. The material was filled into 1mm diameter quartz
tubes located inside a hot stage (Instec model HCS402). The cylindrical neody-
mium iron boron magnets were used to align the material in the magnetic field
1.5 T perpendicular to the incident X-ray beam. Small-angle X-ray scattering was
recorded on a Princeton Instruments 2,084� 2,084 pixel array charge-coupled
device detector in the X6B beamline at the National Synchrotron Light Source. The
beamline was configured for a collimated beam (0.2� 0.3mm2) at energy 16 keV
(0.775Å). In the N phase, there are two diffused peaks centred along the magnetic
field (Figure 7b,c), with the wavenumber at the maximum intensity decreasing
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Figure 7 | XRD results for M2 in the N and Ntb phases. (a) Typical dependence of diffraction intensity versus wave vector q, presented in terms

of the length scale a; inset shows the temperature dependences of q and Dq, the full width at half maximum of scattered intensity; (b) two-dimensional

scattering pattern for the N phase; (c) two-dimensional scattering pattern for the Ntb phase.
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Figure 8 | Three types of Bouligand arches predicted by equation (2). (a) Type I, alternating wide and narrow arches, with y0¼0.3, c¼0.1; (b) type II,

y0¼0.3, c¼0.35; (c) type III, y0¼c¼0.3.
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from qo¼ 2.95 nm� 1 near the clearing point to qo¼ 2.77 nm� 1 at 110 �C (inset in
Fig. 7a), corresponding to periodicities from a¼ 2.16 to 2.23 nm. At lower tem-
peratures, a secondary peak at a doubled periodicity 4.46 nm is observed. These two
length scales might correspond to (i) the length of one arm of the dimers and the
length of the monomer, and (ii) to the length of the entire dimer, respectively. The
full width at half maxima (Dq) is decreasing from Dq¼ 1.5 nm� 1 at 140 �C to
Dq¼ 0.8 nm� 1 at 110 �C. This means that the correlation length x¼ 2p/Dq is
increasing from xE4 to 8 nm. Such a behaviour is typical for an N phase with
‘cybotactic’ smectic clusters, that is, nanosized clusters of layers with correlation
length x that increases on cooling. However, the macroscopic structure is still that
one of a fluid N phase. Interestingly, the vertical lobes are nearly straight, indicating
no rigid restriction on the layer spacing inside the clusters.

In the Ntb phase, qo increases rapidly from qo¼ 2.77 to 2.93 nm� 1 (Fig. 7a),
which corresponds to local periodicity decreasing from d¼ 2.23 to 2.14 nm. This
can be explained by a bend of dimers with arms tilted away from the straight
configuration by about B15–20� or by the increased mosaicity of the Ntb phase.
The width of the peak at half maxima is fairly temperature independent,
Dq¼ 0.75 nm� 1, which corresponds to x¼ 8.4 nm. It is interesting to see that the
lobes of the diffused peaks are much closer to the circular shape, showing that the
tilt of the arms of the dimers are much more defined than that in the N phase. Such
a macroscopically fluid N phase with almost constant smectic nanoclusters is
typical of bent-core N materials6.
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