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Adopting a spintronics-inspired approach, we study the reciprocal coupling between ionic charge
currents and nematic texture dynamics in a uniaxial nematic electrolyte. Assuming quenched fluid
dynamics, we develop equations of motion analogously to spin torque and spin pumping. Based
on the principle of least dissipation of energy, we derive the adiabatic “nematic torque” exerted by
ionic currents on the nematic director field as well as the reciprocal motive force on ions due to
the orientational dynamics of the director. We discuss several simple examples that illustrate the
potential functionality of this coupling. Furthermore, using our phenomenological framework, we
propose a practical means to extract the coupling strength through impedance measurements on a
nematic cell. Exploring further applications based on this physics could foster the development of
nematronics – nematic iontronics.

Introduction.—The reciprocal coupling between mag-
netic and electric degrees of freedom is the hallmark of
spintronics [1, 2]. There are myriad proposals to ex-
ploit electron mediated spin torque and spin pumping for
novel devices and applications [3], such as creating en-
ergy storage devices [4, 5], spin-based memory [6–9], and
methods for long-range signal transport [1, 10, 11]. For
soft condensed matter and biological systems, we extend
the spintronics approach of studying effective torques and
motive forces to nematic electrolytes (i.e. ion-doped ne-
matic liquid crystal). Here, the nematic director plays
the role of spin and ions take the place of electrons as the
main charge carriers. Nematic electrolytes are natural
systems to apply a spintronics-based approach because
they share similar order parameter spaces and homotopic
properties with magnetic systems [12–16].

Drawing inspiration from spintronics, we will study a
reciprocal coupling between ionic and nematic degrees
of freedom, using it to drive nematic texture and pump
charge current. This coupling is visualized in Fig. 1 as the
analog of Archimedes’ screw, a hydraulic machine that can
be used to either pump water or generate energy as a tur-
bine [17]. Similarly, nematic dynamics driven by external
means [18] pump ionic currents and, reciprocally, an ionic
current (realized via an external electric field) exerts a
torque on the nematic texture, generating work. Previous
works on nemato-ionic interactions have focused on liquid-
crystal enabled electrokinetics, in which applied electric
fields are used to induce osmotic flows or to transport
suspended particles within liquid crystals [19–22] From a
symmetry perspective, our proposed coupling is similar to
the Lehmann effect, which describes the rotation of chiral
nematics due to a temperature gradient [23, 24], electric
fields [25], or concentration gradients [26, 27]. Moreover,
via the inverse Lehmann effect, a chiral nematic can pump

FIG. 1. The nematic analog of the Archimedes’ screw. An
ionic current (driven by a voltage bias) induces an effective
field hτ on the nematic director field, causing the director field
to rotate. Inversely, ions are pumped by the motive force E,
which is induced when the director is rotated at frequency Ω
through external means. In panel (a), red arrows denote the
external drives and blue arrows denote induced forces. Panel
(b) depicts the actual Archimedean screw transporting water,
in analogy with the nematic screw transporting charge. The
signs of hτ and E depend on the sign of γ, which has been
chosen in this figure to mimic the actual screw.

particle flux [28]. For the Lehmann effect, the chirality of
the system breaks inversion symmetry. This consequently
leads to an effective field (and motive force satisfying
Onsager reciprocity) stemming from the chiral coupling
term [28]. In contrast, here we instead utilize couplings to
spatial gradients of the nematic texture to reduce the sym-
metries of the director field configuration and study the
subsequent dynamics. Such gradient field configurations
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can be induced by boundary conditions or topological
defects.

In this Letter, we develop equations of motion anal-
ogously to spin torque and spin pumping for nematic
electrolytes. To this end, we first specify the free energy
and Rayleighan, then derive the dynamic equations from
the principle of least dissipation. We discuss how, via this
coupling, nematic dynamics give rise to inductance and
how ionic current can be used to transport topological
defects. By doing so, we aim at laying out building blocks
for nematronics.
Dynamic equations.—In the minimal model, consider

a closed container filled with an incompressible dilute
uniaxial nematic electrolyte. The orientational structure
is described by the nematic director field n(r), with unit
norm. The fluid dynamics can be quenched when the fluid
stiffness and finite system size results in faster fluid motion
than director and ionic dynamics [29]. The electrolyte
consists of two freely moving monovalent ion species,
with cationic density ρ+(r) and anionic density ρ−(r).
Formally, this system can be decomposed into a charge
sector, characterized by ρ(r) = e[ρ+(r) − ρ−(r)] and a
neutral “osmotic” sector, characterized by ρ̃(r) = ρ+(r) +
ρ−(r). Here, e is the electric charge. Suppose we drive
the system electrically so that the time scales of the two
sectors separate. This results in faster plasmonic charge
dynamics on top of the slower diffusive osmotic dynamics.
Focusing on the faster charge sector, the remaining degrees
of freedom are n and ρ [30]. Furthermore, the response in
the charge sector may be approximated by the dynamics
of the more mobile of the two ion species.

The equations of motion governing the nemato-ionic
response are

∂tn = − 1

α
(h⊥ + hτ ), (1a)

j = −βeρ0D · (∇µ+ E) , (1b)

which are written in terms of Onsager-reciprocal consti-
tutive relations

hτ = γ (j ·∇)n, (1c)

Ei = γ (∂in) · (∂tn). (1d)

Once the free energy F is specified, h⊥ = n× δnF ×n in
Eq. (1a) is the effective field thermodynamically conjugate
to the director field n, with components parallel to n
projected out to fix |n| = 1. α is a phenomenological
parameter characterizing the “rotational viscosity” [31]
and β = (kBT )−1. D is the effective diffusivity tensor
in the charge sector, which accounts for the anisotropy
of the nematic texture. It is constructed on symmetry
grounds as Dij = D⊥δij+∆D ninj . ρ0 is the homogenous
bulk ion density. µ = δρF is the effective electrochemical
potential conjugate to the charge density ρ. Finally, γ is a
phenomenological coefficient parameterizing the rotation
imparted upon the nematic texture due to j.

The ion-induced field hτ in Eq. (1a) is fully analogous
to the adiabatic “spin-transfer torque” in spin systems
[32, 33], and describes the torque exerted by the electric
charge current j onto the nematic texture. Reciprocally,
director dynamics induces a motive force E , given by Eq.
(1d), which pumps a diffusive charge current j, given by
Eq. (1b). hτ and E are only nonzero for systems out of
equilibrium, i.e. displaced from the minimum free energy.
We note that hτ and E are independently symmetric
under rotations in real and order parameter space. This
symmetry is artificial because, in general, it is broken by
additional terms. Moreover, only the combined symmetry
corresponding to simultaneous rotations of real space and
director orientation survives in a fluid. The Supplemental
Material provides a more complete discussion of these
“artificial” symmetries [29].

Framework.—With the free energy F and Rayleighan
R, we employ the principle of least dissipation of energy,
δq̇i
{
∂tF +

∫
d3rR

}
= 0, to derive the dynamic equations.

In this expression, q̇i are the generalized velocities ∂tn
and j. We have assumed that the system has a uniform
nematic order parameter. However, it is straightforward
to generalize by constructing F and R with the tensorial
nematic order parameter Q instead of n [20, 34]. Fur-
thermore, the material flow of the nematic fluid is not
an explicit degree of freedom. This can be a limiting
assumption in electrohydrodynamic systems [20–22] but
qualitatively accepted, for example, in confined geometries
[35, 36].

Our model incorporates ionic degrees of freedom into
the Ericksen-Leslie formalism of nematodynamics [37].
Similar models have been derived which focused on elec-
trohydrodynamic effects but did not include the reciprocal
nemato-ionic coupling [20, 21, 38]. In our model, the total
free energy is

F [n, ρ, ρ̃, ψ] =

∫
d3r

{
K

2
(∂inj)

2 + Fion(ρ, ρ̃)

+ ρψ − 1

8π
εij(∂iψ)(∂jψ)

}
.

(2)

K is the elastic constant, ψ is the electric potential, and
εij = ε⊥δij + ∆ε ninj is the dielectric tensor constructed
analogously to the diffusivity tensor.

The first term is the free energy density of the nematic
texture which accounts for the elasticity of the liquid
crystal. We assume the “equal constant approximation,”
where splay, twist, and bend modes have equal elastic
constant K [39]. This corresponds to the aforementioned
“artificial” symmetries in which the system is separately
isotropic in real and order parameter space. The second
term, Fion, describes the nonelectrostatic ionic part of
the free energy density. The final two terms are the
electrostatic contributions to the free energy. They give
the Poisson equation in an anisotropic dielectric upon
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δψF = 0,

∇ · [ε ·∇ψ] = −4πρ. (3)

Note that the flexoelectric free energy could be included,
but our focus is on the kinematic effects corresponding
to the nemato-ionic response [29, 40, 41].

The Rayleigh functions capturing linear dissipative
forces are positive definite and quadratic in generalized
velocities. They are given by

Rnn =
α

2
(∂tn)2, (4a)

Rjj =
kBT

2eρ0
j ·D−1 · j, (4b)

Rnj = γ ∂tn · [(j ·∇)n]. (4c)

Here, Rnn governs the relaxation of the director field to
its equilibrium configuration. Rjj describes the friction
of electric charge currents, where the effective diffusivity
tensor is D. Eqs (4a) and (4b) can be found in Refs.
[20–22]. Rnj is the friction term coupling electric charge
current to director dynamics. It respects the previously
discussed “artificial” symmetries and is constructed to
leading order in spatial derivatives of n. R being positive-
definite constrains D, α, and γ [42, 43].

Having specified F and R, we now apply the principle
of least dissipation. Taking the functional derivative
of ∂tF +

∫
d3rR with respect to ∂tn yields Eq. (1a),

describing time dynamics of the director. Varying with
respect to the charge current j alongside invoking the
continuity equation, ∂tρ = −∇ · j, yields Eq. (1b). For
a dilute electrolyte, Fion is the sum of the entropic ideal
gas contributions of each ionic species. When deviations
of ρ± from the homogenous bulk ion density ρ0 are small,
expanding µ in Eq. (1b) about ρ0 yields µ = ψ + ρ/χ,
up to a constant. χ = 2e2ρ0/kBT is the effective charge
compressibility. Furthermore, for this Fion, D in Eq.
(1b) is the sum of the diffusivity tensors D± of each
ionic species. Eqs. (1c) and (1d) are obtained by taking
the variational derivative of Rnj with respect to ∂tn
and j, respectively. The two equations follow Onsager
reciprocity, which could have been invoked in lieu of
Rayleigh functions and the principle of least dissipation
[42, 44]. To illustrate the applications of these effects, we
first study a simple example in which a nontrivial nematic
texture induced by strong anchoring is electrically driven
out of equilibrium.
Nematic-induced inductance.—Let us consider a slab

of nematic electrolytic fluid uniform in the xy plane and
of thickness d in the z direction. We impose surface
boundary conditions n(d) = z and n(0) = y. We define
ϕ(z) as the angle of n‖, the planar projection of n onto
the yz easy-plane, relative to the y axis. To satisfy the
boundary conditions, the change in ϕ from the bottom to
top plate is ∆ϕ = (n + 1/2)π for n ∈ Z. Fig. 2 depicts
our proposed setup for the simplest case of n = 0, known
also as the hybrid-aligned nematic cell [45].

 

FIG. 2. Nematic texture for different current values. Three
cases are shown for a nematic slab between two electrodes. The
fixed boundary conditions are n(d) = z and n(0) = y, signified
by the nematogens enclosed in boxes. The director winds
∆ϕ = π/2 from the bottom to the top plate. The leftmost slab
is biased with j < 0, the middle unbiased, and the rightmost
with j > 0. The nematogens are colored according to a winding
heat map. The winding is localized in the direction of the
charge current, with winding density decay length ξ = K/γj.

Suppose we bias the system with an alternating current
given by j(t) = j(t)z. For a sufficiently slowly vary-
ing current j, the solution for the nematic texture is
well-approximated by the quasistatic solution. We con-
sequently set ∂tn = 0 in Eq. (1a) and parameterize the
nematic texture in terms of the winding density in the
yz plane, η(z) ≡ (n× ∂zn) · x. Focusing on the linear re-
sponse, electrostatic contributions to h⊥ are not included
since they are quadratic in E. For a full detailed analysis,
the dielectric term ∆ε(n ·E)2 would be included [40, 46].
However, the effects due to the nemato-ionic coupling can
always be qualitatively distinguished from e.g., the Freed-
ericksz effect, since the former depends on the sign of E
while the latter does not. Equation (1a) then governs the
winding density as K ∂zη = γjη. The coupling of current
to the winding rather than to nematic orientation further
distinguishes this effect from the Freedericksz effect.

Integrating Eq. (1a), the quasistatic solution for the
winding density is

η(z) =
1

ξ

ez/ξ

ed/ξ − 1

(
nπ +

π

2

)
, (5)

where ξ = K/γj is the length scale at which the winding
density decays. Winding with n = 0,−1 are stable ground
states. All other values of n are metastable states since the
winding can be smoothly unwound in multiples of 2π by
allowing the director to rotate out of the yz plane. These
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states can be stabilized by including easy-plane anisotropy,
disallowing out-of-plane rotations. Furthermore, these
metastable states can be made accessible by utilizing
chiral liquid crystals. The winding density is dragged
along the direction of the current flow. If |j| � K/γd,
the winding density localizes at z = d or z = 0, for positive
and negative values of j respectively. In these cases, the
nematic texture switches between configurations that are
parallel or orthogonal to the xy plane.

The backaction by the nematic dynamics on the elec-
trical response induces the motive force given in Eq. (1d).
In this setup, Ez = γ(∂zϕ)(∂tϕ), where the angle ϕ(z, t) is
obtained by integrating Eq. (5) while requiring |n‖| = 1.
∂tϕ can be formally understood as the winding flux. The
motive force E, which can be understood as a fictitious
electric field, induces an effective potential drop between
the bottom and top plates, in addition to the actual elec-
tric field E = −∇ψ. Integrating the motive force E over
the thickness d and taking the leading term in j, the
instantaneous effective potential difference is

∆V (t) =
(
nπ +

π

2

)2 γ2d

12K
(∂tj). (6)

Fourier transforming into the frequency domain, the cor-
responding induced impedance of the nematic slab is

Z(ω) ≡ ∆V (ω)

j(ω)
= iω

(
nπ +

π

2

)2 γ2d

12K
, (7)

which has the inductive form [47]. Suppose a capacitor
is filled with a slab of nematic electrolyte. Driving the
capacitor with an alternating current and measuring the
impedance yields the strength of the reciprocal coupling
γ relative to elasticity K. Moreover, as the integrated
winding increases, so would the measured effective induc-
tance.

Line disclination dynamics.—In addition to boundary
conditions, topological defects also imprint nontrivial ne-
matic textures. This leads to dynamic effects when the
system is subjected to an electrical current flow. As a min-
imal example, we study the response of a line disclination
with a planar cross-section with winding number +1/2
to an electrical current. Consider a nematic slab uniform
in the y direction with a width of w, of thickness d in
the z direction, and length in the x direction larger than
d. On the top, bottom, and left-most face, the director
is strongly anchored to point along the x direction. The
setup is depicted in Fig. 3.

Suppose there are two domains: a small domain with
0 winding from the bottom to the top face and a large
domain in which the director uniformly undergoes π wind-
ing. Transitioning from one domain to the other, we find
a disclination of radius d, with a line singularity along
the y axis. This setup has been experimentally realized
by Sandford O’Neill et al. [48]. However, their focus
was on controlling the defect by utilizing the electric cou-

FIG. 3. Setup of current driven nematic defect. The nematic
slab has a pink domain of 0 winding, a blue domain of π wind-
ing, and a disclination region of size d transitioning between
pink and blue. The texture on the top, bottom, and left faces
is fixed to point along the x direction. The defect is shown to
move in the x direction with velocity Ṙ. The velocity can be
increased when an electric current j is applied.

pling stemming from (n ·E)2 anisotropy, rather than the
nemato-ionic coupling.

We will study the forces on the defect, as well as
derive its terminal velocity. Approximating the defect
as a “rigidly moving soliton,” we employ the ansatz
n(r, t) → n0(r + R(t)) [49]. In doing so, we place the
time dependence of the director field into R(t), the po-
sition of the defect core. The force on the defect is
Fs = −∂F/∂R−∂R/∂Ṙ for free energy F and Rayleighan
R. In the vicinity of the disclination, the angle of the
projection of n to the xz plane is ϕ(r) = (φ+ π)/2. Here,
φ is the polar angle relative to the x axis [50]. Away from
the disclination, the nematic texture will distort to match
the boundary conditions.

Using the Rayleighans in Eqs. (4b)-(4c) and the free
energy in Eq. (2), the force on the defect is

Fs =
Kwπ2

2d
− αwπ

4

(
Ṙ+

γj

α

)
ln

(
d

2rc

)
, (8)

with rc the defect core size. The first term is a constant
force due to the elastic relaxation of the nematic texture.
To lower the free energy, the 0 winding domain will grow
while the π winding domain shrinks. The second term
is a drag force on the disclination and stems from Rnn
and Rnj . The dissipation function Rnn results in a core
velocity-dependent drag force. Rnj , the friction between
charge current and nematic texture, uses current j as a
handle to apply a force. Combining the Rayleighans, we
find an effective Rayleighan to leading order in j,

Reff =
αwπ

8

(
Ṙ+

γj

α

)2

ln

(
d

2rc

)
. (9)

Reff describes the solitonic viscosity, with damping pa-
rameter αwπ ln(d/2rc)/8. The generalized velocity is
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Ṙ+γj/α, the defect velocity modified by the ionic current.
Instead of using ∂tn and j as the generalized velocities,
we could instead use this collective degree of freedom in
the Rayleighan.

The terminal velocity of the disclination is

Ṙt =
2πK

αd ln(d/2rc)
− γj

α
. (10)

When γ = 0, Ṙt agrees with previous studies for the veloc-
ity of a disclination in the absence of fluid motion [50, 51].
Measurement of Ṙt(j) can provide γ/α, parameterizing
the relative strengths of the nemato-ionic coupling to the
damping α. The motion of the disclination can be un-
derstood as topological texture electrophoresis, in which
topological textures are transported in the absence of fluid
motion or suspended particles. Electric current provides a
robust handle to manipulate topological defects, enabling
technological applications such as microparticle transport
and spatial light modulators [52, 53].
Discussion.—Thus far, we have constructed the scaf-

folding for future studies of dynamic phenomena as well as
applications in nematronics. Moving forward, we can con-
sider nematronic devices which exploit this coupling, with
a focus on topological aspects. For example, building up
winding via manipulating topological defects could lead to
energy storage devices [54, 55]. Current driven transport
of nematic defects for signal transport would also be an
intriguing avenue of research. Nematic hedgehogs and
disclinations are nonlocal topological objects [15], which
makes them promising candidates for information carriers
in soft matter systems [56].

From a theoretical perspective, studying these effects
in different liquid crystalline phases, e.g. twist-bend ne-
matic phases [57] and blue phases [58, 59], is a potentially
interesting research direction. To elucidate the origins of
γ, one could study the coupling microscopically rooted in
interactions between ionic charge fluctuations and nemato-
gen polarizability. In spintronics, research into driving
ferromagnetic domain wall motion with spin-polarized
electrical current has unraveled novel physics [7, 60, 61].
It could be fruitful to proceed along a similar line by study-
ing the electrical response of domain walls in the nematic
and ferroelectric nematic phase [48, 62, 63]. Addition-
ally, studies on isotropic electrolytes show that solutions
with multiple ion species with different valencies [64] and
charged colloidal particles can lead to intriguing effects
[65] that could be also studied in nematic systems.
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In this Supplemental Material, we provide (i) the generalized theory for nematic electrolytes with hydrodynamic
effects restored, (ii) expanded discussion of the “artificial symmetries,” and (iii) proof that flexoelectric effects can be
qualitatively distinguished from the dissipative nemato-ionic coupling.

(i) Nematic hydrodynamics

This model describes a uniaxial nematic electrolyte, a liquid crystal in the nematic phase doped with ions. The
fluid is taken to be incompressible, that is, ∇ · v = 0. The electrolyte consists of freely moving monovalent ionic
species. The ionic density for each species is given by ρα(r, t), whereby α indexes over each species. In this model, we
will describe the simplest case of a dilute electrolyte with two ionic species consisting of a cationic species and an
anionic species. However, it is straightforward to generalize and include more ionic species. ρ+(r, t) corresponds to the
cationic density and ρ−(r, t) corresponds to the anionic density. We assume that the liquid crystal has uniform nematic
order. Consequently, the orientational structure is described by the nematic director field n(r, t), with unit norm.
This model incorporates ionic degrees of freedom into the Ericksen-Leslie formalism of nematodynamics [1]. Similar
models have been derived which focused on electrohydrodynamic effects but did not include our proposed reciprocal
nemato-ionic coupling [2–4]. Henceforth, we shall adopt the convention that repeated indices are summed over unless
stated otherwise. The equations of nematodynamics are derived by employing the principle of least dissipation, given
by [5]

δ

δq̇i

{
dF
dt

+

∫
d3rR

}
= 0. (S1)

Here d/dt = ∂t+v ·∇ is the material (i.e. advective) derivative, F is the free energy, and R is our Rayleigh dissipation
function. The generalized velocities are q̇i, which in our model are given by the fluid velocity v, the time derivative of
the director dn/dt, and the ion current velocity for each ionic species uα. Once we specify the free energy F and the
Rayleighan R, the dynamic equations can be derived. First, the free energy is given by

F [%m, ρ±,v,n, ψ] =

∫
d3r

{
1

2
%mv2 fluid kinetic energy

+
K

2
(∂inj)

2 nematic free energy

+
∑

α=±
kBTρ

α [ln (ραΛα)− 1] nonelectrostatic ionic free energy

+e(ρ+ − ρ−)ψ − 1

8π
∇ψ · ε(n) ·∇ψ electrostatic free energy

+ [g1(n ·∇)n + g2n(∇ · n)] ·∇ψ

}
. flexoelectric free energy

(S2)

The free energy is a functional of the local density of the fluid %m, the density for each ion species ρα, the fluid velocity
v, the director n, and the electrostatic potential ψ. K is the Frank elastic constant describing nematic elasticity, Λα is

ar
X

iv
:2

21
0.

17
11

6v
2 

 [
co

nd
-m

at
.s

of
t]

  2
1 

A
pr

 2
02

3



2

the thermal de Broglie wavelength of each ionic species, εij = ε⊥δij + ∆ε ninj is the dielectric tensor, and g1 and g2

are phenomenological coefficients.
The first term in Eq. (S2) is the kinetic energy density of the fluid. The second term describes the free energy of

the nematic texture, whereby we have invoked the equal constant approximation. The third term is the free energy
density corresponding to the nonelectrostatic entropic free energy contributions of each ionic species. In general, this
term would include the chemical interactions between each ionic species. However, when the equilibrium ion density
ρ0 is sufficiently small, i.e. the electrolytic solution is dilute, the free energy contribution of each ionic species can
be well approximated by that of an ideal gas. The fourth term is the electrostatic contribution of the free energy
corresponding to the coupling of the charge density with the electric potential, as well as the energy density of the
electric field. The fifth term is the free density energy due to flexoelectricity. Here, the flexoelectric polarization

P = g1(n ·∇)n + g2n(∇ · n) (S3)

is due to the strain of the nematic texture. Alternatively, it can be equivalently expressed as P = e1n(∇ · n) −
e3n× (∇× n), where e1 is the phenomenological coefficient corresponding to splay distortions and e3 is the coefficient
corresponding to bend distortions [6].

To formulate the dynamic equations, we now specify the Rayleigh dissipation functions. The Rayleighan R must
be quadratic in the aforementioned generalized velocities: ṅ ≡ dn/dt, uα, and v. Furthermore, it must be positive
definite, and frame independent. The final constraint implies that the Rayleighan must remain invariant under a
Galilean transformation and that the dissipation function must be constructed from tensors that vanish in the case of
uniform fluid rotation. These tensors are given by [7, 8]

N = ṅ− (∇× v)× n/2, Aij = ∂ivj + ∂jvi. (S4)

Here, N can be formally understood as the time derivative of the director with respect to the flow vorticity of the
fluid. Aij is the symmetrized component of the gradient velocity field. Expressed in terms of N and Aij , the Rayleigh
functions are given by

Rvv =
1

2
η1(Aij)

2 +
1

2
η2(Aijnj)

2 (S5a)

Rnv =
1

2
α1NiNi + α2NiAijnj , (S5b)

Ruv =
1

2
kBTρ

α(uα − v) · (Dα)−1 · (uα − v), (S5c)

Rnu = γαραN ·
{[

(uα − v) ·∇]n} . (S5d)

In the above Rayleigh functions, η1 is the ordinary viscosity of an incompressible fluid [7, 8]. η2 is a phenomenological
viscosity coefficient that accounts for the orientation of the director. α1 characterizes the rotational viscosity associated
with the nematic dynamics [9]. α2 is a phenomenological parameter corresponding to the viscosity between nematic
dynamics and the spatial gradient of the fluid velocity field. γα is a phenomenological parameter that characterizes the
strength of the reciprocal nemato-ionic coupling. Dα(r, t) is the diffusion tensor corresponding to each ionic species,
constructed on general symmetry grounds as Dαij = Dα⊥δij + ∆Dα ninj . Rvv describes the dissipation due to the
fluid viscosity, Rnv describes the friction between the nematic dynamics and the fluid. Ruv describes the friction
between the ionic currents uα and the background fluid flow given by v. Eqs. (S5a – S5c) appeared in Refs. [2, 3, 10],
which discussed the electrohydrodynamic effects that arise due to these Rayleigh functions. Rnu describes the friction
between the nematic dynamics and ionic currents.

Having specified the free energy F and the Rayleighan R, we now employ the principle of least dissipation to derive
the equations of motion. Firstly, taking the time derivative of the free energy, we have

dF
dt

=

∫
d3r {%mviv̇i + ṅ · h⊥ + (uα − v) ·∇µα − ραµα(∇ · v) + σij(∂ivj)} . (S6)

We have expressed the above equation in terms of h⊥ and µα. h⊥ = n × (δF/δn) × n is the molecular field
thermodynamically conjugate to n, with components parallel to n projected out to fix |n| = 1, and µα = δF/δρα is
identified as the electrochemical potential thermodynamically conjugate to each ionic species. The first term is the



3

time derivative of the kinetic energy associated with the fluid. The second, third, and fourth terms stem from the
variation of the orientation of the director and the ionic density of a fluid element. To derive the third and fourth
terms, we have invoked the continuity equation, ∂tρ

α = ∇ · (ραuα) and integrated by parts. The fifth term in the
equation is the change in the free energy when the director orientation and ionic density of the fluid element are
constant, but there is a material flow. σij can be formally understood as the stress tensor. We note that in the minimal
system with quenched fluid dynamics described in the main text, only the second and third terms survive.

The following derivation of the stress tensor σij closely follows that given by de Gennes and Prost [7]. Let us consider
a generic free energy density F (ρα,n, ψ). A material flow corresponds to a transformation of r, n(r), ρα(r), and ψ
such that

r→ r′ = r + δw(r), n(r)→ n′(r′) = n(r + δw(r)), (S7)

where δw(r) is the displacement of the fluid element due to the flow. ρα and ψ transform similarly to n. This
displacement leaves the orientation of the director and the ionic density and electric potential of the fluid element
unchanged. Making the substitution δw(r)→ v(r) dt will give us the rate of change of the free energy due to a material
flow. To keep our equations algebraically simple, let us first calculate the stress tensor for a free energy density that
depends solely on n. This case can then be easily generalized to the free energy density depending on n, ρα, and ψ.
Firstly, by expanding the transformed director field to leading order in δw(r), we have

n(r′) ≈ n(r)− δw(r) · ∂
∂r′

n(r′)

∣∣∣∣
r′=r

. (S8)

The expansion for ρα and ψ will be analogous. Utilizing Eq. (S7), the derivative ∂r′ can be written as

∂

∂r′i
=
∂rj
∂r′i

∂

∂rj
=
[
δij − ∂i(δwj)

]
∂j = ∂i − [∂i(δwj)] ∂j . (S9)

Applying the form of the derivative in Eq. (S9) to Eq. (S8), and isolating the second term, the variation of the director
field δn(r) is

δn(r) = −
[
δw(r) ·∇]n(r). (S10)

Now we consider the variation of the free energy F [n] and show how it can be written in terms of the stress tensor.
We have that

δF [n] =

∫
d3r

{
∂F

∂nµ
δnµ +

∂F

∂(∂inµ)
δ(∂inµ)

}
(S11a)

=

∫
d3r

{[
∂i

(
∂F

∂(∂inµ)

)]
δnµ +

(
∂F

∂(∂inµ)

)(
∂′in
′
µ − ∂inµ

)}
(S11b)

=

∫
d3r

{(
∂F

∂(∂inµ)

)
[−∂i(δnµ) + ∂′i(nµ + δnµ)− ∂inµ]

}
, (S11c)

where F is the free energy density. Substituting in the transformed derivative given in Eq. S9, and eliminating terms
second order in variations, we have

δF [n] = −
∫
d3r

{(
∂F

∂(∂inµ)

)[
∂i(δwj)∂jnµ

]}
=

∫
d3rσij∂i(δwj) (S11d)

The stress tensor when the free energy is solely dependent on n is given by

σij(n) = −
(

∂F

∂(∂inµ)

)
(∂jnµ). (S12)

Now we generalize to the case when the free energy density is a function of n, ρα, and ψ. The stress tensor in Eq. (S6)
thus becomes

σij(n, ρ
α, ψ) =

(
∂F

∂(∂inµ)

)
(∂jnµ) +

(
∂F

∂(∂iψ)

)
(∂jψ) +

(
∂F

∂(∂iρα)

)
(∂jρ

α). (S13)



4

Upon substitution of the free energy density given in Eq. (S2), this yields

σij = −K(∂ink)(∂jnk) +

(
Pi +

1

4π
εikEk

)
Ej (S14)

The first term in σij corresponds to the elastic stress tensor while the second term corresponds to the Maxwell stress
tensor [3, 11]. Having specified the Rayleighans and calculated the time derivative of the free energy, we can now
perform the variations with respect to ṅ, uα, and v. Since there are three generalized velocities, this will yield three
primary governing equations. Firstly, by varying Ḟ +

∫
d3rR with respect to u we get

uα(r, t) = v − 1

kBT
Dα · (∇µα + Eα) , (S15a)

and the motive force for each ionic species Eα is given by

Eαi = γαN · ∂in. (S15b)

Next the variation with respect to v yields

%m
dv

dt
+ ∇ ·

(
−p1− σ − ∂R

∂(∂ivj)

)
= 0 (S16)

where p is the total pressure that has absorbed all terms that are proportional to δij . It accounts for both the pressure
due to regular incompressible fluid, as well as the osmotic pressure stemming from the ionic subsystem. To eliminate
terms stemming from ∂R/∂v and ∂Ḟ/∂v, we utilize the expression for the ion current given in Eq. (S15a). The
remaining term ∂R/∂(∂ivj) can be understood as the “viscous” component of the stress tensor, as opposed to the
elastic and electrostatic component characterized by σ. Finally, variation with respect to ṅ will yield the equation of
the nematic director dynamics

h⊥,i + α1Ni + α2Aijnj + hτ,i = 0, (S17)

where hτ is the dissipative field exerted by the ionic currents onto the nematic texture. It can be given by

hτ,i = γαρα[(uα − v) ·∇]ni, (S18)

where we have summed up the contributions from each ionic species. The motive force in Eq. (S15b) and the dissipative
field in Eq. (S18) satisfy Onsager reciprocity. When fluid motion is quenched and we focus on the charge dynamics,
we recover the expressions found in the main text for E and hτ .
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(ii) Artificial symmetries — Reduced material constants

In the main text, the free energy corresponding to the nematic texture is given by

Fartificial =

∫
d3r

{
K

2
(∂inj)

2

}
, (S19)

where K is the Frank constant. Here, we have imposed an “artificial” symmetry in addition to the actual symmetry
of the system. This free energy density is invariant under independent rotations of real space and nematic director
orientation. In the most general case, this artificial symmetry is not present, and the actual free energy is given instead
by

Factual =

∫
d3r

{
K1

2
(∇ · n)

2
+
K2

2
[n · (∇× n)]

2
+
K3

2
[n× (∇× n)]

2

}
. (S20)

K1, K2, and K3 are phenomenological coefficients called the Frank elastic constants and they correspond to the splay
mode, bend mode, and twist mode, respectively. These constants are generically independent parameters. We can
restore the artificial symmetry by setting K1 = K2 = K3 = K, and this treatment is commonly referred to as the
“equal-constant approximation” which simplifies calculations but still gives good qualitative insights into the system.
Within a fluid, the remaining symmetry that the system has is simultaneous uniform rotations of real space and
order parameter space. This means that when hydrodynamics is restored, the Rayleigh dissipation function must
vanish under a rigid fluid rotation. Consequently, the Rayleigh functions must be constructed out of tensors that
appropriately vanish under a rigid rotation. Instead of ṅ the relevant tensor is now

N = ṅ− (∇× v)× n/2, (S21)

which reduces to ∂tn when the fluid motion is quenched. In the construction of Rnj = γ ∂tn · [(j ·∇)n] in the main
text, the charge current j was coupled to ∂tn through the gradient of the nematic texture, ∇n to maintain the
artificial symmetry. Substituting in N for ∂tn in Rnj , we get the Rayleigh function given in Eq. (S5d). Because of the
dependence of N on v, Rnj is no longer independently isotropic in real space as well as order parameter space.

Even in the absence of fluid motion, there can be additional terms that break this artificial symmetry. For simplicity,
let us retain only the terms that are relevant in the case of a uniform charge current j. With this constraint, the
effective dissipative field hτ and the corresponding motive force E can be constructed as follows:

hτ,i = γ1(j ·∇)ni + γ2 j · ∂in + γ3 ji(∇ · n), (S22a)

Ei = γ1(∂tn) · (∂in) + γ2(∂tn ·∇)ni + γ3(∂tni)(∇ · n). (S22b)

Here, the only symmetry is that of a combined rotation of order parameter space and real space.
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(iii) Qualitatively distinguishing flexoelectric effects

In the illustrative examples provided in the main text, we did not include terms in the free energy, Eq. (2) which
stem from flexoelectric effects. Here, we discuss how flexoelectric effects can be qualitatively distinguished from
those due to the nemato-ionic coupling in each of the examples. When the system size is much larger than the
ionic screening length, electrostatic effects as well as flexoelectric effects are screened. Dynamic effects due to the
nemato-ionic coupling will subsequently dominate. On the other hand, when the screening length is large (e.g. at low
ion concentrations), we must consider the linear coupling of the electric field with the flexoelectric polarization, given
by the free energy density Ff = −P ·E. Since the flexoelectric free energy density is linear in E, flexoelectricity will
affect director dynamics in the linear response theory in addition to the dissipative field hτ . To see how these effects
can be qualitatively distinguished from those which we focus on, let us examine the dynamics of the bound charge
induced by flexoelectricity in the context of each of our examples.

In the setup of the first example of the hybrid aligned nematic cell, the polarization induces a bound charge density
ρb = −∇ ·P . When no current is applied, the director in the ground state will undergo uniform π/2 winding, and the
bound charge density of this texture is

ρb(z) = − π

2d
(g1 + g2) cos(πz/d). (S23)

The bound charge density is antisymmetric about z = d/2. Applying an E field would cause the positively and
negatively charged regions to either draw together or pull apart symmetrically. This corresponds to winding density
symmetrically localizing at the center or edges, respectively. Consequently, this is qualitatively different than the
response of the nematic to the charge current, which would result in the winding asymmetrically “bunching up” at the
edges.

We now discuss the second example. In the case of the line disclination subject to a current flow, the dissipative
field hτ exerted by the charge current onto the nematic texture is agnostic to the winding number. This is because
both the Rayleigh dissipation function and the free energy are invariant to a global ±π rotation of the director field
about the z axis, which would change the +1/2 defect to a −1/2 defect. On the other hand, the bound charge

Qb±1/2 = ±π(g2 − g1) (S24)

enclosed in the vicinity of the defect changes sign based on the winding number. Whereas the dissipative field would
always drag the soliton in the direction of the applied current, flexoelectric effects dictate that a +1/2 and a −1/2
defect move in opposite directions when subject to an external electric field. The asymmetric characteristic in the
hybrid aligned nematic cell and the sign change of the bound charge enclosed in the vicinity of the defect provide the
distinction between the flexoelectric and nemato-ionic effects.
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