

Edinburgh Research Explorer

Nematus: a Toolkit for Neural Machine Translation
Citation for published version:
Sennrich, R, Firat, O, Cho, K, Birch-Mayne, A, Haddow, B, Hitschler, J, Junczys-Dowmunt, M, Läubli, S,
Miceli Barone, AV, Mokry, J & Nadejde, M 2017, Nematus: a Toolkit for Neural Machine Translation. in
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the
Association for Computational Linguistics. Association for Computational Linguistics (ACL), Valencia, Spain
, pp. 65-68, 15th EACL 2017 Software Demonstrations, Valencia, Spain, 3/04/17.
https://doi.org/10.18653/v1/E17-3017

Digital Object Identifier (DOI):
10.18653/v1/E17-3017

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the Software Demonstrations of the 15th Conference of the European Chapter of the Association
for Computational Linguistics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 26. Aug. 2022

https://doi.org/10.18653/v1/E17-3017
https://doi.org/10.18653/v1/E17-3017
https://www.research.ed.ac.uk/en/publications/115cdfe3-231e-4c87-929e-e55787916b26

Nematus: a Toolkit for Neural Machine Translation

Rico Sennrich† Orhan Firat? Kyunghyun Cho‡ Alexandra Birch†
Barry Haddow† Julian Hitschler¶ Marcin Junczys-Dowmunt† Samuel Läubli§

Antonio Valerio Miceli Barone† Jozef Mokry† Maria Nădejde†
†University of Edinburgh ?Middle East Technical University

‡New York University ¶Heidelberg University §University of Zurich

Abstract

We present Nematus, a toolkit for Neu-
ral Machine Translation. The toolkit pri-
oritizes high translation accuracy, usabil-
ity, and extensibility. Nematus has been
used to build top-performing submissions
to shared translation tasks at WMT and
IWSLT, and has been used to train systems
for production environments.

1 Introduction

Neural Machine Translation (NMT) (Bahdanau et
al., 2015; Sutskever et al., 2014) has recently es-
tablished itself as a new state-of-the art in machine
translation. We present Nematus1, a new toolkit
for Neural Machine Translation.

Nematus has its roots in the dl4mt-tutorial.2 We
found the codebase of the tutorial to be compact,
simple and easy to extend, while also produc-
ing high translation quality. These characteristics
make it a good starting point for research in NMT.
Nematus has been extended to include new func-
tionality based on recent research, and has been
used to build top-performing systems to last year’s
shared translation tasks at WMT (Sennrich et al.,
2016) and IWSLT (Junczys-Dowmunt and Birch,
2016).

Nematus is implemented in Python, and based
on the Theano framework (Theano Develop-
ment Team, 2016). It implements an attentional
encoder–decoder architecture similar to Bahdanau
et al. (2015). Our neural network architecture dif-
fers in some aspect from theirs, and we will dis-
cuss differences in more detail. We will also de-
scribe additional functionality, aimed to enhance

1available at https://github.com/rsennrich/nematus
2
https://github.com/nyu-dl/dl4mt-tutorial

usability and performance, which has been imple-
mented in Nematus.

2 Neural Network Architecture

Nematus implements an attentional encoder–
decoder architecture similar to the one described
by Bahdanau et al. (2015), but with several imple-
mentation differences. The main differences are as
follows:

• We initialize the decoder hidden state with
the mean of the source annotation, rather than
the annotation at the last position of the en-
coder backward RNN.

• We implement a novel conditional GRU with
attention.

• In the decoder, we use a feedforward hidden
layer with tanh non-linearity rather than a
maxout before the softmax layer.

• In both encoder and decoder word embed-
ding layers, we do not use additional biases.

• Compared to Look, Generate, Update de-
coder phases in Bahdanau et al. (2015), we
implement Look, Update, Generate which
drastically simplifies the decoder implemen-
tation (see Table 1).

• Optionally, we perform recurrent Bayesian
dropout (Gal, 2015).

• Instead of a single word embedding at each
source position, our input representations al-
lows multiple features (or “factors”) at each
time step, with the final embedding being the
concatenation of the embeddings of each fea-
ture (Sennrich and Haddow, 2016).

• We allow tying of embedding matrices (Press
and Wolf, 2017; Inan et al., 2016).

Table 1: Decoder phase differences
RNNSearch (Bahdanau et al., 2015) Nematus (DL4MT)
Phase Output - Input Phase Output - Input
Look cj ← sj−1,C Look cj ← sj−1, yj−1,C
Generate yj ← sj−1, yj−1, cj Update sj ← sj−1, yj−1, cj
Update sj ← sj−1, yj , cj Generate yj ← sj , yj−1, cj

We will here describe some differences in more
detail:

Given a source sequence (x1, . . . , xTx) of length
Tx and a target sequence (y1, . . . , yTy) of length
Ty, let hi be the annotation of the source symbol at
position i, obtained by concatenating the forward
and backward encoder RNN hidden states, hi =
[
−→
h i;
←−
h i], and sj be the decoder hidden state at

position j.

decoder initialization Bahdanau et al. (2015)
initialize the decoder hidden state s with the last
backward encoder state.

s0 = tanh
(
Winit

←−
h 1

)
with Winit as trained parameters.3 We use the av-
erage annotation instead:

s0 = tanh

(
Winit

∑Tx
i=1 hi

Tx

)

conditional GRU with attention Nematus im-
plements a novel conditional GRU with attention,
cGRUatt. A cGRUatt uses its previous hidden state
sj−1, the whole set of source annotations C =
{h1, . . . ,hTx} and the previously decoded symbol
yj−1 in order to update its hidden state sj , which
is further used to decode symbol yj at position
j,

sj = cGRUatt (sj−1, yj−1,C)

Our conditional GRU layer with attention mech-
anism, cGRUatt, consists of three components:
two GRU state transition blocks and an attention
mechanism ATT in between. The first transi-
tion block, GRU1, combines the previous decoded

3All the biases are omitted for simplicity.

symbol yj−1 and previous hidden state sj−1 in or-
der to generate an intermediate representation s′j
with the following formulations:

s′j = GRU1 (yj−1, sj−1) = (1− z′j)� s′j + z′j � sj−1,

s′j = tanh
(
W′E[yj−1] + r′j � (U′sj−1)

)
,

r′j = σ
(
W′

rE[yj−1] +U′rsj−1

)
,

z′j = σ
(
W′

zE[yj−1] +U′zsj−1

)
,

where E is the target word embedding matrix, s′j
is the proposal intermediate representation, r′j and
z′j being the reset and update gate activations. In
this formulation, W′, U′, W′

r, U′r, W′
z , U′z are

trained model parameters; σ is the logistic sigmoid
activation function.

The attention mechanism, ATT, inputs the entire
context set C along with intermediate hidden state
s′j in order to compute the context vector cj as fol-
lows:

cj =ATT
(
C, s′j

)
=

Tx∑
i

αijhi,

αij =
exp(eij)∑Tx

k=1 exp(ekj)
,

eij =vᵀ
a tanh

(
Uas

′
j +Wahi

)
,

where αij is the normalized alignment weight be-
tween source symbol at position i and target sym-
bol at position j and va,Ua,Wa are the trained
model parameters.

Finally, the second transition block, GRU2, gener-
ates sj , the hidden state of the cGRUatt, by looking
at intermediate representation s′j and context vec-
tor cj with the following formulations:

sj = GRU2

(
s′j , cj

)
= (1− zj)� sj + zj � s′j ,

sj =tanh
(
Wcj + rj � (Us′j)

)
,

rj =σ
(
Wrcj +Urs

′
j

)
,

zj =σ
(
Wzcj +Uzs

′
j

)
,

similarly, sj being the proposal hidden state,
rj and zj being the reset and update gate
activations with the trained model parameters
W,U,Wr,Ur,Wz,Uz .

Note that the two GRU blocks are not individu-
ally recurrent, recurrence only occurs at the level

of the whole cGRU layer. This way of combining
RNN blocks is similar to what is referred in the
literature as deep transition RNNs (Pascanu et al.,
2014; Zilly et al., 2016) as opposed to the more
common stacked RNNs (Schmidhuber, 1992; El
Hihi and Bengio, 1995; Graves, 2013).

deep output Given sj , yj−1, and cj , the out-
put probability p(yj |sj , yj−1, cj) is computed by
a softmax activation, using an intermediate repre-
sentation tj .

p(yj |sj ,yj−1, cj) = softmax (tjWo)

tj = tanh (sjWt1 +E[yj−1]Wt2 + cjWt3)

Wt1,Wt2,Wt3,Wo are the trained model pa-
rameters.

3 Training Algorithms

By default, the training objective in Nematus is
cross-entropy minimization on a parallel training
corpus. Training is performed via stochastic gra-
dient descent, or one of its variants with adaptive
learning rate (Adadelta (Zeiler, 2012), RmsProp
(Tieleman and Hinton, 2012), Adam (Kingma and
Ba, 2014)).

Additionally, Nematus supports minimum risk
training (MRT) (Shen et al., 2016) to optimize to-
wards an arbitrary, sentence-level loss function.
Various MT metrics are supported as loss function,
including smoothed sentence-level BLEU (Chen
and Cherry, 2014), METEOR (Denkowski and
Lavie, 2011), BEER (Stanojevic and Sima’an,
2014), and any interpolation of implemented met-
rics.

To stabilize training, Nematus supports early stop-
ping based on cross entropy, or an arbitrary loss
function defined by the user.

4 Usability Features

In addition to the main algorithms to train and
decode with an NMT model, Nematus includes
features aimed towards facilitating experimenta-
tion with the models, and their visualisation. Var-
ious model parameters are configurable via a
command-line interface, and we provide extensive

hello 0.946

0.056

world 0.957

0.100

World 0.010

4.632

. 0.030

3.609

! 0.928

0.175

... 0.014

4.384

<eos> 0.999

3.609

world 0.684

5.299

HI 0.007

4.920

<eos> 0.994

4.390

Hey 0.006

5.107

<eos> 0.999

0.175

0

Figure 1: Search graph visualisation for DE→EN
translation of "Hallo Welt!" with beam size 3.

documentation of options, and sample set-ups for
training systems.

Nematus provides support for applying single
models, as well as using multiple models in an en-
semble – the latter is possible even if the model
architectures differ, as long as the output vocabu-
lary is the same. At each time step, the probability
distribution of the ensemble is the geometric aver-
age of the individual models’ probability distribu-
tions. The toolkit includes scripts for beam search
decoding, parallel corpus scoring and n-best-list
rescoring.

Nematus includes utilities to visualise the atten-
tion weights for a given sentence pair, and to vi-
sualise the beam search graph. An example of the
latter is shown in Figure 1. Our demonstration will
cover how to train a model using the command-
line interface, and showing various functionalities
of Nematus, including decoding and visualisation,
with pre-trained models.4

5 Conclusion

(Sennrich et al., 2017)

We have presented Nematus, a toolkit for Neural
Machine Translation. We have described imple-
mentation differences to the architecture by Bah-
danau et al. (2015); due to the empirically strong
performance of Nematus, we consider these to be
of wider interest.

We hope that researchers will find Nematus an ac-
cessible and well documented toolkit to support

4Pre-trained models for 8 translation directions are avail-
able at http://statmt.org/rsennrich/wmt16_systems/

their research. The toolkit is by no means lim-
ited to research, and has been used to train MT
systems that are currently in production (WIPO,
2016).

Nematus is available under a permissive BSD li-
cense.

Acknowledgments

This project has received funding from the Euro-
pean Union’s Horizon 2020 research and innova-
tion programme under grant agreements 645452
(QT21), 644333 (TraMOOC), 644402 (HimL) and
688139 (SUMMA).

References

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural Machine Translation by Jointly
Learning to Align and Translate. In Proceedings of the
International Conference on Learning Representations
(ICLR).

Boxing Chen and Colin Cherry. 2014. A Systematic
Comparison of Smoothing Techniques for Sentence-
Level BLEU. In Proceedings of the Ninth Workshop on
Statistical Machine Translation, pages 362–367, Balti-
more, Maryland, USA.

Michael Denkowski and Alon Lavie. 2011. Meteor
1.3: Automatic Metric for Reliable Optimization and
Evaluation of Machine Translation Systems. In Pro-
ceedings of the Sixth Workshop on Statistical Machine
Translation, pages 85–91, Edinburgh, Scotland.

Salah El Hihi and Yoshua Bengio. 1995. Hierarchical
Recurrent Neural Networks for Long-Term Dependen-
cies. In Nips, volume 409.

Yarin Gal. 2015. A Theoretically Grounded Applica-
tion of Dropout in Recurrent Neural Networks. ArXiv
e-prints.

Alex Graves. 2013. Generating sequences with recur-
rent neural networks. arXiv preprint arXiv:1308.0850.

Hakan Inan, Khashayar Khosravi, and Richard Socher.
2016. Tying Word Vectors and Word Classifiers:
A Loss Framework for Language Modeling. CoRR,
abs/1611.01462.

Marcin Junczys-Dowmunt and Alexandra Birch. 2016.
The University of Edinburgh’s systems submission to
the MT task at IWSLT. In The International Work-
shop on Spoken Language Translation (IWSLT), Seat-
tle, USA.

Diederik Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Razvan Pascanu, Çağlar Gülçehre, Kyunghyun Cho,
and Yoshua Bengio. 2014. How to Construct Deep Re-
current Neural Networks. In International Conference
on Learning Representations 2014 (Conference Track).

Ofir Press and Lior Wolf. 2017. Using the Output Em-
bedding to Improve Language Models. In Proceedings
of the 15th Conference of the European Chapter of the
Association for Computational Linguistics (EACL), Va-
lencia, Spain.

Jürgen Schmidhuber. 1992. Learning complex, ex-
tended sequences using the principle of history com-
pression. Neural Computation, 4(2):234–242.

Rico Sennrich and Barry Haddow. 2016. Linguis-
tic Input Features Improve Neural Machine Transla-
tion. In Proceedings of the First Conference on Ma-
chine Translation, Volume 1: Research Papers, pages
83–91, Berlin, Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Edinburgh Neural Machine Translation Systems
for WMT 16. In Proceedings of the First Conference
on Machine Translation, Volume 2: Shared Task Pa-
pers, pages 368–373, Berlin, Germany.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017. Nematus: a Toolkit for Neural Machine Transla-
tion. In Proceedings of the Demonstrations at the 15th
Conference of the European Chapter of the Association
for Computational Linguistics, Valencia, Spain.

Shiqi Shen, Yong Cheng, Zhongjun He, Wei He, Hua
Wu, Maosong Sun, and Yang Liu. 2016. Minimum
Risk Training for Neural Machine Translation. In Pro-
ceedings of the 54th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), Berlin, Germany.

Milos Stanojevic and Khalil Sima’an. 2014. BEER:
BEtter Evaluation as Ranking. In Proceedings of the
Ninth Workshop on Statistical Machine Translation,
pages 414–419, Baltimore, Maryland, USA.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to Sequence Learning with Neural Networks.
In Advances in Neural Information Processing Sys-
tems 27: Annual Conference on Neural Information
Processing Systems 2014, pages 3104–3112, Montreal,
Quebec, Canada.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv e-prints, abs/1605.02688.

Tijmen Tieleman and Geoffrey Hinton. 2012. Lecture
6.5 - rmsprop.

WIPO. 2016. WIPO Develops Cutting-Edge
Translation Tool For Patent Documents, Oct.
http://www.wipo.int/pressroom/en/
articles/2016/article_0014.html.

Matthew D Zeiler. 2012. ADADELTA: an adaptive
learning rate method. arXiv preprint arXiv:1212.5701.

Julian Georg Zilly, Rupesh Kumar Srivastava, Jan
Koutník, and Jürgen Schmidhuber. 2016. Recurrent
highway networks. arXiv preprint arXiv:1607.03474.

