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NEMO5: A Parallel Multiscale Nanoelectronics
Modeling Tool

Sebastian Steiger, Michael Povolotskyi, Hong-Hyun Park, Tillmann Kubis,

and Gerhard Klimeck, Senior Member, IEEE

Abstract—The development of a new nanoelectronics modeling
tool, NEMO5, is reported. The tool computes strain, phonon spec-
tra, electronic band structure, charge density, charge current, and
other properties of nanoelectronic devices. The modular layout en-
ables a mix and match of physical models with different length
scales and varying numerical complexity. NEMO5 features mul-
tilevel parallelization and is based on open-source packages. Its
versatility is demonstrated with selected application examples: a
multimillion-atom strain calculation, bulk electron and phonon
band structures, a 1-D Schrödinger–Poisson simulation, a multi-
physics simulation of a resonant tunneling diode, and quantum
transport through a nanowire transistor.

Index Terms—Modeling, multiphysics, multiscale, nanoelec-
tronics, nanostructures, nonequilibrium Greens function formal-
ism (NEGF), NEMO, phonons, Poisson, quantum dot, quantum
well, quantum wire, Schrödinger, simulation, strain, transport.

I. INTRODUCTION

D
URING the past two decades, the central parts of semicon-

ductor devices shrank to a few or tens of nanometers and

a transition took place in the governing physics. Today’s tran-

sistors are believed to operate in a near-ballistic regime, where a

typical carrier experiences few scattering events during its jour-

ney across the device. The device operation is largely dictated

by the laws of quantum mechanics, the detailed atomistic com-

position of the devices, and nonequilibrium carrier distributions.

To control and optimize such nanoscale devices, physics-based

modeling is critical.

In the mid 1990s, NEMO-1D [1] became the first industrial-

strength tool to simulate quantum transport in an atomistic basis

and coherence loss in layered devices using the nonequilibrium

Green’s function formalism (NEGF). It enabled the quantitative

analysis and prediction of the characteristics of n-type resonant
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tunneling diodes (RTDs). An accurate electronic band structure

beyond effective mass, robust numerics and user-friendliness

were key to the success and use of the tool.

The semiempirical tight-binding model in NEMO-1D, based

on an atomistic representation of nanostructures, proved to yield

highly accurate results. However, the computational cost of big-

ger structures as well as the lack of a sound model for the influ-

ence of strain on the tight-binding Hamiltonian were unresolved

issues at the time. NEMO-3D [2] introduced real-space paral-

lelization techniques and strain models to compute quantum

states in strained 3-D systems containing millions of atoms [3].

Its improvements allowed for a detailed analysis of quantum-dot

emission spectra [4] and silicon impurity properties [5] amongst

others. Recently, the spatial decomposition has been generalized

to a 3-D scheme, termed NEMO-3D-Peta [6], to calculate prop-

erties of even larger Si:P systems for applications in quantum

computing.

The synthesis of spatial-domain decomposition and quantum

transport was achieved by the code OMEN [7]. With the ability

to employ effectively the largest computing resources available

[8], OMEN serves today as an active research tool to study post-

CMOS devices such as band-to-band tunneling devices [9], high

electron mobility transistors (HEMTs) [10] and nanowires [11].

The present tool, NEMO5, has been designed and developed

based on these prior experiences and key insights.

1) Atomistic effects like interface roughness, alloy disorder,

and impurities are critical to the quantitative understand-

ing of nanoelectronics devices. Thus, an atomistic struc-

ture representation is preferred for most investigations of

nanoelectronic devices.

2) Cluster computing is becoming ever more important as

processors become not faster but cheaper. Excellent scala-

bility and multilevel parallelization on distributed memory

machines are keys in order to find quantitative answers to

nanoelectronics’ most important questions. The previous

incarnations of NEMO and OMEN have shown that such

a task can be achieved.

NEMO5 aims to extend the previous efforts in the following

directions.

1) Concurrent with the device downscaling, a diversification

in the employed crystal growth directions and materials

is observed. Although silicon and the traditional III–V

alloys remain the workhorses of the industry, materials

with wurtzite, trigonal, and other crystal structures gain

importance as the attempts to achieve performance im-

provements become more creative. NEMO5 is designed

to be completely versatile in these regards.

1536-125X/$26.00 © 2011 IEEE
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2) Multiscale simulation, i.e., the ability to solve coupled

equations with varying accuracy and complexity on differ-

ent spatial domains, is becoming increasingly important.

Effects of long-range strain, the coupling of classical and

quantum transport domains, and the coupling of electrons,

phonons, and phonon transport are such examples.

3) The past decade has brought a wealth of professional and

mature open-source software packages that handle certain

aspects of device simulation. Employing these packages

has manifold advantages ranging from a well-developed

user base to the outsourcing of problems related to parallel

numerics and I/O.

4) Being a research code employed by changing generations

of students, documentation, clarity, and modularity of the

code are essential. Only when all these criteria are ful-

filled, can junior researchers act as builders of individual

modules and the code endure multiple generations of de-

velopers.

5) Special use cases of previous codes were made available

through the online simulation portal nanoHUB.org [12],

[13]. NEMO5 aims to unify the engines underlying these

tools to enable simplified user support and bug fixes as

well as to increase numerical performance.

6) The code is placed under a license that enables contribu-

tions from the research community as well as commercial

companies. It can, therefore, harvest the synergies that

arise from such collaborations.

There have been other successful projects in nanoelectron-

ics modeling. Nextnano [14] is a set of codes based on con-

tinuum models that is widely popular amongst experimental

researchers. In addition to Schrödinger–Poisson simulations,

it computes drift-diffusion-type transport equations, optoelec-

tronic properties such as emission and absorption spectra, and

magnetic field effects. Tibercad [15] incorporates both contin-

uum and atomistic models and couples them in a multiscale way.

Its features include semiclassical transport, heat transport, and

optical characteristics. NanoTCAD ViDES [16] is geared toward

carbon-based structures and thin nanowires. NEMO5 differen-

tiates itself in that it is targeted more toward purely electronic

(as opposed to optoelectronic) applications. It can both simulate

small structures on a personal workstation and large structures

on supercomputers by massive parallelization techniques using

an atomic-resolution full-band picture, which is often required

to obtain a meaningful description of the device.

This paper is organized as follows. Section II discusses the

simulator design as well as critical computational aspects, in

particular the employed external packages and the approach

to multilevel parallelization. Section III describes the currently

implemented physical models and a few typical application ex-

amples. Section IV discusses briefly the outreach effort made to

the nanoelectronics community before concluding remarks are

made in Section V.

II. SIMULATOR LAYOUT

This section provides an overview on the computational as-

pects of the simulator. NEMO5 is written entirely in C++

Fig. 1. NEMO5 simulation flow and employed packages.

and embeds a variety of portable open-source packages. It

has been ported to various platforms, amongst which a Cray

XT5 (jaguarpf.ccs.ornl.gov), a Sun Constellation Linux cluster

(ranger.tacc.utexas.edu), Red Hat Enterprise Linux clusters (e.g.

rossmann.rcac.purdue.edu), Debian Linux (nanoHUB.org), a

standard Kubuntu 10.10 workstation, and Microsoft Windows

32-bit.

A. Overall Simulation Flow

Fig. 1 sketches the simulation flow together with the em-

ployed external packages. We exemplify the flow for a self-

consistent Schrödinger–Poisson simulation in a strained system.

A simulation starts with the parsing of an input deck which pro-

vides information about the simulated structure as well as the

desired type of simulation and the parameters for all required

solvers. A solver is an individual module that performs a desig-

nated task, such as the solution of a specific physical equation.

Three solvers are chosen for the example in Fig. 1: a strain solver

(S1), a Schrödinger solver (S2), and an electrostatics solver (S3).

In a general initialization phase, geometrical domains are

constructed on which equations are defined. A simulation can

incorporate multiple conceptual domains and a mixture of con-

tinuum and atomistic representations. Every domain is parti-

tioned into regions of different materials. A solver defines its

equations on a solver-specific subset of a designated domain, its

active regions. The task of the solver will be carried out only

on activated regions. This enables multiscale simulations where

compute-intensive equations are solved on subsets of the entire

domain and simplified models are employed for the remaining

regions.
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Associated with every solver is a container where relevant

material parameters are stored, and a designated section in the

input deck where solver-specific parameters can be specified.

Moreover, all solvers implement a simulator-wide interface for

exchanging data with other solvers. This lets a solver become

an autonomous module that performs a clear-cut task and is able

to interact with other solvers. The modularity enables a user to

mix and match physical modules and an easy switching between

models by input deck instructions.

In the solution phase, some but not necessarily all solvers are

executed sequentially. It may happen that the sole purpose of a

solver is to provide input to another solver, while in other cases

one solver may steer another. This happens for the case chosen

in Fig. 1: the strain computation (S1) is done independently

and prior to the self-consistent iteration between the density

and the potential solvers. Here, we choose arbitrarily S3 (po-

tential) to steer S2 (density) in that the potential solver does the

self-consistent iteration as well as the solution of the Poisson

equation. After every sequential solve phase, the results can be

written to file.

B. Numerical Solvers

NEMO5 uses PETSc [17] for the solution of linear and non-

linear equation systems, and SLEPc [18] for eigenvalue prob-

lems (see Fig. 1). Both real- and complex-arithmetic versions

are employed simultaneously. PETSc and SLEPc are mature

and well-supported open-source projects that offer a plethora of

MPI-parallel numerical algorithms. They also provide interfaces

to other well-known packages like the parallel LU-factorization

packages MUMPS [19] and SuperLU [20] as well as the sparse

eigenvalue solver PARPACK [21]. libmesh [22] is employed for

a finite-element solution of the Poisson equation and for higher

order integration rules. Qhull [23] is used for the computation

of Brillouin zones. Finally, Tensor3D [24] is used for small

matrix-vector manipulations.

C. Input and Output

General steering of the simulator is done via a text file, the

input deck, which is parsed using boost::spirit.1 The material

parameters are stored externally in a database, again based on

boost::spirit, which is capable of parsing simple arithmetic ex-

pressions. This parsing functionality offers a convenient ap-

proach to analytical relationships and ternary or quaternary ma-

terial parameter interpolation. An example for this is the Varshni

formula [25] for the temperature dependence of the bandgap,

which is written into the material parameter file in a transparent

way. These small relationships can be conveniently and trans-

parently adjusted by users. Material parameters can optionally

be specified in the input deck to supersede the parameter file

value. This enables parameter variations without having to edit

or generate multiple parameter files.

Several output formats are available depending on the type of

data. Atomistic data are saved in the Silo2 or VTK3 format. At this

1http://www.boost.org
2https://wci.llnl.gov/codes/silo/
3http://www.vtk.org

time, VTK’s XML-based parallel file formats are not interfaced;

thus, Silo is the only choice for simulations with spatial paral-

lelization. Atomistic datasets can be visualized using the freely

available programs VisIt4 or Paraview.5 For selected tasks, other

formats, such as XYZ6, PDB7, and OpenDX8, are also available.

VTK is employed for continuum data such as the shape of a Bril-

louin zone. MATLAB-compatible text files are typically chosen

for 1-D datasets.

D. MPI Parallelization

The increased availability of multicore architectures and com-

puting clusters pushes the need for efficient, large-scale parallel

code. Many typical simulation tasks in nanoelectronics can be

parallelized well as they consist of a conglomerate of decou-

pled problems (for example, the computation of a band struc-

ture requires the solution of independent eigenvalue problems

for every wavevector). NEMO5 includes a general paralleliza-

tion class that handles the setup of multilevel parallelization

hierarchies and the distribution of problems onto the available

processes. This class can be utilized in all simulation types.

Together with spatial-domain decomposition techniques, this

enables the solution of large problems using thousands of cores.

Fig. 2 shows an example of the distribution of eight avail-

able MPI processes in a three-level parallelization hierarchy.

The three levels consist of the spatial-domain decomposition,

a variable V ∈ {V1 , V2} and for each setting of V , a variable

k ∈ {k1 , k2}. In general, the computational load of each k-point

may be known a priori to be unequal, as indicated by the values

L in the figure.

As a first step, a real-space partitioning of the simulation

domains is carried out (four partitions in Fig. 2). Spatial parti-

tioning is usually determined in advance by the user and enables

the treatment of much larger structures. Currently, 1-D and 3-D

regular grid partitioning is supported. A user may 1) choose the

exact positions of the partition boundaries or 2) just specify the

total extension of the device and a desired total number of pro-

cesses for the partitioning, leaving the partitioning to NEMO5.

In this case, the partition boundaries are determined from a

minimization of the interfaces between partitions.

In the example of Fig. 2, the two resulting replicas u1 and u2

can then be distributed onto the two remaining parallelization

levels in a top-down fashion by choosing between the different

strategies illustrated in Fig. 2(a) and (b). In the scatter strategy,

one parallelization point after the other is assigned to the MPI

process which has the least load, starting with the highest load

points. The loads are a priori estimates that are set by the devel-

oper or default to one unit per bottom parallelization node. In

the cluster strategy, which is available only for the intermediate

level V , processes are grouped together rather than distributed.

In the chosen example, this results in every point Vi retaining

two processes, which can then be used for parallelization on

4https://wci.llnl.gov/codes/visit/
5http://www.paraview.org
6http://openbabel.org/wiki/XYZ
7http://www.wwpdb.org/docs.html
8http://www.opendx.org
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Fig. 2. Parallelization and MPI process distribution strategies in NEMO5. In
the shown example 8, MPI processes are distributed onto a three-level par-
allelization scheme using a spatial-domain decomposition of four processes
per replica. (a) Mixed cluster-scatter strategy outperforms (b) the pure scatter
strategy in that the estimated computation time is less.

the level below. Conversely, any given process now needs to

solve two V -points sequentially rather than a single one. In the

shown example, this strategy is favorable as it provides a better

overall load balancing and shorter estimated simulation time, as

illustrated by the time-dependent load sketches.

The described approach constitutes a multilevel paralleliza-

tion module that is decoupled from the physical meaning of

the variable to be parallelized, provides good load balancing,

and can be utilized in many different types of simulations. To

demonstrate its utility, Fig. 3 shows the scaling of a quantum

transport simulation which employs a four-level parallelization

(voltages, energies, wavevectors, and contacts). In strong scaling

experiments, the total numerical complexity is kept constant as

the number of CPUs is increased. The result was obtained on the

supercomputer Jaguar and shows good, but not yet perfect scal-

ing behavior. Scaling with less than 1000 cores is near-perfect.

Fig. 3. Strong scaling behavior (solve time versus number of MPI processes
Npro c ) of a ballistic transport simulation in an ultrathin-body transistor. The
simulation consists of NV =12 voltage points for which NE =576 energy
points, Nk =15 wavevector points, and self-energies at Nc =2 contacts need
to be solved, resulting in a maximum parallelization of NV NE Nk Nc =
207, 360. The entire simulation needs 6e15 double-precision floating point
operations. Displayed is the solve time for Npo =2 Poisson iterations.

Efforts are under way to optimize the scaling behavior at higher

core numbers to the levels obtained by OMEN [8].

III. PHYSICAL MODELS

This section illustrates the physical models currently imple-

mented in NEMO5. Each model subsection also discusses the

validation process to ensure the implementation correctness.

The models presented here often exhibit different length

scales and different computational complexities. For example,

a calculation of an atomistically resolved strain profile can be

achieved for structures of the size (100 nm)3 using current re-

sources. The long-range strain will influence a central device

domain, as has been shown with NEMO-3D [26]. On the con-

trary, an investigation of incoherent carrier–carrier scattering

mechanisms on a micrometer length scale is neither feasible nor

desirable, as most of the system is more adequately described

by an incoherent and equilibrated carrier population. NEMO5

has the ability to couple together results obtained for domains of

varying size. Fig. 4 illustrates this multiscale and multiphysics

aspect. Electrostatics and effective-mass band structure mod-

els are continuum theories that have no concept of atoms as

such, but they can be mixed with a density or discretization

that is defined on an atomic lattice. Conversely, an atomistically

resolved electrostatic potential, necessary for tight-binding cal-

culations, can be obtained by interpolation from a coarser grid.

A coupling of quantum transport with drift-diffusion has been

demonstrated in NEMO-1D [27]. An example application for

the multiscale and multiphysics capabilities of NEMO5 will be

given in Section III-E.
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Fig. 4. Sketch of physical models included in NEMO5, illustrating the multi-
scale aspect.

Fig. 5. Graphical depiction of different crystal structures: (a) zincblende,
(b) simple-cubic, (c) wurtzite, (d) rhombohedral, and (e) graphene.

A. Crystal Structures

Atomistic simulations are at the core of the current capabil-

ities of NEMO5. Fig. 5 displays the available crystallographic

structures for such simulations. Diamond and zincblende struc-

tures (a) are the most common materials in nanoelectronics. The

simple-cubic crystal structure (b) can be employed for effective-

mass and other continuum theory simulations. Wurtzite-type

materials (c), in particular nitrides, are employed in high-power

applications as well as blue- and green-emitting optoelectronic

devices. Rhombohedral (trigonal) unit cells (d) are important for

thermoelectric devices. We have implemented the five-atomic

basis that corresponds to bismuth telluride (Bi2Te3). The list is

completed by carbon nanotubes and graphene (e).

The code is open for extensions to other crystal structures by

specification of their primitive unit cell. It is currently limited

to pseudomorphic arrangements, which can, however, contain

cavities.

Fig. 6. Biaxial strain ǫxx +ǫy y −2ǫz z in a dome-shaped InAs quantum

dot embedded in (60 nm)3 of GaAs, computed with the Keating VFF
model [28]. Visualization was done on the Dell XD Visualization cluster
longhorn.tacc.utexas.edu.

B. Strain and Phonons

Nanostructures composed of materials with different lattice

constants exhibit strain. NEMO5 is able to compute the strain-

induced displacements of atoms using an extended version of

the valence force field (VFF) model [29] in which the lat-

tice energy is expressed in terms of atomic bond angles and

lengths together with various microscopic spring constants. The

energy functional implemented in NEMO5 features contribu-

tions from stretching, bending, cross-stretch, stretch-bend, and

second-nearest-neighbor angle-angle interactions. These contri-

butions can be turned on and off by the user in a mix and match

fashion. For polar materials, the long-range Coulomb interac-

tion can be added in the case of 0-D (bulk) and 3-D (confined)

simulations.

Energy minimization is performed by a Newton iteration on

the nonlinear equation system ∇U(d1 , . . .) = 0, where U is the

energy functional expressed in the atomic displacement coor-

dinates di . Contrary to continuum elasticity theory, the energy

in the VFF model is only quasi-harmonic such that the solu-

tion process requires the solution of multiple linear equation

systems. The Jacobian of the Newton iteration is computed an-

alytically by taking the Hessian of the energy functional. This

ensures quadratic convergence in the proximity of the solution.

Even for large structures, the Newton iteration process typically

takes five iterations or less. The strain tensor at any atomic site

is obtained from the deformation of the tetrahedron constituted

by its nearest neighbors (see [30, (19)]).

As a simulation example, Fig. 6 shows the biaxial strain

ǫxx +ǫyy −2ǫzz occurring in a lens-shaped InAs quantum dot

embedded in a large GaAs matrix [4]. The dot sits on top of a

wetting layer and is surrounded by an InGaAs stress-reducing

layer modeled in virtual crystal approximation. The dot has a
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Fig. 7. Phonon dispersion of bulk α-GaN using the Keating VFF model aug-
mented with the long-range Coulomb interaction.

20-nm diameter and a 5-nm height. The Keating energy func-

tional using the parameters in [28] is used for these results. The

system features a total of over 10 million atoms, and the lin-

ear equation system is distributed over 96 MPI processes. Due

to the periodic boundary conditions on the sides and the free-

floating top surface, the system is ill conditioned and even with

preconditioning about 17 000 matrix-vector multiplications are

required for the iterative solutions of the linear equation sys-

tems, bringing the solution time up to about 3.5 h. Solution with

all-fixed surfaces takes only about 2 800 iterations or 25 min. In

both cases, four Newton iterations are needed until convergence

is reached.

The dynamical matrix of the lattice can be found from the

Hessian of the energy functional by multiplication with appro-

priate phase factors. NEMO5 uses this dynamical matrix to

compute phonon modes. Fig. 7 shows the bulk phonon disper-

sion of wurtzite-structure gallium nitride obtained from a Keat-

ing energy functional augmented by the long-range Coulomb

interaction [31].

Validation process for strain and phonon calculations: Bulk

phonon dispersions were validated for silicon [32], β-GaN [33],

and α-GaN [31], with literature figures having no visible devia-

tion from NEMO5 simulation results. Quadratic convergence in

the proximity of the solution is observed in the Newton iteration

of the strain relaxation, which validates the consistency between

the computed gradient and the Hessian of the energy functional.

The Hessian of the strain relaxation is computed by the same

code that computes the dynamical matrix, thus providing an ad-

ditional validation layer. Finally, biaxial strain computed in a

quantum well was shown to agree with analytical results in the

limit of small strain [30].

C. Electronic Structure

NEMO5 aims at the simulation of realistically extended

nanoscale devices. The semiempirical tight-binding formalism

using nearest-neighbor coupling offers an attractive compro-

Fig. 8. Band structure of bulk Bi2 Te3 calculated using the sp3 s∗d5 tight-
binding model and the parameters in [34].

mise between computational cost and accuracy of the obtained

results. It has been the workhorse of NEMO-1D, NEMO-3D,

and OMEN and has been extensively validated. The atomistic

representation of this method allows for an accurate treatment of

material interfaces, alloy disorder and randomness, and struc-

tural roughness. Crystal symmetries are represented correctly

and the obtained equations are much less numerically expen-

sive compared to ab initio methods.

Fig. 8 displays the bulk band structure of Bi2Te3 computed us-

ing nearest-neighbor sp3s∗d5 orbitals and parameters from [34].

NEMO5 is able to compute electronic structures in pseudomor-

phically grown nanostructures using any of the aforementioned

crystal systems (see Fig. 5). A compact and general expression

of the tight-binding Hamiltonian in the two-center approxima-

tion [35] enables the rapid addition of tight-binding models that

are not yet explicitly implemented.

An important aspect in tight-binding calculations of states in

finite structures is the passivation of dangling bonds at physical

surfaces. NEMO5 generalizes the general passivation scheme

of [36] to apply to all crystal structures. The method is also able

to treat nontrivial passivation atoms or molecules. This new

method will be described in more detail elsewhere.

The simulator also implements a simple effective mass Hamil-

tonian. The obtained quantum states can further be used to cal-

culate optical matrix elements and absorption spectra. A limited

version of this functionality is made available through the ed-

ucational tool Quantum Dot Lab on nanoHUB.org [37] (see

Section IV). Fig. 9 shows a visualization of electron states in

a spherical quantum dot obtained using this tool. nanoHUB

provides online simulation capabilities through standard web

browsers without the need of any additional installation steps.

Validation process for band structure calculations: A com-

parison of bulk tight-binding band structures against the litera-

ture [38]–[41] showed either no visible deviation against pub-

lished band structure graphs or, when available, agreement up

to numerical accuracy in figures of merit like band edges and
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Fig. 9. Visualization of s-, p- and d-like electron states in a spherical quantum
dot using Quantum Dot Lab [37]. This online tool currently uses the effective
mass approximation.

masses. Validation of bulk and nanowire dispersions against

previously developed code [2], [42] gave agreement up to nu-

merical errors as small as 10−11 eV. Effective mass results in

confined structures [37] were validated against textbook results.

D. Self-Consistent Schrödinger–Poisson Solver

The Poisson equation is solved using a standard finite-element

formulation with parallelepipedal elements being based on the

atomic unit cells. This equation can be coupled with a density

computation using a nonlinear iteration scheme [43] in which

a dependence of the density on the potential is predicted and

included as part of a Newton iteration. This iteration scheme is

often necessary to obtain convergence of the coupled potential-

density equation system. One important aspect is that the density

computation can be achieved using different physical models

in a separate solver: for example, a semiclassical equilibrium

density assuming locality and parabolic bands; a quantum equi-

librium density obtained from a solution of the closed-boundary

Schrödinger equation using a constant Fermilevel; a nonequi-

librium density using NEGF or open-boundary wavefunctions

(see Section III-E); or a mixture of these options (multiphysics

simulation).

Fig. 10 shows the self-consistent result obtained for a cross

section of an AlGaAs-GaAs HEMT in equilibrium using dif-

ferent models for the charge density. Switching between these

models is done easily by few modifications of the input deck.

Simulations of this type are made available through the 1-D

Heterostructure Tool on nanoHUB.org [44] (see Section IV).

Validation process for Schrödinger–Poisson calculations:

Several numerical solutions of the Poisson equation with ana-

lytical density profiles were validated against analytical results.

Effective mass solutions in doped bulk regions were shown to

Fig. 10. Self-consistent Poisson-density solution of an HFET structure using
different models for the density (blue: semiclassical, red: singleband effective
mass, green: multiband sp3 s∗d5 tight binding). The structure extends to 1 μm
where it has a Dirichlet boundary condition for the potential. This structure is
the default example of the 1-D Heterostructure Tool on nanoHUB.org [44].

Fig. 11. Transmission through two Si nanowires with cross-section (2.7 nm)2

using the 20-band sp3 s∗ d5 tight-binding model. The dangling bonds of the
physical wire surface are passivated.

agree with the expected analytical relation between Fermi level,

band edge, and free carrier density. The self-consistent solu-

tion displayed in Fig. 10 was validated with an independently

developed code (an earlier version of [44]).

E. Transport

NEMO5 currently implements two approaches to quantum

transport. The first approach [42] uses open-boundary wave

functions and can be applied only in ballistic simulations. In the

absence of scattering, this formalism is physically equivalent to

Green’s functions and outperforms NEGF simulations as only

linear solves of a sparse matrix with multiple right-hand-side

vectors are needed [42]. Fig. 11 shows the transmission through

two Si nanowires with a cross section of (2.7 nm)2 (5 × 5 cubic
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unit cells) computed using the sp3s∗d5 tight-binding model with

spin-orbit coupling. The bending of the second nanowire results

in a reduction of the transmission and can be interpreted as a

quantum resistance.

The second implemented approach to quantum transport uses

NEGF [45], a many-body formalism capable of incorporating

scattering and coherence loss. When being used in conjunction

with a tight-binding Hamiltonian, the resulting computational

cost is very large [46] and must be tackled with multilevel par-

allelization techniques. The recursive Green’s function (RGF)

algorithm, a numerical technique to compute necessary compo-

nents of Green functions in two-terminal devices while avoid-

ing explicit full matrix inversion, was generalized during the

development of NEMO5 to multiple terminals and arbitrary ge-

ometric shapes and implemented in a highly parallelizable way.

This opens up the investigation of structures with advanced ge-

ometries, such as the contact injecting regions in HEMTs, and

multiterminal effects like MOSFET gate leakage. Details of this

generalized RGF method will be published elsewhere.

Electron scattering plays an important role in the analysis

of transport characteristics. Phase-conserving scattering mech-

anisms, such as interface roughness scattering or random al-

loy scattering, can be treated by direct modification of the

tight-binding Hamiltonian. The single currently implemented

phase-breaking scattering mechanism is electron–phonon scat-

tering based on the deformation-potential description of [47].

This is the dominant mechanism in nonpolar materials such

as Si.

It was shown in the past that sophisticated quantum transport

models can be successfully coupled with simpler, less demand-

ing continuum models to obtain reasonably accurate results in

a much shorter amount of time [27], [48]. An example of such

a multiscale, multiphysics simulation is shown in Fig. 12. At

low and moderate voltages, the current flow through an RTD

is governed by a single coherent quantum state bound to the

central region. This state needs to be well resolved in energy

and requires an energy discretization that adapts to the reso-

nance. The regions outside the barriers are dominated by high

carrier density, equilibration, and coherence loss. A full quan-

tum simulation of this device would hence consist of an NEGF

calculation that includes electron–electron and electron–phonon

interactions in order to fill the triangular-shaped region in front

of the first barrier. This notch has been shown to contribute

significantly to the current [1], [48].

Instead of such an extremely expensive calculation, it is

preferable to limit the region in which NEGF calculations are

carried out to the well with its enclosing barriers and assume

sufficient equilibration and coherence loss such that the inject-

ing quantum states in the emitter and the collector (outside the

RTD barriers) can be treated in local equilibrium and broadened

by an empirical scattering rate [1], [48]. Hence, the exterior

vicinity of the barriers can be treated with equilibrium Green’s

functions which account for the quantum density of states with-

out the need of solving additional scattering self-energies. An

additional approximation can be introduced by ignoring the

quantum nature of the electrons altogether in the contact re-

gions for the Poisson solution. The electrostatic potential can

Fig. 12. Multiscale, multiphysics simulation of an RTD. (a) Sketch of the
structure and involved physical regions and models for the electrostatic potential,
charge, density of states (DOS) and current. The conduction band edge is shown
at an applied voltage of 0.2 V. (b) Current–voltage characteristics. Solid line:

Potential self-consistent with semiclassical density outside the barriers (termed
Thomas-Fermi model). Dashed line: Potential self-consistent with semiclassical
density outside the barriers and quantum density inside the barriers (termed
Hartree model).

then be obtained from a fast self-consistent calculation with the

semiclassical charge and serve as a fixed quantity for a one-step,

non-self-consistent NEGF calculation of the current. The result-

ing simulation takes only seconds on a single CPU in the case

of an effective mass basis and can already provide substantial

insight into the mechanisms governing RTDs. Fig 12(b) shows

the obtained current–voltage characteristics obtained with and

without self-consistent inclusion of the quantum density in the

potential, assuming an effective mass band model. These results

can be duplicated in the tool RTD Simulation with NEGF on

nanoHUB.org [49].

Finally, we show an example of a self-consistent calcula-

tion of ballistic quantum transport in an Si nanowire transistor

(NWFET) in Fig. 13. Such devices are considered as potential

candidates for the post-CMOS age due to excellent electrostatic

control [11]. In the example, the cross section of the electronic
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Fig. 13. Self-consistent calculation of transport through an Si nanowire tran-
sistor. (a) Electrostatic potential and (b) charge density obtained at Vg = 0.2 V.
This ballistic result was obtained with the open-boundary wavefunction formal-
ism using an sp3 s∗d5 tight-binding band model excluding spin-orbit coupling.
The electron density computation is restricted the silicon region.

domain is a square of the size (3 nm)2 , surrounded by ox-

ide with an extension of (6 nm)2 . The length of the device is

30 nm. A trigate of 11-nm length is located at the three sur-

faces in the middle of the structure [see green-colored top area

in Fig. 13(a)]. The high confinement and multivalley interac-

tions of electrons necessitate an atomistic full-band description

of the device. Here, the spinless sp3s∗d5 model is chosen for

the device as it is dominated by the conduction band and not

significantly influenced by the spin-orbit interaction. Even the

five-band sp3s∗ model cannot capture the correct physics as it

yields incorrect bands in the vicinity of the X-valleys (more

specifically, the band structure is flat between the X and W

points of the Brillouin zone [38]). Simulations of this type are

computationally demanding and need to be carried out on par-

allel computers. The quantum transport calculation is carried

out only in the silicon, with hard-wall boundary condition at

the Si/SiO2 interface. The gate voltage has been normalized to

a condition of Ioff (Vg =0V ) = 0.1 A
m

. A source–drain bias of

0.5 V is applied.

Validation process for transport calculations: Mode onsets in

nanowire transmission spectra were compared to solutions of a

periodic Schrödinger equation. The transmission over a step-like

barrier was shown to agree with the analytical textbook formula

for the effective mass case. The current–voltage characteristics

of Fig. 12 coincide with results obtained by NEMO-1D [1] up

to numerical errors which are not visible on the scale of the

figure. A standard n+ /n/n+ simulation example was shown to

agree with the literature [45], with no visible deviation in the

density, current–voltage, and potential graphs. Self-consistent

current–voltage characteristics of an ultrathin-body transistor

were shown to agree with OMEN, although small deviations

remain that are likely to be due to differences in the simulated

structure.

IV. COMMUNITY OUTREACH AND AVAILABILITY

NEMO5 is placed under licenses that enable free distribution

and collaboration with academics. Distribution of the source

code is limited to close collaborators at this stage of develop-

ment. Certain use cases are accessible without the need of any

installation process through the portal nanoHUB.org [12]. At

the time of writing, this includes an educational tool to calcu-

late electronic states and absorption curves in quantum dots of

different shapes using the effective mass approximation (Quan-

tum Dot Lab [37]), a 1-D Schrödinger–Poisson solver (1-D

Heterostructure Tool [44]), a tool to visualize Brillouin zones

(Brillouin Zone Viewer [50]), and a tool to visualize unit cells

and lattices (Crystal Viewer Tool [51]). Two more tools (RTD

Simulation with NEGF [49] and Band Structure Lab [52]) are

under development to have their engines replaced with NEMO5.

V. CONCLUSION

This paper presents NEMO5, a multipurpose simulation tool

for nanoelectronics problems ranging from quick educational

exercises to massively parallel simulations for state-of-the-art

research. The selected simulation examples demonstrate the

versatility of the code regarding the treatment of lattices with

different crystal structures and different problem dimensional-

ities. The majority of implemented physical models currently

uses an atomistic structure representation, although this is not

a principal limitation of the code. Within the atomistic picture,

current capabilities include large-scale simulations of strain,

polarization, quantum states, self-consistent potential-density

simulations, and quantum transport.

Future work will include continued refinement and optimiza-

tion of existing functionality, focusing on user needs. It will also

target the implementation of additional scattering mechanisms,

more diverse nonpseudomorphic structures, and additional con-

tinuum models to extend multiscale simulation capabilities. Fi-

nally, novel techniques will be explored to reduce computational

complexity.

During the development, emphasis was put on code docu-

mentation, validation, and modularity to facilitate transitions

of developers and students. The exclusive reliance on portable

open-source packages and the license enable academic institu-

tions as well as industrial partners to use and extend the tool.

The modularity enables a user to mix and match physical models

and perform multiscale, multiphysics simulations. It also per-

mits developers to extend or add modules while benefiting from

access to existing input/output, numerical solver, paralleliza-

tion, and geometry construction modules. It is the hope of the
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developers that these synergetic effects give the code the poten-

tial to become a widely used tool throughout both the modeling

community and experimental groups, pushing further the field

of nanoelectronics.
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