
METHODS ARTICLE
published: 06 January 2014

doi: 10.3389/fninf.2013.00048

Nengo: a Python tool for building large-scale functional
brain models

Trevor Bekolay*, James Bergstra , Eric Hunsberger , Travis DeWolf , Terrence C. Stewart ,
Daniel Rasmussen , Xuan Choo , Aaron Russell Voelker and Chris Eliasmith

Centre for Theoretical Neuroscience, University of Waterloo, Waterloo, ON, Canada

Edited by:

Andrew P. Davison, Centre National

de la Recherche Scientifique, France

Reviewed by:

Marc De Kamps, University of

Leeds, UK

Ján Antolík, Centre National de la

*Correspondence:

Trevor Bekolay, Centre for

Theoretical Neuroscience, David R.

Cheriton School of Computer

Science, University of Waterloo,

200 University Avenue West,

Waterloo, ON N2L 3G1, Canada

e-mail: tbekolay@uwaterloo.ca

Neuroscience currently lacks a comprehensive theory of how cognitive processes can be

implemented in a biological substrate. The Neural Engineering Framework (NEF) proposes

one such theory, but has not yet gathered significant empirical support, partly due to the

technical challenge of building and simulating large-scale models with the NEF. Nengo is a

software tool that can be used to build and simulate large-scale models based on the NEF;

currently, it is the primary resource for both teaching how the NEF is used, and for doing

research that generates specific NEF models to explain experimental data. Nengo 1.4,

which was implemented in Java, was used to create Spaun, the world’s largest functional

brain model (Eliasmith et al., 2012). Simulating Spaun highlighted limitations in Nengo 1.4’s

ability to support model construction with simple syntax, to simulate large models quickly,

and to collect large amounts of data for subsequent analysis. This paper describes Nengo

2.0, which is implemented in Python and overcomes these limitations. It uses simple and

extendable syntax, simulates a benchmark model on the scale of Spaun 50 times faster

than Nengo 1.4, and has a flexible mechanism for collecting simulation results.

Keywords: neural engineering framework, nengo, Python, neuroscience, theoretical neuroscience, control theory,

simulation

1. INTRODUCTION

Modeling the human brain is one of the greatest scientific chal-

lenges of our time. Computational neuroscience has made sig-

nificant advancements from simulating low-level biological parts

in great detail, to solving high-level problems that humans find

difficult; however, we still lack a mathematical account of how

biological components implement cognitive functions such as

sensory processing, memory formation, reasoning, and motor

control. Much work has been put into neural simulators that

attempt to recreate neuroscientific data in precise detail with

the thought that cognition will emerge by connecting detailed

neuron models according to the statistics of biological synapses

(Markram, 2006). However, cognition has not yet emerged from

data-driven large scale models, and there are good reasons to

think that cognition may never emerge (Eliasmith and Trujillo,

2013). At the other end of the spectrum, cognitive architectures

(Anderson et al., 2004; Aisa et al., 2008) and machine learning

approaches (Hinton and Salakhutdinov, 2006) have solved high-

dimensional statistical problems, but do so without respecting

biological constraints.

Nengo1 is a neural simulator based on a theoretical framework

proposed by Eliasmith and Anderson (2003) called the Neural

Engineering Framework (NEF). The NEF is a large-scale mod-

eling approach that can leverage single neuron models to build

neural networks with demonstrable cognitive abilities. Nengo and

1Nengo is available for download through the Python Package Index at

https://pypi.python.org/pypi/nengo. The full source is available at https://

github.com/ctn-waterloo/nengo.

the NEF has been used to build increasingly sophisticated neu-

ral subsystems for the last decade [e.g., path integration (Conklin

and Eliasmith, 2005), working memory (Singh and Eliasmith,

2006), list memory (Choo and Eliasmith, 2010), inductive rea-

soning (Rasmussen and Eliasmith, 2014), motor control (DeWolf

and Eliasmith, 2011), decision making (Stewart et al., 2012)]

culminating recently with Spaun, currently the world’s largest

functional brain model (Eliasmith et al., 2012). Spaun is a net-

work of 2.5 million spiking neurons that can perform eight

cognitive tasks including memorizing lists and inductive reason-

ing. It can perform any of these eight tasks at any time by being

presented the appropriate series of images representing the task to

be performed; for example, sequentially presenting images con-

taining the characters A3[1234] instructs Spaun to memorize the

list 1234. If asked to recall the memorized list, Spaun generates

motor commands for a simulated arm, writing out the digits

1234. While the tasks that Spaun performs are diverse, all of the

tasks use a common set of functional cortical and subcortical

components. Each functional component corresponds to a brain

area that has been hypothesized to perform those functions in the

neuroscientific literature.

The NEF provides principles to guide the construction of

a neural model that incorporates anatomical constraints, func-

tional objectives, and dynamical systems or control theory.

Constructing models from this starting point, rather than from

single cell electrophysiology and connectivity statistics alone,

produces simulated data that explains and predicts a wide vari-

ety of experimental results. Single cell activity (Stewart et al.,

2012), response timing (Stewart and Eliasmith, 2009), behavioral

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 1

NEUROINFORMATICS

Recherche Scientifique, France

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2013.00048/abstract
http://www.frontiersin.org/people/u/40517
http://community.frontiersin.org/people/JamesBergstra/126349
http://www.frontiersin.org/people/u/119597
http://community.frontiersin.org/people/TravisDeWolf/119606
http://www.frontiersin.org/people/u/2589
http://community.frontiersin.org/people/DanielRasmussen/129181
http://www.frontiersin.org/people/u/129172
http://www.frontiersin.org/people/u/121847
http://www.frontiersin.org/people/u/2498
mailto:tbekolay@uwaterloo.ca
https://pypi.python.org/pypi/nengo
https://github.com/ctn-waterloo/nengo
https://github.com/ctn-waterloo/nengo
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

errors (Choo and Eliasmith, 2010), and age-related cognitive

decline (Rasmussen and Eliasmith, 2014), of NEF-designed mod-

els match physiological and psychological findings without being

built specifically into the design. These results are a consequence

of the need to satisfy functional objectives within anatomical and

neurobiological constraints.

The transformation principle of the NEF proposes that the

connection weight matrix between two neural populations can

compute a non-linear function, and can be factored into two

significantly smaller matrices. By using these factors instead of

full connection weight matrices, NEF-designed models are more

computationally efficient, which allows Nengo to run large-scale

neural models on low-cost commodity hardware.

In order to make Nengo more simple, extensible, and fast,

we have rewritten Nengo 2.0 from scratch in Python, leverag-

ing NumPy (Oliphant, 2007) for manipulating large amounts

of data. While NumPy is its only dependency, Nengo con-

tains optional extensions for plotting if Matplotlib is available

(Hunter, 2007) and for interactive exploration if IPython is avail-

able (Pérez and Granger, 2007). Since Nengo only depends on

one third-party library, it is easy to integrate Nengo models in

arbitrary CPython programs, opening up possibilities for using

neurally implemented algorithms in web services, games, and

other applications.

Nengo 2.0 has a simple object model, which makes it easy to

document, test, and modify. Model creation and simulation are

decoupled, allowing for models to be run with other simulators

as drop-in replacements for Nengo 2.0’s platform-independent

reference simulator. To date, we have implemented one other

simulator that uses PyOpenCL (Klöckner et al., 2012) to take

advantage of a GPU or multicore CPU. The OpenCL simula-

tor can simulate large models on the scale of Spaun at least

50 times faster than Nengo 1.4 using inexpensive commodity

hardware.

In all, Nengo 2.0 provides a platform for simulating larger and

more complex models than Spaun, and can therefore further test

the NEF as a theory of neural computation.

2. NEURAL ENGINEERING FRAMEWORK (NEF)

The Neural Engineering Framework (NEF; Eliasmith and

Anderson, 2003) proposes three quantitatively specified princi-

ples that enable the construction of large-scale neural models.

Briefly, this mathematical theory defines:

1. Representation: A population of neurons collectively repre-

sents a time-varying vector of real numbers through non-

linear encoding and linear decoding.

2. Transformation: Linear and non-linear functions on those

vectors are computed by linear decodings that are used to

analytically compute the connections between populations of

neurons.

3. Dynamics: The vectors represented by neural populations

can be considered state variables in a (linear or non-linear)

dynamical system, and recurrent connections can be com-

puted using principle 2.

Figure 1 provides a graphical summary of these three principles.

2.1. REPRESENTATION

Information is encoded by populations of neurons. The NEF rep-

resents information with time-varying vectors of real numbers,

allowing theorists to propose possible neural computations by

manipulating that information using conventional mathematics.

The NEF suggests that we can characterize the encoding of those

vectors by injecting specific amounts of current into single neu-

ron models based on the vector being encoded. This drives the

neuron, causing it to spike. With enough neurons, the originally

encoded vector can be estimated through a decoding process. This

idea is a kind of population coding (Georgopoulos et al., 1986;

Salinas and Abbott, 1994), but generalized to vectors of arbitrary

dimensionality.

In the encoding process, the input signal drives each neuron

based on its tuning curve, which describes how likely that neu-

ron is to respond to a given input signal. The tuning curve is a

function of the gain of a neuron (how quickly the activity rises),

the bias (the activity of a neuron given no signal), and the encod-

ing weight (the direction in the input vector space that causes the

neuron to be the most active). Importantly, tuning curves can

be determined for any type of neuron, and therefore the encod-

ing process (and the NEF as a whole) is not dependent on any

particular neuron model.

In the decoding process, the spike trains are first filtered with

an exponentially decaying filter accounting for the process of a

spike generating a postsynaptic current. Those filtered spike trains

are summed together with weights that are determined by solving

a least-squares minimization problem. Note that these decoding

weights do not necessarily depend on the input signal; instead, we

typically perform this minimization on points sampled from the

vector space that the population represents.

In Nengo, the representation principle can be seen in the

Ensemble object (see section 3.1).

2.2. TRANSFORMATION

Neurons communicate through unidirectional connections called

synapses. When a neuron spikes, it releases neurotransmitter

across the synapse, which typically causes some amount of cur-

rent to be imparted in the postsynaptic (downstream) neuron.

Many factors affect the amplitude of the imparted current; we

summarize those factors in a scalar connection weight repre-

senting the strength of the connection between two neurons. In

order to compute any function, we set the connection weights

between two populations to be the product of the decoding

weights for that function in the first population, the encod-

ing weights for the downstream population, and any linear

transform.

This implies that the NEF makes a hypothesis about synap-

tic weight matrices; specifically, that they have low rank, and

can be factored into encoders, decoders, and a linear transform.

Note that, in practice, we rarely use the full connection weight

matrix, and instead store the encoders, decoders, and linear trans-

form separately (i.e., the three factors of the connection weight

matrix). This provides significant space and time savings during

simulation.

In Nengo, the transformation principle can be seen in the

Connection object (see section 3.3).

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

FIGURE 1 | Summary of the three principles of the Neural Engineering

Framework (NEF). (A) By the representation principle, signals are

encoded in neural populations based on the tuning curve of each neuron

(top). The tuning curve describes how active a neuron is given some input

signal. If we drive the eight neurons in the top panel with the input signal

in the middle panel, we see the spike trains in the bottom panel. (B) By

the representation principle, the spiking activity of a neural population can

be decoded to recover the original input signal, or some transformation of

that input signal. First, the firing pattern shown in the top panel is filtered

with a decaying exponential filter (middle panel). The filtered activity is

then summed together with a set of weights that approximates the input

signal (bottom panel, green) and the cosine of the input signal (bottom

panel, purple). (C) A sine wave is encoded by population A (top panel); the

negative of that signal is projected to population B (middle panel) and the

square of that signal is projected to population C (bottom panel). By the

transformation principle, populations of neurons can send signals to

another population by decoding the desired function from the first

population and then encoding the decoded estimate into the second

population. These two steps can be combined into a single step by

calculating a set of weights that describe the strength of the connections

between each neuron in the first population and each neuron in the second

population. (D) A neurally implemented dynamical system has negative

feedback across its two dimensions, resulting in a harmonic oscillator. The

oscillator is plotted across time (top) and in state space (bottom). By the

dynamics principle, signals being represented by population of neurons can

be thought of as state variables in a dynamical system.

2.3. DYNAMICS

While feedforward vector transformations suffice to describe

some neural systems, many require persistent activity through

recurrent connections. When recurrent connections are intro-

duced, the vectors represented by neural populations can be

thought of as state variables in a dynamical system. The equa-

tions governing dynamics in such a system can be designed and

analyzed using the methods of control theory, and translated

into neural circuitry using the principles of representation and

transformation.

In Nengo, dynamics can be seen when an Ensemble is con-

nected to itself. Several of the Networks implemented in Nengo

also exhibit dynamics.

2.4. NEF AND NENGO

Large models can be built by using the principles of the NEF

as connectable components that describe neural systems, just

as a circuit diagram describes an electronic circuit. The goal of

Nengo is to enable modelers to create and connect those compo-

nents. Ensembles describe what information is being represented,

and connections describe how that information is transformed.

Nengo implements those descriptions with its object model, and

translates those objects to a network of interconnected neurons,

situating it as a “neural compiler” that translates a high-level

functional model to a low-level neural model.

3. NENGO OBJECT MODEL

To describe an NEF model, Nengo defines six core objects.

1. The Ensemble contains a group of neurons that encodes a

time-varying vector of real numbers.

2. The Node represents non-neural information, such as sensory

inputs and motor outputs.

3. The Connection describes how nodes and ensembles are

connected.

4. The Probe gathers data during a simulation for later analysis.

5. The Network encapsulates a functionally related group of

interconnected nodes and ensembles.

6. The Model encapsulates a Nengo model.

These six objects contain symbolic information about a Nengo

model, enabling a strict division between model construction and

simulation. This allows a Nengo model to be run on multiple

simulators.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 3

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

3.1. ENSEMBLE

An Ensemble is a population of neurons that represents infor-

mation in the form of a real-valued vector. When creating an

ensemble, the user must provide a name, an object that describes

a population of neurons, and the dimensionality (i.e., the length

of the vector it represents). For example,

nengo.Ensemble(nengo.LIF(50,

tau_ref=0.002), 1)

describes an ensemble that uses 50 leaky integrate-and-fire neu-

rons (Lapicque, 1907) with a 2 ms refractory period to represent

a one-dimensional vector. The nengo.LIF class defines the

parameters of the LIF neurons symbolically so that each simulator

can compute the LIF non-linearity efficiently. The neuron model

used by the ensemble is changed by passing in a different symbolic

neuron object; however, the simulator used must be aware of that

type of neuron.

Other attributes of the Ensemble, such as its encoding

weights, can be specified either as keyword arguments to the

Ensemble constructor, or by setting an attribute on the instan-

tiated object. While an ensemble makes a hypothesis about

the information being represented by neurons, these additional

attributes allow modelers to set neural parameters according to in

vivo electrophysiology data. If these attributes are not set, Nengo

attempts to maintain neurobiological constraints by using default

parameters consistent with neocortical pyramidal cells.

3.2. NODE

A Node contains a user-defined Python function that directly

calculates the node’s outputs from its inputs at each timestep.

Available inputs include the simulator timestep, the decoded out-

put of an ensemble, or the output of another node. However,

unlike ensembles, there are no constraints on the type of function

that the node computes. A node can track any number of variables

internally, and use the state of those variables when computing

its function. For example, it can interact directly with hard-

ware, and interface with other programs using shared memory or

sockets.

Generally, a node represents information that cannot be

decoded from an ensemble. As a simple example, a node can be

used to model sensory stimuli that are predefined functions of

time. As a more sophisticated example, a node can be used to

model a complex experimental environment that both provides

input to the neural model and responds to the neural model’s

output. Nodes allow Nengo to represent neural components, the

body that those components drive, and the environment that

body interacts with in a single unified model. This makes Nengo

models more explicit, and enables simulators to control and

optimize node execution.

3.3. CONNECTION

Ensembles and nodes can be connected together in several ways.

A Connection contains symbolic information about how two

objects are connected. That information either includes a factored

or full connection weight matrix, or includes enough information

to generate weights during simulation.

When an ensemble is connected to another object, the con-

nection implements the NEF’s transformation principle. In other

words, the Connection allows ensembles to project encoded

information—or a transformation of that information—to

another ensemble or node. This functionality is what enables

Nengo models to appear conceptual, even though the under-

lying implementation can translate that connection to synaptic

weights.

However, neurons in an ensemble can be directly connected to

neurons in another ensemble with synaptic connection weights

by connecting an ensemble’s neurons directly to another ensem-

ble’s neurons [e.g., nengo.Connection(ens1.neurons,

ens2.neurons, ...)]. All connections can be temporally

filtered, and the weights involved in the connection can be modi-

fied over time with learning rules.

3.4. PROBE

A Probe monitors a particular part of another object in order

to record its value throughout a simulation. Nengo models con-

tain many variables that change over time, including membrane

potentials, spike events, and encoded vectors. It is resource inten-

sive to store the values of large numbers of variables at each

timestep, and it is also not necessary, as typically only a small

fraction of these variables are analyzed after a simulation. The

modeler chooses which variables to record by creating a probe

object.

Like nodes, a probe could be implemented outside of the neu-

ral model. However, doing so requires detailed knowledge of

the simulator, and can incur significant overhead if not imple-

mented carefully. For these reasons, we have made probes a core

component of a Nengo model, and are therefore explicit and opti-

mizable. Further, since probes are described at a symbolic level,

the underlying implementation can output probed data in many

different formats. Currently, simulators store probed data directly

in memory, but the ability to store data in files or to stream data

directly to sockets is forthcoming.

3.5. NETWORK

A network is a collection of interconnected ensembles and nodes.

Networks provide a way of grouping together a set of con-

nected objects that collectively perform a complex function.

Encapsulating them in a network makes its purpose explicit

and hides the complexity of the function (see section 5.3

for an example). This grouping can be hierarchical networks.

Network is a base class designed to be subclassed by mod-

elers. The code that creates and connects several objects in a

model can be grouped into a Network subclass with only

minor changes. Nengo comes with several networks already

implemented which can be used directly, or can be used as

a template for modelers wanting to implement their own

networks.

As a simple example, the Integrator network is composed

of only one recurrently connected ensemble. By encapsulating

that logic in a network, the purpose of that ensemble is made

explicit. As a complex example, the BasalGanglia network

is composed of five groups of ensembles connected with several

specific functions that together implement a “winner-take-all”

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 4

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

circuit. Encapsulating the code to create those ensembles and

connections in a network makes a complicated section of code

easy to include in many different models.

3.6. MODEL

The Model object is a container for Nengo objects. Conceptually,

they are similar to networks, but are privileged in that simula-

tors must have a model passed into their constructor, making the

Model akin to a network that contains all of the objects defined

for a Nengo model. A simulator’s job is to simulate a model.

4. NENGO SIMULATORS

Decoupling model creation and simulation has been done previ-

ously by PyNN (Davison et al., 2008). In PyNN, the same Python

script can be used to run a model on four different simulators.

Nengo follows this programming model by decoupling neural

model creation and simulation, which enables Nengo simula-

tors to allocate memory and schedule computations in the most

efficient ways possible. Simulators are given a Model as an argu-

ment; this Model is a static symbolic description. The simulator

can take the model description and build whatever data structures

are best suited to implement the simulation.

We have implemented a platform-independent reference sim-

ulator as an example for simulator designers. This simulator is

not a specification; any object that accepts a Nengo Model as an

argument is considered a Nengo simulator. To show that model

creation and simulation are fully decoupled, we have also imple-

mented an OpenCL simulator that uses PyOpenCL to parallelize

computations on GPUs and multicore CPUs. However, in the

remainder of this section, we will describe the reference simula-

tor implementation; the OpenCL simulator shares many of the

reference simulator’s architectural choices, but the details of its

implementation include OpenCL-specific optimizations that are

beyond the scope of this paper.

4.1. NENGO REFERENCE SIMULATOR

The Nengo reference simulator makes a copy of the objects in the

model and fills in many of the details not specified at the sym-

bolic level. For example, encoders are often not specified when

the model is created, so the reference simulator randomly chooses

them as unit vectors in the space that the ensemble is represent-

ing. After filling in these details, the reference simulator builds a

reduced set of objects that describe the computations occurring in

the model. Specifically, the simulator uses signals, which represent

values, and operators, which represent computations performed

on signals. Figure 2 shows the signals and operators used in a

simple model.

4.1.1. Signals

A Signal represents any number that will be used by the simu-

lator. Several signals are created for each high-level Nengo object;

for example, for each ensemble, the simulator creates signals that

represent the high-level input signal that will be encoded to input

currents, and the encoding weights. The ensemble also contains

a neural population, for which the simulator creates signals that

represent input currents, bias currents, membrane voltages, and

refractory times for each cell.

As can be seen in Figure 2, the signals used in a Nengo simu-

lation can be conceptually grouped into those that track low-level

neural signals, and those that track high-level signals defined by

the NEF. Other neural simulators only track low-level signals.

Operators commonly map between related low- and high-level

signals.

4.1.2. Operators

Operators represent computations to be performed on signals on

each timestep. Once the model has been built, only a small set of

mathematical operations are necessary for simulation.

Many of the computations done in a simulation are lin-

ear transformations (e.g., the decoding and encoding steps in

Figure 2), and therefore can share a common operator; this

is helpful for parallelizing computations. Non-linear functions,

however, require specific operators. Each supported neuron

model and learning rule has an associated operator. The simu-

lator explicitly maps from symbolic neuron objects in ensembles

and from symbolic learning rule objects in connections to their

associated operators.

4.1.3. Reference simulator

Before the first timestep, the reference simulator

1. fills in unspecified details of high-level objects,

2. translates high-level objects to a set of signals and operators,

3. allocates NumPy arrays for each signal, and

4. sorts operators based on a dependency graph.

On each timestep, the reference simulator

1. computes each operator in order, and

2. copies probed signals to memory.

Figure 2 depicts the state of the reference simulator after two

timesteps of a simple model; all subsequent timesteps perform the

same operations as the first two.

5. EXAMPLE SCRIPTS

The scripting interface provides a simple way to add Nengo

objects to a model, simulate that model, and extract data collected

during the simulation. Rather than list the functions in the script-

ing interface, we instead provide three concrete example scripts

that highlight the types of models that can be built with Nengo.

We have also implemented two of these three examples in PyNN

to provide a comparison for the length and clarity of the code

describing the models.

5.1. COMMUNICATION CHANNEL

As detailed in section 2, NEF models are based on the princi-

ples of representation, transformation, and dynamics. One of the

most important operations in a large neural model is to route

represented information from one ensemble to another without

any change. For example, in the visual system of Spaun, a high-

dimensional representation of the visual field is compressed to a

low-dimensional representation, and then sent unchanged to sev-

eral areas, including the working memory and action selection

networks. This routing is implemented with a transformation

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 5

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

FIGURE 2 | Detailed breakdown of the Nengo reference simulator

running a simple model for two timesteps. (A) Code describing the model

being simulated. It consists of ensemble A projecting the sine of its encoded

signal to ensemble B, which is recurrently connected. (B) Diagram depicting

the model being simulated. (C) A detailed diagram of how the reference

simulator organizes this model. Signals (blue) represent the values tracked in

the simulation. Operators (red) represent the computations done on signals.

Signals can be grouped as low-level neural signals that are used to compute

the non-linear functions underlying neuron models, and high-level NEF

signals that are used to drive neurons and track the signals that the neurons

are representing. The operators that implement the decoding and encoding

steps map between the low-level neural signals and the high-level NEF

signals. (D) The signals tracked at the low level can be interpreted as a model

commonly seen in computational neuroscience literature; a population of

leaky integrate-and-fire neurons is driven by some time-varying input current,

J(t). These neurons project to a population of recurrently connected neurons.

The connection weights between the two populations, and from the second

population to itself, can be computed by the NEF’s transformation principle,

bypassing the need for the high-level NEF signals used by the reference

simulator for speed and data collection purposes. (E) The signals tracked at

the high level can be interpreted as a dynamical system. State variable A

simply represents its input, and passes its state to a sine function which

becomes the input to B. State variable B is a simple linear system that can be

described with the typical ẋ(t) = Ax(t) + Bu(t) equation. These dynamical

systems can be simulated directly, without the use of spiking neurons, in

order to quickly analyze system behavior, if desired.

called a communication channel. This transform simply imple-

ments the identity function, f (x) = x.

Figure 3 depicts a scalar communication channel in which

band-limited Gaussian white noise is represented in one ensemble

and projected to another ensemble.

The communication channel is a simple enough model that

it can be readily implemented in PyNN. Figure 4 compares the

code for implementing a communication channel in Nengo and

PyNN. This figure highlights many of the differences between

Nengo models and conventional neural models; we also use these

script for benchmarking (see section 6).

5.2. LORENZ ATTRACTOR NETWORK

While the communication channel exemplifies the representation

and transformation principles of the NEF, the Lorenz attractor

exemplifies the dynamics principle. Many models in theoretical

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 6

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

FIGURE 3 | A communication channel implemented with Nengo.

(A) Diagram depicting the model. Ensemble A projects its encoded signal

to ensemble B unchanged. (B) Nengo code to build and simulate the

model for 1 s. (C) The results of the simulation. The input signal (top

panel) is white noise limited to 0–5 Hz. The signal is well-represented by

both ensemble A (middle panel) and ensemble B (bottom panel) despite

the neural firing patterns (underlaid in middle and bottom panels) being

different.

neuroscience are based on attractor networks (Amit, 1992; Deco

and Rolls, 2003). The NEF has been used in the past to imple-

ment many different types of attractor networks by recurrently

connecting ensembles with functions that implement dynamical

systems (Eliasmith, 2005). Figure 5 depicts a Nengo implemen-

tation of the Lorenz chaotic attractor with a single ensemble

composed of 2000 leaky integrate-and-fire neurons. We have

implemented the Lorenz attractor in PyNN for benchmarking

purposes (code not shown; the PyNN script is ∼100 lines long,

while the Nengo script in Figure 5 is 20 lines long).

5.3. CIRCULAR CONVOLUTION

Communication channels and attractor networks show up in

many Nengo models, but are still relatively simple to implement

without Nengo, as can be seen with the PyNN implementation

in Figure 4. As the NEF has been used to construct larger models

that have the capabilities of non-neural cognitive models, a the-

ory called the Semantic Pointer Architecture (Eliasmith, 2013) has

emerged. This theory uses high-dimensional vectors as symbol-

like structures that can be combined together to form novel

concepts.

One of the functions that is performed on these vectors is to

compress two n-dimensional vectors into a single n-dimensional

vector, which can be decompressed into noisy versions of the

two originally compressed vectors. We implement this compres-

sion using the circular convolution function. Circular convolu-

tion is best implemented in a two-layer network, rather than

in a single connection, which we have simplified through the

CircularConvolution network. The complexity encapsu-

lated in that network can be seen in Figure 6.

Unlike the previous two examples, we do not implement circu-

lar convolution in PyNN. The resulting script would be too long

to be instructive.

6. BENCHMARKS

While benchmark models are not indicative of performance on all

models, increasing simulation speed was a primary goal of Nengo

2.0. To validate that performance has improved, we ran the mod-

els described in section 5 for various numbers of neurons and

dimensions for each ensemble.

The communication channel and Lorenz attractor are small

models that demonstrate the principles of the NEF. Their small

size enables us to write PyNN scripts that implement roughly

the same functionality with Brian (Goodman and Brette, 2008),

NEURON (Hines et al., 2009), and NEST (Eppler et al., 2009)2.

We ran each parameter set five times on the same machine, and

plot the mean time elapsed in Figure 7. In most cases, the coeffi-

cient of variation for the five sample times is well below 0.1, except

for two outliers with coefficients of 0.18 and 0.22, overall indi-

cating that the reported means are robust. The results, shown in

Figures 7A,B, suggest that all versions of Nengo are significantly

faster than the simulators accessible through PyNN, especially as

the size of models increases. This is likely due to Nengo’s use of

factorized weight matrices, rather than storing and computing

with the entire weight matrix on each timestep. While NEST and

NEURON were not run on multiple cores using message passing,

the reference simulator of Nengo also only uses one CPU core.

The results further suggest that Nengo 2.0’s simulators are faster

than Nengo 1.4’s simulator.

As a larger-scale example, we have also benchmarked the cir-

cular convolution model. Circular convolution is an important

test case, as a significant portion of Spaun’s 2.5 million neurons

are used to implement circular convolution. In this case, only

2We were unable to compile PCSim (Pecevski et al., 2009) on the machine on

which we ran benchmarks.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

FIGURE 4 | Implementation of the communication channel (left) in Nengo and (right) in PyNN. Solving for decoding weights takes approximately 40 lines

of code, which are not included in this figure.

versions of Nengo were tested. Instead of running each simulation

multiple times, we instead ran the simulator for 10 timesteps in

order to fill various levels of CPU or GPU cache, and then ran

the simulator for 1000 more timesteps; there is very little variance

using this method. As can be seen in Figure 7C, for large models,

the OpenCL simulator performs much faster than Nengo 1.4; in

particular, a Radeon 7970 GPU performs 500-dimensional circu-

lar convolution with about half a million neurons faster than real

time, and 50 times faster than Nengo 1.4. In the 50-dimensional

case, the Radeon 7970 GPU is 200 times faster than Nengo 1.4.

Additionally, although both Nengo 1.4 and the OpenCL simulator

on CPUs use all available CPU cores, Nengo’s OpenCL simulator

is many times faster.

7. DISCUSSION

7.1. COMPARISON TO SIMILAR PROJECTS

There are many other neural simulators dedicated to building

large-scale neural models [e.g., (Goodman and Brette, 2008;

Eppler et al., 2009; Hines et al., 2009)], and many tools for sim-

ulating cognitive phenomena with various levels of biologically

plausibility [e.g., (Cooper and Fox, 1998; Sun, 2001; Anderson

et al., 2004; Franklin et al., 2007; Aisa et al., 2008; de Kamps et al.,

2008; Laird, 2012)]. However, Nengo is unique in that it is built on

a theoretical framework that has enabled a cognitive architecture

(the Semantic Pointer Architecture) that maintains a high level of

biological plausibility, and has been validated through the Spaun

model and other past work.

The most closely related projects in terms of software design

are PyNN (Davison et al., 2008) and Topographica (Bednar,

2009), both of which provide a high-level scripting interface

to low-level neural simulators. PyNN in particular is similar to

the high-level object model in Nengo, and provides a conve-

nient interface to the three most widely used neural simulators,

according to a survey by Hanke and Halchenko (2011).

The APIs of Nengo and PyNN are similar, but differ sig-

nificantly in how groups of neurons are connected together.

In Nengo, connections commonly describe the mathemat-

ical operation that is performed through the connection

between two ensembles; e.g., nengo.Connection(A, B,

function=square) connects ensemble A to ensemble

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

FIGURE 5 | A Lorenz attractor implemented with Nengo. (A) Nengo

code to build and simulate the model for 6 s. (B) Diagram depicting the

model. The state ensemble is recurrently connected with a complex

function implementing the dynamics of the Lorenz attractor. Note that

this population does not receive any input that might drive its initial

value; instead, the initial value is determined by the baseline firing of

the 2000 leaky integrate-and-fire neurons that make up the state

ensemble. (C) The trajectory that the state ensemble takes in its

three-dimensional state space. For the parameters chosen, the trajectory

takes the well-known butterfly shape. (D) The state vector plotted over

time. (E) The spikes emitted by a random sample of 25 neurons from

the state ensemble. Some neurons fire uniformly across the 6 s

simulation, but most change depending on the state being tracked due

to the recurrent connection.

FIGURE 6 | Circular convolution implemented with Nengo. (A) Nengo

code to build and simulate the model for 0.2 s. (B) Diagram depicting the

model. The input vectors, A and B, represent four-dimensional vectors which

are mapped onto six ensembles within the circular convolution network

through complicated transformation matrices that implement a discrete

Fourier transform. Each ensemble within the network represents a

two-dimensional vector. The product of the two dimensions is projected

through another complicated transformation matrix that implements the

inverse discrete Fourier transform, computing the final four-dimensional

result. Note that the complicated parts of the model are contained within the

network; the number of ensembles and the transform matrices shown are

automatically generated by the network depending on the dimensionality of

the input vectors. (C) The result of the simulation. Straight horizontal lines

represent the target values that each ensemble should represent. Wavy lines

represent the decoded values for each dimension represented by the A, B,

and Result ensembles (top, middle, and bottom panels, respectively). The

ensembles represent the correct values, after a startup transient of less

than 0.1 s.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

FIGURE 7 | Benchmark results for several simulators on the example

models described in section 5. In (A) and (B), all of the simulators

except the Nengo OpenCL simulator were run on an Intel Core i7-965.

Nengo 1.4 used all 4 cores of this processor; all other simulator used only

1 core. The Nengo OpenCL simulator was run on an NVidia GTX280 GPU.

(A) Benchmark results from simulating the communication channel for 10

simulated seconds at a 1 ms timestep. For all model sizes, Nengo

simulators are faster than Nengo 1.4, which is significantly faster than

NEURON and NEST, which are significantly faster than Brian. The full Brian

results are not shown; for the largest model, the Brian simulation takes

∼768 s. (B) Benchmark results from simulating the Lorenz attractor for 10

simulated seconds at a 1 ms timestep. For most model sizes, the results

are the same as (A), except that NEURON is notably faster. The full results

for Brian and NEST are not shown; for the largest model, simulations in

Brian and NEST take ∼1467 and ∼601 s, respectively. (C) Benchmark

results from simulating circular convolution for 1 simulated second at a

1 ms timestep. For the blue lines, the simulator used was the Nengo

OpenCL simulator. The CPU used for Nengo 1.4 and the Nengo reference

simulator was an Intel Core i7-3770; all 4 cores were used by Nengo 1.4,

while Nengo’s reference simulator only used one core. For all model sizes,

the OpenCL simulator is faster than the Nengo 1.4 simulator, which is

faster than the Nengo reference simulator. The reference simulator was

only run up to 50 dimensions. The full results for Nengo 1.4 are not

shown; for the largest model, simulation with Nengo 1.4 takes ∼45 s.

B, transmitting the square of the value represented by A

to B. In PyNN, connections commonly describe features

of the connection weight matrix between two populations;

e.g., FixedProbabilityConnector(0.5) connects two

ensembles together, with a probability of 0.5 that there will be

a connection between a pair of neurons in the two populations.

This difference reflects the fundamental difference that Nengo is

built on a theoretical framework that enables modelers to think

about information processing in the brain at a conceptual level.

On the neural simulator side, we have shown that both

Nengo’s reference simulator and OpenCL simulator are able

to simulate two benchmark models much faster than Brian,

NEST and NEURON (see Figure 7). This is, in part, because

Nengo stores the factors of the connection weight matrix, rather

than storing the entire matrix. However, these simulators are

able to simulate many detailed neuron models and learning

rules, and have access to a wealth of existing neuron models

and learning rules. Because Nengo 2.0 is in an earlier develop-

ment stage, many of these detailed neuron models and learning

rules remain to be added. Neural simulators like Brian, NEST,

and NEURON are therefore currently better suited for sim-

ulating a wider range of single cell models, while Nengo is

designed for large networks of simple neural models that are

connected together according to the principles of the Neural

Engineering Framework, and can simulate these types of models

efficiently.

One key difference between Nengo’s simulators and tradi-

tional neural simulators is the target platform. While NEST and

NEURON can be run on commodity hardware, networks of

modest size are typically simulated in high-performance comput-

ing environments by using the Message-Passing Interface (MPI).

Nengo enables large-scale neural simulation on commodity hard-

ware, allowing researchers and hobbyists without access to large

computing clusters the ability to experiment with theoretical neu-

roscience as is currently practiced in cutting edge research. In

particular, GPUs are a powerful, low-cost computing resource

that are available in most modern workstations. The OpenCL

simulator makes full use of GPUs, while the previously discussed

simulators currently do not.

7.2. FUTURE WORK

Our short-term goal is to implement the Nengo 1.4 use cases not

currently covered by Nengo 2.0. While we have ensured that all

of the models currently used by Nengo 1.4 tutorials can be run

in Nengo 2.0, several large models, like Spaun, include custom

extensions written in Java. We will incorporate useful exten-

sions in Nengo’s API directly, and reimplement more specific

extensions to use Nengo’s API.

We are also developing two simulators that will take the same

NEF model description as the existing simulators, but will target

two pieces of neuromorphic hardware to achieve greater speed

and power efficiency than the OpenCL simulator.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

Our long-term goal is to create a graphical interface to build

models and interactively inspect simulations. Nengo 1.4 includes

a graphical interface that includes an interactive simulation

inspector. We will use our experience building that interface to

construct an improved interface for Nengo 2.0.

Additionally, we hope that in the future some work in Nengo

will be done through outside contributions. Nengo 2.0 is a com-

plete rewrite that has started with a deliberately minimal base and

a well-defined API in order to make development easier than in

previous versions.

8. CONCLUSION

Nengo 2.0 is the next generation of Nengo. It has been rewrit-

ten from scratch, but can already simulate most models that have

been built using Nengo 1.4. It does this with 11% as many lines

of code as its predecessor, and interacts seamlessly with other

scientific Python tools. While the reference simulator is simple

and easy to understand, the OpenCL simulator is extremely fast;

it can simulate circular convolution models 50–200 times faster

than Nengo 1.4, which itself is faster than alternative simulators

on simpler models. This makes the creation and simulation of

models that are many times larger than Spaun tractable with cur-

rent hardware. These models will further test the NEF as a theory

of neural computation; Nengo makes those models accessible to

anyone with a modern computer.

AUTHOR CONTRIBUTIONS

Trevor Bekolay led development of Nengo’s object model and

scripting interface, wrote the text of the paper, and prepared

all of the figures. James Bergstra led development of the Nengo

reference simulator and OpenCL simulator, edited text, created

an early version of Figure 2, and ran the benchmarks shown in

Figure 7C. Eric Hunsberger contributed significantly to Nengo

and both of its simulators, and edited text. Travis DeWolf led

development of a Theano-backed version of Nengo that identi-

fied issues with Theano, and provided the base for the version of

Nengo described in this paper. Terrence C. Stewart contributed to

Nengo, helped implement the PyNN scripts used in sections 5 and

6, and implemented the Nengo 1.4 scripting interface on which

the Nengo object model is based. Daniel Rasmussen contributed

to Nengo and the reference simulator, and edited text. Xuan

Choo contributed to Nengo and the reference simulator. Aaron

Russell Voelker ran the benchmarks shown in Figures 7A,B.

Chris Eliasmith oversaw all development, contributed to Nengo,

wrote the NEF appendix, and co-created the NEF with Charles

Anderson.

FUNDING

NSERC Discovery, NSERC Graduate Fellowships, NSERC

Banting Fellowship, ONR (N000141310419) and AFOSR

(FA8655-13-1-3084).

ACKNOWLEDGMENTS

We thank Bryan Tripp for editing this paper, contributing to

Nengo and the Nengo OpenCL simulator and for creating Nengo

1.4, which has been indispensable for the past 6 years, and will

continue to be used for many years to come. We thank Peter

Blouw and Brent Komer, who have contributed to Nengo by pro-

viding examples, unit tests, and bugfixes. Finally, we thank the two

reviewers who have provided constructive feedback on this paper.

REFERENCES
Aisa, B., Mingus, B., and O’Reilly, R. (2008). The Emergent neural modeling system.

Neural Netw. 21, 1146–1152. doi: 10.3389/fnins.2012.00002

Amit, D. J. (1992). Modeling Brain Function: The World of Attractor Neural

Networks. Cambridge, UK: Cambridge University Press.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., and Qin,

Y. (2004). An integrated theory of the mind. Psychol. Rev. 111, 1036. doi:

10.1037/0033-295X.111.4.1036

Bednar, J. A. (2009). Topographica: building and analyzing map-level simula-

tions from Python, C/C++, MATLAB, NEST, or NEURON components. Front.

Neuroinformatics 3:8. doi: 10.3389/neuro.11.008.2009

Choo, X., and Eliasmith, C. (2010). “A spiking neuron model of serial-order recall,”

in 32nd Annual Conference of the Cognitive Science Society, (Portland, OR:

Cognitive Science Society), 2188–2193.

Conklin, J., and Eliasmith, C. (2005). A controlled attractor network model of path

integration in the rat. J. Comput. Neurosci. 18, 183–203. doi: 10.1007/s10827-

005-6558-z

Cooper, R., and Fox, J. (1998). COGENT: A visual design environment for cog-

nitive modeling. Behav. Res. Methods Instrum. Comput. 30, 553–564. doi:

10.3758/BF03209472

Davison, A. P., Brüderle, D., Eppler, J., Kremkow, J., Muller, E., Pecevski, D., et

al. (2008). PyNN: a common interface for neuronal network simulators. Front.

Neuroinformatics 2:11. doi: 10.3389/neuro.11.011.2008

de Kamps, M., Baier, V., Drever, J., Dietz, M., Mösenlechner, L., and van der

Velde, F. (2008). The state of MIIND. Neural Netw. 21, 1164–1181. doi:

10.1016/j.neunet.2008.07.006

Deco, G., and Rolls, E. T. (2003). Attention and working memory: a dynami-

cal model of neuronal activity in the prefrontal cortex. Eur. J. Neurosci. 18,

2374–2390. doi: 10.1046/j.1460-9568.2003.02956.x

DeWolf, T., and Eliasmith, C. (2011). The neural optimal control hierarchy for

motor control. J. Neural Eng. 8, 21. doi: 10.1088/1741-2560/8/6/065009

Eliasmith, C. (2005). A unified approach to building and controlling spiking attrac-

tor networks. Neural comput. 7, 1276–1314. doi: 10.1162/0899766053630332

Eliasmith, C. (2013). How to Build a Brain: A Neural Architecture for Biological

Cognition. New York, NY: Oxford University Press.

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Cambridge, MA: MIT

Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf, T., Tang, Y., et al.

(2012). A large-scale model of the functioning brain. Science 338, 1202–1205.

doi: 10.1126/science.1225266

Eliasmith, C., and Trujillo, O. (2013). The use and abuse of large-scale brain models.

Curr. Opin. Neurobiol. 25, 1–6. doi: 10.1016/j.conb.2013.09.009

Eppler, J. M., Helias, M., Muller, E., Diesmann, M., and Gewaltig, M.-O. (2009).

PyNEST: a convenient interface to the NEST simulator. Front. Neuroinformatics

2:12. doi: 10.3389/neuro.11.012.2008

Franklin, S., Ramamurthy, U., D’Mello, S. K., McCauley, L., Negatu, A., Silva, R.,

et al. (2007). “LIDA: a computational model of global workspace theory and

developmental learning,” in AAAI Fall Symposium on AI and Consciousness:

Theoretical Foundations and Current Approaches, (Arlington, VA: AAAI Press),

61–66.

Georgopoulos, A. P., Schwartz, A. B., and Kettner, R. E. (1986). Neuronal popula-

tion coding of movement direction. Science 233, 1416–1419. doi: 10.1126/sci-

ence.3749885

Goodman, D. F., and Brette, R. (2008). The Brian simulator. Front. Neurosci. 3:26.

doi: 10.3389/neuro.01.026.2009

Hanke, M., and Halchenko, Y. O. (2011). Neuroscience runs on GNU/Linux. Front.

Neuroinformatics 5:8. doi: 10.3389/fninf.2011.00008

Hines, M. L., Davison, A. P., and Muller, E. (2009). NEURON and Python. Front.

Neuroinform. 3:1. doi: 10.3389/neuro.11.001.2009

Hinton, G. E., and Salakhutdinov, R. R. (2006). Reducing the dimensionality of

data with neural networks. Science 313, 504–507. doi: 10.1126/science.1127647

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9,

90–95. doi: 10.1109/MCSE.2007.55

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P., and Fasih, A. (2012).

PyCUDA and PyOpenCL: a scripting-based approach to GPU run-time code

generation. Parallel Comput. 38, 157–174. doi: 10.1016/j.parco.2011.09.001

Laird, J. E. (2012). The Soar Cognitive Architecture. Cambridge, MA: MIT Press.

Lapicque, L. (1907). Recherches quantitatives sur l’excitation électrique des nerfs

traitée comme une polarisation. J. Physiol. Pathol. Gen 9, 620–635.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

MacNeil, D., and Eliasmith, C. (2011). Fine-tuning and the stability of recurrent

neural networks. PLoS ONE 6:e22885. doi: 10.1371/journal.pone.0022885

Markram, H. (2006). The blue brain project. Nat. Rev. Neurosci. 7, 153–160. doi:

10.1038/nrn1848

Oliphant, T. E. (2007). Python for scientific computing. Comput. Sci. Eng. 9, 10–20.

doi: 10.1109/MCSE.2007.58

Pecevski, D., Natschläger, T., and Schuch, K. (2009). PCSIM: a parallel simu-

lation environment for neural circuits fully integrated with Python. Front.

Neuroinformatics 3:11. doi: 10.3389/neuro.11.011.2009

Pérez, F., and Granger, B. E. (2007). IPython: a system for interactive scientific

computing. Comput. Sci. Eng. 9, 21–29. doi: 10.1109/MCSE.2007.53

Rasmussen, D., and Eliasmith, C. (2014). A spiking neural model applied to

the study of human performance and cognitive decline on Raven’s Advanced

Progressive Matrices. Intelligence 42, 53–82. doi: 10.1016/j.intell.2013.10.003

Salinas, E., and Abbott, L. (1994). Vector reconstruction from firing rates. J.

Comput. Neurosci. 1, 89–107. doi: 10.1007/BF00962720

Singh, R., and Eliasmith, C. (2006). Higher-dimensional neurons explain the

tuning and dynamics of working memory cells. Journal of Neuroscience 26,

3667–3678. doi: 10.1523/JNEUROSCI.4864-05.2006

Stewart, T. C., Bekolay, T., and Eliasmith, C. (2012). Learning to select

actions with spiking neurons in the basal ganglia. Front. Neurosci. 6:2 doi:

10.3389/fnins.2012.00002

Stewart, T. C., and Eliasmith, C. (2009). “Spiking neurons and central executive

control: the origin of the 50-millisecond cognitive cycle,” in 9th International

Conference on Cognitive Modelling, (Manchester: University of Manchester),

122–127.

Sun, R. (2001). Duality of the Mind: A Bottom-Up Approach Toward Cognition.

Mahwah, NJ: Psychology Press.

Conflict of Interest Statement: The authors declare that the research was con-

ducted in the absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Received: 06 October 2013; accepted: 18 December 2013; published online: 06 January

2014.

Citation: Bekolay T, Bergstra J, Hunsberger E, DeWolf T, Stewart TC, Rasmussen

D, Choo X, Voelker AR and Eliasmith C (2014) Nengo: a Python tool for build-

ing large-scale functional brain models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.

2013.00048

This article was submitted to the journal Frontiers in Neuroinformatics.

Copyright © 2014 Bekolay, Bergstra, Hunsberger, DeWolf, Stewart, Rasmussen,

Choo, Voelker and Eliasmith. This is an open-access article distributed under the terms

of the Creative Commons Attribution License (CC BY). The use, distribution or repro-

duction in other forums is permitted, provided the original author(s) or licensor are

credited and that the original publication in this journal is cited, in accordance with

accepted academic practice. No use, distribution or reproduction is permitted which

does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 12

http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/fninf.2013.00048
http://dx.doi.org/10.3389/fninf.2013.00048
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Bekolay et al. Nengo in Python

APPENDIX: NEURAL ENGINEERING FRAMEWORK DETAILS

This description of the Neural Engineering Framework is adapted

from the supplementary material of (Eliasmith et al., 2012) with

permission.

The Neural Engineering Framework (NEF; Eliasmith and

Anderson, 2003) provides a set of methods for building biolog-

ically plausible models based on a functional specification of a

neural system. The central idea behind the NEF is that a group

of spiking neurons can represent a vector space over time, and

that connections between groups of neurons can compute func-

tions on those vectors. The NEF provides a set of methods for

determining what the connections need to be to compute a given

function on the vector space represented by a group of neurons.

Suppose we wish to compute the function y = f (x), where vec-

tor space x is represented in population A, and vector space y

is represented in population B. To do so, the NEF assumes that

each neuron in A and B has a “preferred direction” or “encoding”

vector. The preferred direction vector is the vector (i.e., direc-

tion in the vector space) for which that neuron will fire most

strongly. The spiking activity of every neuron in population A can

be written as

ai(x) = Gi[αieix + Jbias
i], (A1)

where ai is the spike train of the ith neuron in the population,

G is the spiking neural non-linearity, α is the gain of the neu-

ron, e is the preferred direction (or “encoding”) vector, and Jbias

is a bias current to account for background activity of the neu-

ron. Notably, the elements in the square brackets determine the

current flowing into the cell, which then drives the spiking of the

chosen single cell model G. Equation (A1) describes how a vector

space is encoded into neural spikes. This equation is depicted for

a 1-dimensional vector space in Figure 1A.

The NEF proposes that linear decoders can be found to provide

an appropriate estimate of any vector x given the neural activi-

ties from the encoding equation. We can write this as a decoding

equation:

x̂ =

N
∑

i

ai(x)di, (A2)

where N is the number of neurons in the group, di are the linear

decoders, and x̂ is the estimate of the input driving the neurons.
The NEF determines this complementary decoding for any

given encoding. Specifically, this decoding is found using a least-

squares optimization:

E =
1

2

∫

[

x −
∑

i

ai(x)di

]2

dx, (A3)

where di are the decoding vectors over which this error is

minimized.

In effect, this optimization process replaces learning in most

other approaches to constructing neural networks. This optimiza-

tion is not biologically plausible on its own, although networks

generated in this manner can also be learned with a spike-based

rule described in MacNeil and Eliasmith (2011).

The decoding process is depicted in Figure 1B, where the opti-

mal linear decoders have been found and used for eight neurons.

Notably, this kind of temporal decoding requires an assump-

tion about the nature of the temporal filter being used. Here we

assume that post-synaptic currents are such filters, and set the

time constants to reflect the kind of neurotransmitter receptors

in the connection (e.g., AMPA receptors have short time con-

stants, ∼10 ms, and NMDA receptors have longer time constants,

∼50 ms).

Such temporal filters map to biophysical processes once we

connect groups of neurons together. Defining the encoding and

decoding for groups A and B using equations (A1) and (A2)

provides a means of connecting groups. For example, we can sub-

stitute the decoding of A into the encoding of B, thereby deriving

connection weights

ωij = diαjej, (A4)

where i indexes the neurons in group A and j indexes the neurons

in B. These weights will compute the function y = x (where y is

the vector space represented in B and x is the vector space repre-

sented in A). For the more general case, it is possible to solve for

decoders d
f
i for any function by substituting f (x) for x in equation

(A3), i.e., solving

E =
1

2

∫

[

f (x) −
∑

i

ai(x)d
f
i

]2

dx. (A5)

In addition, if the function to be computed is linear, the relevant

linear operator can be introduced into Equation (A4). The result-

ing general weight equation for computing any combination of

linear and non-linear functions becomes:

ωij = αjd
f
i Lej (A6)

for any non-linear function f and NB × NA linear operator L.

Computing the linear function y = −x and computing the non-

linear function which is the element-wise square of the vector x

(i.e., y = [x2
1, x2

2, . . . , x2
n] is shown in Figure 1C.

This brief discussion is insufficient to fully introduce the gen-

erality of the NEF. However, showing how to compute linear

and non-linear functions of vector spaces is sufficient for many

neural computations. As these same methods can be used to

compute connection weights for recurrent connections, the NEF

also allows for the neural implementation of a wide variety of

linear and non-linear dynamical systems in recurrent networks.

A simple harmonic oscillator is shown in Figure 1D.

Frontiers in Neuroinformatics www.frontiersin.org January 2014 | Volume 7 | Article 48 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Nengo: a Python tool for building large-scale functional brain models
	Introduction
	Neural Engineering Framework (NEF)
	Representation
	Transformation
	Dynamics
	NEF and Nengo

	Nengo Object Model
	Ensemble
	Node
	Connection
	Probe
	Network
	Model

	Nengo Simulators
	Nengo Reference Simulator
	Signals
	Operators
	Reference simulator

	Example Scripts
	Communication Channel
	Lorenz Attractor Network
	Circular convolution

	Benchmarks
	Discussion
	Comparison to Similar Projects
	Future Work

	Conclusion
	Author Contributions
	Funding
	Acknowledgments
	References
	Appendix: Neural Engineering Framework details

