
ORIGINAL RESEARCH
published: 09 October 2020

doi: 10.3389/fnbot.2020.568359

Frontiers in Neurorobotics | www.frontiersin.org 1 October 2020 | Volume 14 | Article 568359

Edited by:

Subramanian Ramamoorthy,

University of Edinburgh,

United Kingdom

Reviewed by:

Jeffrey L. Krichmar,

University of California, Irvine,

United States

Yulia Sandamirskaya,

Intel, Germany

*Correspondence:

Travis DeWolf

travis.dewolf@

appliedbrainresearch.com

Received: 01 June 2020

Accepted: 01 September 2020

Published: 09 October 2020

Citation:

DeWolf T, Jaworski P and Eliasmith C

(2020) Nengo and Low-Power AI

Hardware for Robust, Embedded

Neurorobotics.

Front. Neurorobot. 14:568359.

doi: 10.3389/fnbot.2020.568359

Nengo and Low-Power AI Hardware
for Robust, Embedded Neurorobotics
Travis DeWolf 1*, Pawel Jaworski 1 and Chris Eliasmith 1,2

1 Applied Brain Research, Waterloo, ON, Canada, 2Centre for Theoretical Neuroscience, University of Waterloo, Waterloo,

ON, Canada

In this paper we demonstrate how the Nengo neural modeling and simulation libraries

enable users to quickly develop robotic perception and action neural networks for

simulation on neuromorphic hardware using tools they are already familiar with, such

as Keras and Python. We identify four primary challenges in building robust, embedded

neurorobotic systems, including: (1) developing infrastructure for interfacing with the

environment and sensors; (2) processing task specific sensory signals; (3) generating

robust, explainable control signals; and (4) compiling neural networks to run on target

hardware. Nengo helps to address these challenges by: (1) providing the NengoInterfaces

library, which defines a simple but powerful API for users to interact with simulations

and hardware; (2) providing the NengoDL library, which lets users use the Keras and

TensorFlow API to develop Nengo models; (3) implementing the Neural Engineering

Framework, which provides white-box methods for implementing known functions and

circuits; and (4) providing multiple backend libraries, such as NengoLoihi, that enable

users to compile the same model to different hardware. We present two examples

using Nengo to develop neural networks that run on CPUs and GPUs as well as

Intel’s neuromorphic chip, Loihi, to demonstrate two variations on this workflow. The

first example is an implementation of an end-to-end spiking neural network in Nengo

that controls a rover simulated in Mujoco. The network integrates a deep convolutional

network that processes visual input from cameras mounted on the rover to track a target,

and a control system implementing steering and drive functions in connection weights to

guide the rover to the target. The second example uses Nengo as a smaller component

in a system that has addressed some but not all of those challenges. Specifically it is

used to augment a force-based operational space controller with neural adaptive control

to improve performance during a reaching task using a real-world Kinova Jaco2 robotic

arm. The code and implementation details are provided1, with the intent of enabling other

researchers to build and run their own neurorobotic systems.

Keywords: Nengo, neuromorphic, neurorobotic, spiking neural networks, robotic control, adaptive control,

embedded robotics

1. INTRODUCTION

Specialized AI hardware offers exciting potential for the development of low-power, highly
responsive robotic systems with embedded control. Edge devices for accelerating neural networks
are starting to become commercially available from companies, such as NVIDIA, BrainChip, GrAI
Matter Labs, Google, Intel, and IBM. While the promise of low-power and low-latency embedded

1https://github.com/abr/neurorobotics-2020

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2020.568359
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2020.568359&domain=pdf&date_stamp=2020-10-09
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:travis.dewolf@appliedbrainresearch.com
mailto:travis.dewolf@appliedbrainresearch.com
https://doi.org/10.3389/fnbot.2020.568359
https://www.frontiersin.org/articles/10.3389/fnbot.2020.568359/full
https://github.com/abr/neurorobotics-2020

DeWolf et al. Nengo for Neurorobotics

processing and control is highly desirable, the process of
implementing algorithms on the hardware generally remains a
significant hurdle. Developing neural networks for processing
sensory data and generating control signals is a difficult problem,
and adding further constraints specific to a particular piece of
hardware only increases the challenge. In this paper we focus
on the development of spiking neural networks (SNNs) for the
subset of devices known as neuromorphic hardware (Mead,
1990). Effectively using such hardware often requires additional
expert knowledge outside of traditional machine learning and
neural network methods to program effectively. In short, it is
difficult to quickly and easily build robust, integrated neural
models for controlling robots using neuromorphic hardware.

Building neurorobotic systems can be characterized as
consisting of four tasks:

1. Developing infrastructure to send and receive signals
from the environment. There are a multitude of different
interface protocols for sensors, hardware, and simulators.
To minimize development time, simple interfaces should be
available and interchangeable with minimal changes to the
model description.

2. Processing task specific sensory signals. Deep neural networks
(DNNs) are the principle machine learning tool used for
sensory processing, and it is important to take advantage of
the extensive literature and solutions in this field. To that end,
users need to be able to take DNNs, convert them to networks
that can run on neuromorphic hardware, and integrate
them into a neurorobotics control system. For systems using
perception methods not rooted in neural networks, it is also
important to be able to easily integrate their output with
downstream networks.

3. Generating robust control signals with explainable neural
networks. When generating control signals, having guarantees
on performance is important, and often necessary. To
accomplish this users needs to know exactly what operations
are being implemented to guarantee stability. The Neural
Engineering Framework (NEF; Eliasmith and Anderson,
2003) offers “white-box” neural network development
methods that allow integration of these methods into
neurorobotics control systems, making an API for building
up such networks quickly desirable.

4. Compiling neural networks to run on multiple targeted
hardware platforms. During the process of designing control
and perception systems it is often desirable to develop
neural network models on standard hardware with minimal
compilation overhead. Once a prototype network is working,
it should be straightforward to compile to targeted special
purpose hardware. Being able to compile the same model to
different hardware can greatly speed up the development of
neurorobotics systems.

In this paper we present a neurorobotics development workflow
for building neural networks that run on standard and
neuromorphic hardware using the Nengo neural modeling
platform (http://nengo.ai/; Bekolay et al., 2014). As part of this
workflow, we take advantage of the NengoInterface package to
streamline interfacing with the physics simulators, the NengoDL

package for integrating Keras and TensorFlow models that
process incoming sensory data, and the NengoLoihi package for
compiling the model to run on Intel’s Loihi neuromorphic chip
(Davies et al., 2018).

We illustrate two variations on this workflow by describing
two example neurorobotics applications in detail. The first
example implements an end-to-end perception and action system
in Nengo for tracking a target with a rover simulated in
Mujoco (Todorov et al., 2012). The rover has four mounted
cameras whose input is fed into a DNN built using Keras. The
DNN estimates the distance to the target, and this estimate is
sent to a control network which generates torques to apply to
the steering wheel and drive wheels to move the rover to the
target. This full system is then compiled onto Loihi. In the
second example, we demonstrate how Nengo can be integrated
with an existing system by augmenting a standard robotic arm
force controller using a neural adaptive controller that learns
online. We implement the adaptive component both on standard
hardware and Loihi, where we take advantage of its on-chip
learning. We compare implementations of the adaptive control
system as it drives a physical Jaco2 robot arm from Kinova
to perform a reaching task while adapting to the unmodeled
force of holding a two pound weight. We discuss the workflow
bottlenecks and challenges that are encountered, addressed,
and remaining.

2. BACKGROUND

2.1. Nengo and Supporting Development
Packages
Nengo is a neural modeling development and simulation
platform. Users specify the architecture of models using a
Python-based API, referred to as the “front-end,” and then
compile their model for simulation on hardware using a “back-
end.” The API is designed such that the same model can be run
on different hardware with few to no changes in the front-end
script. Supported hardware includes CPUs, GPUs, FPGAs, and
specialized neuromorphic hardware (such as Intel’s Loihi chip).

Nengo users are able to quickly design and simulate neural
networks, and use the NengoGUI package to visualize and
interface with them during run-time. The NengoDL package
extends Nengo’s API to interface with and integrate deep and
machine learning networks built in Keras or TensorFlow, as
well as take advantage of TensorFlow’s resource distribution
manager for efficient simulation across multiple processors.
The NengoInterfaces package provides easy interface access
with the Mujoco simulator, abstracting out the setup and
overhead involved in connecting, running, communicating,
and restarting Mujoco simulations. The NengoLoihi package
allows us to compile our models to run on the Loihi, and also
handles communication to and from the chip. Additionally,
the NengoLoihi package provides a Loihi emulator that
allows users to run their models while simulating Loihi
dynamics and computations on their computers, which
aids efficient development. Nengo has more supporting
packages, but in the interest of space we limit our review

Frontiers in Neurorobotics | www.frontiersin.org 2 October 2020 | Volume 14 | Article 568359

http://nengo.ai/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

to the above packages relevant to the work presented in
this paper.

2.2. The Loihi Chip
We use Intel’s Loihi chip (Davies et al., 2018) for demonstration
in the examples below. The Loihi chip is a many-core mesh
with 128 neuromorphic cores, 3 embedded × 86 processing
cores, and off-chip communication interfaces. An asynchronous
network-on-chip communicates packetized messages between
cores, allowing write, read request and response, spike messages,
and barrier messages for time synchronization to be sent between
cores. Each neuromorphic core has 1,024 neural “compartments,”
where a compartment can be allocated to simulate a neuron
or dendrite.

The NengoLoihi package allows users to compile their
front-end script to the Loihi chip, handling all of the low-
level mapping and communication. Some front-end scripts will
require modification specifying low-level details, such as how
to allocate neural populations across Loihi cores, but largely
the details of this low-level mapping are abstracted out and
handled automatically.

2.3. Other Neurorobotic Workflows and
Toolkits
Most commonly, building neurorobotic applications involves
hand-crafting and tuning SNNs for the task of interest. In
Gutierrez-Galan et al. (2020) the authors build an SNN inspired
by biology to implement a central-pattern generator that runs
on the SpiNNaker neuromorphic board (Furber et al., 2014)
and drives a hexapod robot to walk, trot, or run. In Kreiser
et al. (2019), the authors hand craft an SNN to run on the
Loihi to steer a small rover. In Stagsted et al. (2020), a PID
controller is implemented in an SNN running on Loihi to steer
an unmanned aerial vehicle. The authors accomplish this using
one-hot encoding, such that only one neuron in a population is
able to spike at a time, and each neuron represents a different
possible variable value, to build up networks implementing
addition and subtraction, at which point a PID controller can
be built. Implementation of non-linear functions is listed as
future work. We note that these models can be built using
the Nengo API, and the NEF API makes non-linear function
implementation straight-forward.

The authors of Taunyazov et al. (2020) implement an SNN
visual tactile system that runs on Loihi and performs container
classification and rotational slip detection. The network is a deep
net trained with the SLAYER (Bam Shrestha and Orchard, 2018)
method, which uses stochastic spiking neurons to overcome
the undefined derivative in spiking neurons that prevents
backpropagation from working. In Hwu et al. (2017), the authors
train an Energy-Efficient Deep Neural Network (EEDN), a
deep network designed specifically to run on IBM’s TrueNorth
neuromorphic chip (Sawada et al., 2016), on trail photos to train
up a network that attaches to a real-world rover and guides it
along a path. The authors mention that the trained weights work
well in a standard convolutional neural network or in the EEDN,
which can transfer its weights directly to the TrueNorth. As we
detail in our examples below, the NengoDL package allows users

to take advantage of similar deep learning methods for training
SNNs to run on neuromorphic hardware.

Another way to program neuromorphic hardware is using
the Python Neural Networks (PyNN) interface (Davison et al.,
2009). PyNN is a front-end API that shares Nengo’s goal of
creating a high-level front-end API that specifies neural network
architecture without being tied to the low-level implementations
specifics. PyNN was developed to standardize scripting neural
networks across several different low-level neural simulators,
including Brian (Goodman and Brette, 2008), NEURON (Hines
and Carnevale, 1997), and Nest (Gewaltig and Diesmann, 2007).
Since its development, others have extended PyNN to include
backends for other simulators and neuromorphic hardware.
While Nengo allows the same low-level specificity of PyNN,
Nengo also allows many of these details to be easily abstracted,
and has more focus on high-level objects that speed the
development of large or complex neural systems. For example, to
implement a communication channel between two populations
of neurons takes ∼12 lines in Nengo, and over 80 lines
in PyNN (Bekolay, 2011). Importantly, Nengo also supports
methods for generating connection weight matrices, including
the NEF as well as Keras/TensorFlow techniques, which PyNN
does not.

The Neurorobotics Platform (NRP; Falotico et al., 2017) is a
web-based simulation environment for running SNNs hooked
up to virtual robots. Developed as part of the Human Brain
Project (Markram, 2012), the goal of the NRP is to streamline the
process of running experiments with SNNs and robots. The NRP
lets users quickly select a virtual environment, robot, and SNNs
to run an experiment. The NRP has a broad scope, offering tools,
such as the web-based robot designer, experimental workflow
editor, and Gazebo simulation environment editor. In contrast,
Nengo focuses primarily on the development, integration, and
simulation of neural networks (both spiking and non-spiking),
support of different neural network programming paradigms
like the NEF and Keras/TensorFlow, compiling to different
hardware backends, and systems interfacing through Python.
There is potential for collaboration between Nengo and the
NRP, expanding the neural network development and simulator
interfacing of the NRP, and the experiment design and web
interface of Nengo.

3. NEUROROBOTIC ROVER SYSTEM

In this example we develop an end-to-end perception and action
system for tracking a target with a rover in Mujoco (Todorov
et al., 2012). The simulated rover we use is a four wheeled vehicle,
built using Mujoco’s XML modeling language, with Ackerman
steering and rear differential drive in a boundless environment
with no obstacles. The rover has 4 RGB cameras mounted on its
back, each with a 90◦ field-of-vision, that provide a full 360◦ view
of the environment, and a sensor on the front wheels that provide
steering angle information. The rover accepts two torque input
signals, one to control the acceleration of the rear wheels, and
one to turn the front wheels right or left. The target is a red sphere
that floats in the air and warps to a new location (generated from

Frontiers in Neurorobotics | www.frontiersin.org 3 October 2020 | Volume 14 | Article 568359

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

FIGURE 1 | A neurorobotic rover. (1) A diagram of the neural network implementing the rover’s perception and action system. The components inside the gray

rounded rectangle are run on the Loihi hardware. Arrows indicate the flow of information. The “conv” prefix denotes convolutional layers, the “dense” prefix denotes

fully connected layers, and the “ens” prefix denotes NEF layers. (2) Top: The control network’s approximation of the steering (top) and acceleration (bottom) signals are

plotted in blue. The ideal function output is plotted as a dashed red line. Bottom: The vision network’s estimate of the target x (top) and y (bottom) location relative to

the rover is plotted in blue. Ground truth is plotted as a dashed red line. (3) The trajectory followed by the rover is plotted in orange as it approaches different targets,

as seen from above. The rover starts in the center at the green X and drives to the different targets, plotted as blue Xs. (4) Left: An image of the rover and the target in

the Mujoco environment. Right: The images from the four mounted cameras attached to the rover, which generate the input to the vision network. (5) The firing rate

curve of standard and Loihi neurons, to show the effects of discretization on the on-chip activity profiles neurons. (Left) Spiking rectified linear neurons; (right) Leaky

integrate-and-fire neurons.

a random distribution within 3 m of the origin) when the center-
of-mass of the rover is within 50 cm of the center of the target.
Figure 1–4 shows the rover in the world on the left, and the view
from each of the 4 cameras on the right.

To begin developing our perception and action systems, we
first build out the controller without using neural networks. We
use the exact ground-truth information provided by Mujoco to
identify the target location relative to the rover, and calculate

Frontiers in Neurorobotics | www.frontiersin.org 4 October 2020 | Volume 14 | Article 568359

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

the torques for acceleration and steering in Python. Next, we
address sensory perception by building a DNN that can identify
target (x, y) location relative to the rover based on input from the
four mounted cameras. This requires building a dataset using the
simulator to train the DNN. We initially train the system using
standard artificial rate neurons, to confirm that the desired level
of performance can be achieved with our network architecture.
We then us NengoDL to convert the network to spiking neurons
and tune the parameters to optimize performance. Next, we
replace each function in the control system with spiking analogs,
testing each in isolation before finally integrating the entire
spiking network. Once performance is achieved in a fully spiking
neural network, we move the network simulation from Nengo
into the NengoLoihi emulator, and tune the parameters again to
optimize under the constraints of the Loihi. Finally we compile
the network to the Loihi hardware, again using NengoLoihi. In
the next sections we describe each of these steps in more detail.

3.1. Interfacing With Mujoco
Interfacing to Mujoco is done through NengoInterfaces, which
uses the mujoco-py (Ray et al., 2020) library for Python
bindings to the Mujoco C API. The interface accepts force
signals from the neural network, applies them inside Mujoco
and moves the simulation forward one time step, and then
returns feedback from the rover. Environment information
can be accessed directly from the NengoInterfaces API, and
less common functions are available through the mujoco-py
simulation and environment model parameters.

3.2. Processing Visual Input Using a Keras
DNN Converted to a Nengo SNN
The network used for tracking the target location consists of
two convolutional layers and three dense layers, and is shown
in the bottom block of Figure 1–1. The first convolutional layer
uses 1 × 1 kernels with a stride of 1, and a filter size of 3; its
purpose is to convert the image signal into spikes to be sent to
the layers running on Loihi2. To generate the input image, we
take a 32 × 32 pixels resolution snapshot from each camera,
and concatenate them horizontally to create a 32 × 128 pixels
input to the network. This resolution was chosen as the smallest
network size that could still identify targets at a distance of 3 m.
To retrieve the signal from the last layer running on-chip we use
neural probes, which monitor spiking activity.

The dataset used for training the model was generated by
recording both input from the mounted cameras and the relative
distance to the target. The data was collected while our non-
spiking control system drove the rover to the targets, recording
every 10th frame. The final dataset used consists of roughly
40,000 images and target (x, y) locations (the height of the target
is constant and is not relevant to control so we ignore it).

Training the network with non-spiking ReLU activation
functions using standard DNN tools (i.e., Keras) was the first
step. This allows us to validate the network architecture. For all
of our training we use the RMSprop optimizer from TensorFlow

2It is also possible to send information to Loihi by setting the bias and current for

neurons, but we have found this method to be slower for a dynamic input signal.

and the mean squared error loss function on network output
to learn to output the target (x, y) locations associated with
an image. When converting the network into spiking neurons
take into account both the desired firing rates and the activation
function of neurons running on the Loihi. We have found that
if the average firing rates are <50 Hz, spiking neurons are
not driven strongly enough to generate any activity. We target
the 175 Hz range for firing rates, because it is large enough
to ensure spiking, but still inside the range where the Loihi
neurons approximate standard neurons well (discussed below).
To achieve this, we initialize the weights of our network by setting
the scale_firing_rates parameter of the NengoDL built-
in Keras converter to 400. This parameter encourages the
optimizer to converge to firing rates that are higher or lower,
based on the scaling. An alternative, and more fine-grained and
reliable method, is to add a firing rate regularization term to
the cost function that penalizes neurons firing outside of the
desired range.

The second factor we need to account for is the activation
function of neurons on the target neuromorphic hardware.
Neurons on the Loihi have a unique activation profile because
of discretization that occurs on-chip, as shown in Figure 1–5.
We use NengoLoihi’s model of the Loihi rectified linear neuron
during training to ensure that the network is trained on the same
kind of activation functions used during inference.

Finally, we set network synapses throughout the network as
required to smooth out the signal and filter noise. In Nengo, you
can set synapses to 0 to implement no filtering, or to None to
collapse the computations of two connected layers into a single
layer. We set each of the synapses on the connections between
layers to None. This speeds up the propagation of spikes through
the network, but also has the potential to decrease performance
due increased noise in the signal. We found empirically, however,
that applying a 0.05 s time constant low-pass filter on the
vision network output smoothed the target location estimate and
improved the control signal generated downstream.

3.3. Generating Robust, Explainable
Control Signals Using the NEF
We described the NEF as a “white-box” approach to building
neural networks because of its mechanistic approach. Briefly,
the NEF uses populations of neurons to represent vectors,
feed-forward connections between populations to implement
functions on those vectors, and recurrent connections to
implement differential equations. Rather than specifying a task-
level cost function, as in standard machine learning methods, the
user must first design a circuit that solves the problem, including
specifying a state space representation, set of computations,
and flow of information. The user then uses Nengo’s NEF API
to implement this circuit in neurons. These added top-down
constraints give clear network structure that allows users to
identify points of error and apply specific changes to debug and
improve network performance. This is in contrast to “black-
box” deep learning methods, which use training algorithms to
find a network configuration that solves the problem, without
knowledge of the function implemented. In situations, such

Frontiers in Neurorobotics | www.frontiersin.org 5 October 2020 | Volume 14 | Article 568359

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

as complex visual analysis where the algorithmic solution is
unknown this is very desirable, but in cases where proven
solutions are available and we would like performance guarantees
the methods of the NEF are preferable.

The motor system for the rover is implemented using the
NEF. The first step in this implementation is deriving the
functions for vehicle acceleration and steering wheel control. We
calculate acceleration as distance to target multiplied by a gain
term, clipped to a maximum magnitude empirically chosen to
prevent the rover from flipping when traveling at top speed and
turning sharply. Formally,

uacceleration = kamin(‖(x∗, y∗)‖, 1) (1)

where u is the control signal sent to the rover, ka is the
acceleration gain term, x∗ and y∗ are the target location relative
to the rover, and ‖ · ‖ denotes the 2-norm.

The torque applied to the steering wheel is calculated with a
simple proportional controller using the difference between the
current and desired angle of the wheels multiplied by a gain term.
The desired angle is calculated as the angle to the target using
arctan2(−x∗, y∗), where order of the arguments and the negative
sign in front of the x term account for the orientation of the rover
relative to the environment. Formally,

usteer = kp(arctan2(−x∗, y∗)− q) (2)

where kp is the proportional gain term, and q is the current angle
of the steering wheel.

The neural circuit implementation of this controller is done
in two parallel ensembles, with the connections weights on
the outbound connections calculated to approximate the above
equations, as shown in the top portion of Figure 1–1. In Nengo,
we project the relevant variables into each population and specify
the functions to be computed on their outbound connections
using Python code. Nengo then solves for connection weights
using the principles of the NEF. In this particular case,
we compute these functions using separate ensembles, rather
than having a single ensemble with two separate outbound
connections, because the functions they are calculating depend
on different sets of variables. The acceleration function only
requires the estimated target (x, y) values for calculation, while
the steering function requires the estimated target (x, y) and the
current angle of the steering wheel. While the variables required
by the acceleration function are a subset of the variables used in
the steering function, we can achieve greater precision by using
an ensemble that only encodes the target (x, y).

In the hardware implementation, each ensemble consists of
4,096 Loihi leaky integrate-and-fire neurons, spread across four
cores. This specific number of neurons is chosen to satisfy
hardware constraints on the number of inbound connections a
population of neurons can receive. The neurons in the ensemble
are set up to have maximum firing rates between 175 and 220 Hz,
chosen because in general higher firing rates provide for more
accurate function approximation.

3.4. Integration and Compiling to Hardware
Putting the vision and control networks together is a simple
matter of connecting the output of one to the input of the other
in Nengo. As both networks were built using Loihi-type neurons,
they are also prepared to be mapped to neuromorphic hardware.
During the initial building and debugging process running on
a CPU backend, which is the Nengo default, greatly expedited
development. The NengoLoihi backend can then be used to
compile the network to run on the Loihi (we could also use
NengoOCL or NengoDL to compile to GPU and run directly in
Nengo). We used a workstation with and Intel Core i7-6700K
CPU @ 4.00 GHz × 8 with 32 GB RAM and GeForce GTX
1070/PCIe/SSE2 running Ubuntu 18.04, and the Intel Nahuku
board with 32 Loihi chips (Davies et al., 2018) running NxSDK
0.9. In this example, we are only using one of the Loihi chips
on the board. When the system is running, Nengo provides
the interface between the simulator and the hardware, but all
computations are run on the Loihi chip.

3.5. Performance
Figure 1–3 shows the (x, y) trajectory of the rover moving
throughout the environment to six different targets in the
environment, starting from the green “x.” Figure 1–2 shows
the perception and action signals from the network, with the
target (x, y) estimated in the top figures in blue and the ground
truth shown in red. The lower figure shows the steering and
acceleration control signals generated by the network in blue
with the ideal values in orange. As can be seen, the rover
drives accurately (to within 50 cm) over the course of the
trial. We have not performed extensive testing of the accuracy,
and do not provide quantitative results as our purpose here
is to focus on the methods used to develop the system. There
is clearly significant room for improvement and extension to
this work. Nevertheless, this simple example demonstrates the
implementation of an end-to-end perception and action spiking
neural network running on neuromorphic hardware. All code
is available online at https://github.com/abr/neurorobotics-2020.
We have provided full code to serve as a starting point for those
interested in exploring neurorobotic solutions that can leverage
embedded neuromorphic hardware for next generation systems.

4. NEUROROBOTIC ADAPTIVE ARM
CONTROL

In this second example we augment an existing force controller
with an adaptive neural network implemented on Loihi, using
on-chip learning to control a Kinova Jaco2 physical robot in
a reaching task while it holds an unexpected weight. The
existing control system generates joint torques using a standard
proportional derivative (PD) operational space controller (OSC;
Slotine et al., 1988), designed to move the hand along a target
path. The adaptive controller adds an adaptive signal trained
online to account for any unexpected forces affecting movement,
which is tuned online. We compare performance of the adaptive
control system to a non-adaptive PD OSC, and an industry
standard proportional integrated-error derivative (PID) OSC.

Frontiers in Neurorobotics | www.frontiersin.org 6 October 2020 | Volume 14 | Article 568359

https://github.com/abr/neurorobotics-2020
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

We also compare the neuromorphic implementation with CPU
and GPU implementations of the adaptive control system. We
compare all systems in terms of accuracy, power use, and control
loop update latency.

Operational space control relies on an accurate model of
the arm dynamics to generate torques that will move the arm
as desired. If the arm picks up an object, is subjected to
external forces or perturbances, or wears down over time, the
dynamics have changed and OSC performance will degrade
unless the changes can be accurately modeled. In general, these
perturbations can not be predicted in advance, so updating
the controller on-the-fly is desirable. This is the purpose of
the adaptive controller we use here, implemented as a neural
network. Intuitively, the adaptive controller acts as a context
sensitive integrated error term. Where standard integrated error
terms (such as the I in PID control) apply the same learned error
regardless of the current joint angles or velocities, the adaptive
controller learns to account for errors specific to different arm
states. The difference becomes significant in the control of highly
non-linear systems, where the error that needs to be compensated
for changes significantly with system state.

4.1. Interfacing With the Jaco2 Robotic Arm
In this example Nengo is called as a sub-function of the PD
OSC. The PD OSC itself is implemented in Python and runs
on a workstation that interfaces with a physical Kinova Jaco2

6 degrees-of-freedom (DOF) arm. The interface implemented
is through the ABR Jaco2 repository, and includes no neural
network infrastructure. To integrate neural computation with
this standard Python code, at each time step in the control
model, Nengo is called to run the neural network for a single
step. The control code sends feedback from the arm to Nengo
and receives back an adaptive control signal to add into the
outbound set of joint torques sent to the Jaco2. Nengo takes care
of running the neural network on a CPU, GPU, or the Loihi
neuromorphic hardware.

4.2. Processing Sensory Feedback Using
the NEF
In this application we are augmenting an existing control system
with an adaptive control signal generated by a neural ensemble.
The ensemble requires sensory feedback related to joint positions
and velocities as input in order to compute the necessary
correction to the control signal. Because the sensory feedback
is a relatively low-dimensional signal (e.g., compared to image
input), it does not need to be processed by a deep neural network
before we can use it to generate a corrective control signal. The
adaptive controller requires that the effects of the unexpected
force are predictable given the input provided to the ensemble
to be able to learn to compensate for unexpected forces affecting
the arm. If, for example, the force affecting the armwas a function
of joint angle, and the ensemble only had inputs related to joint
velocity, then the network would not be able to adapt to the force.

Given that we have appropriate inputs, we further need to
make sure that the neurons are sufficiently sensitive to different
states of the arm relevant for compensating for the unexpected
force. In the NEF, the neural tuning properties are determined by

a combination of the neuron encoders (or “preferred” direction
vectors), gains, and biases. This tuning determines which parts
of the input state space are represented by the neural ensemble.
In this section, we present considerations that determine how to
appropriately pick these tuning curves for adaptive control in a
highly non-linear state space.

In particular, we need to ensure that neurons are not
active over a large part of state space. If this is the case, the
compensatory signal they learn in one part of state space may
incorrectly generalize to other parts. In contrast, if neurons are
active over a small part of state space, then the compensatory
signal they learn in one area will not affect what learning
occurs in other parts of state space. Unsurprisingly, there is a
trade-off between the specificity of neural responses and their
generalization abilities. In arm control, because the dynamics
are highly non-linear, we generally want to ensure that neurons
in our ensemble are sensitive to localized parts of state space.
We also do not want to waste neural resources. Consequently,
neurons should only be sensitive to parts of state space that are
actually explored by the arm. In other words, we do not want our
population to include neurons that never become active.

To handle both of these issues, we need to carefully choose
neural tuning curves, and hence NEF encoders. To optimize
neurons for the relevant parts of the state space, we begin by
subtracting the mean and then normalizing the input signals for
each dimension given their joint limits. Next, we project into the
D + 1 unit hypersphere, where D is the number of dimensions
represented by the ensemble. By doing this it becomes possible to
carefully control the range of values that cause neurons in the
ensemble to respond. Because we have 6 joints and two input
signals from each (i.e., position and velocity), we project the
normalized signals onto the 13-dimensional (i.e., 12 + 1) unit
hypersphere and use that as input to the ensemble.

Figure 2 illustrates how this allows us to control neural
responses by considering the simpler case of projecting 2D into
3D. Assuming we have inputs in the −1 to 1 range along each
dimension, the inputs are going to lie somewhere in the unit
square. In the NEF, by default, each of our neurons will initially
have an encoder that is a vector pointing from the origin to
somewhere inside unit circle. Neurons with encoding vectors
that point in the same direction will have similar firing rates
responses to the same input, as shown in the top half of Figure 2.
By projecting our encoding vectors and input signal into the 2 +
1 dimensional unit hypersphere, our neurons are still sensitive to
all parts of the original 2D input signal, but co-linear encoding
vectors can also generate distinct activity, as shown in the bottom
half of Figure 2. For example, we can have neurons sensitive to
an input signal of (0, 0.5) but not (0, 1), which was not possible
with our 2D preferred direction vectors. Essentially, this method
allows us to have neurons sensitive to more specific parts of
state space.

4.3. Online Learning for Adaptive Control
The neural adaptive controller presented here is a neuromorphic
implementation of the control system presented in DeWolf et al.
(2016), where it is proven that this adaptive controller performs
as well or better than a PID controller. The neural adaptive

Frontiers in Neurorobotics | www.frontiersin.org 7 October 2020 | Volume 14 | Article 568359

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

FIGURE 2 | An example of how increasing encoder dimensionality can create neurons that are more selectively responsive. On the right side of all figures the spike

raster (top) and filtered output (bottom) is plotted, showing the firing rates of these neurons for the same 2D input signal that moves from [0, −1] to [0, 1], projected

into 3D for (3,4). In the top row we show two neurons with 2D encoding vectors (0, 0.5) [shown in (1) on the left] and (0, 1.0) [shown in (2) on the left]. The arrows in

the figures represent the neuron’s encoding vectors. The z-axis and color reflect the firing rates of these neurons given different (x, y) input. As can be seen, the activity

of these neurons with co-linear encoding vectors is indistinguishable. In the bottom row, we project these same 2D encoders, (0, 0.5) [shown in (3) on the left] and (0,

1.0) [shown in (4) on the left], into 3D. The arrows in the figures represent the neuron’s encoding vectors projected into 3D. The firing rates of the neurons given

different (x, y, z) input is represented by color, showing that the neurons are responsive to different parts of 3D state space.

controller uses the Prescribed Error Sensitivity (PES; MacNeil
and Eliasmith, 2011) learning rule, which is a local, spiking or
non-spiking, error-driven Hebbian rule. The Loihi chip supports
several different kinds of online learning, providing the ability
to use microcode to define different kinds of rules. NengoLoihi
implements the PES learning rule using this feature of the chip,
which allows weight updates to be calculated on-chip. For the
other hardware, core Nengo includes a definition of the PES rule.

The adaptive control signal is calculated via

uadapt = ad, (3)

where a is the vector of neural activities (i.e., filtered neural spike
trains) and d denotes a vector of “decoders” which are the output
weights from the ensemble. The resulting uadapt is a vector of the
same dimensionality as the OSC control signal. We initialize d to
a vector of zeros, and use the learning rule

1d = −κ a⊗ u, (4)

to update the decoder weights, where κ is a learning rate, u is
the OSC’s outbound control signal (acting as the error in the
PES rule), and⊗ denotes the outer product. This training signal,
u, was chosen based on Lyapunov stability analysis. Details,
derivation, and proof of stability of this adaptive neural controller
are provided in DeWolf et al. (2016).

In the system diagram shown in Figure 3–1, the hollow
triangle denotes the connection providing the training signal, u,
for the learning rule.

4.4. Compiling to Neuromorphic Hardware
The NengoLoihi backend is used to instantiate the neural
ensemble on the Loihi with the parameters discussed above, and
implement the PES learning rule on-chip. Core Nengo is used for
the CPU implementation and the NengoOCL backend package
is used for the GPU implementation. In this example we used a
workstation with and Intel Core i7-6700K CPU @ 4.00 GHz ×
8 with 32 GB RAM and GeForce GTX 1070/PCIe/SSE2 running
Ubuntu 18.04 and the Intel Kapoho Bay board with 8 Loihi chips
running NxSDK 0.9 In this example, we are only using one of the
Loihi chips on the board.

4.5. Performance
Figure 3–2 shows the arm performing a reaching task while
holding an unexpected two pound mass. In this task the arm
repeatedly starts from the same position and reaches to the same
target 50 times, with continuous learning between reaches. We
perform the 50 reaches with each controller five times, using
different randomly generated neuron ensemble parameters (such
as bias and maximum firing rates), and calculate the mean error
and 95% confidence intervals. The adaptive controller is run
while simulating the neurons on the Loihi, and the CPU and
GPU of our workstation (specifications are in section 4.4), and
compared against a standard PID controller running on the same
workstation. We normalize our performance results using the
performance of a PD operational space controller. We consider
that controller reaching under normal conditions with nothing in
the hand as 0% error, and the results of that controller reaching
while holding the unaccounted-for two pound weight as 100%

Frontiers in Neurorobotics | www.frontiersin.org 8 October 2020 | Volume 14 | Article 568359

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

FIGURE 3 | A neurorobotic adaptive arm controller. (1) The system diagram of the neurorobotic adaptive control system. The hollow triangle denotes the connection

providing the training signal to the learning rule. Note that Nengo is only used to run the neural part of the system. The “ens” prefix denotes NEF layers. (2)

Performance error while reaching to a target while holding an unexpected two pound mass. Black: PD controller with no extra mass, used as a 0% reference error.

Gray: PD controller reaching while holding the two pound mass, used as 100% reference error. Brown: PID controller reduces error to 65.3%. Green: Adaptive

controller CPU implementation with 1,000 neurons reduces error to 37.6%. Red: Adaptive controller GPU implementation with 1,000 neurons reduces error to 36.2%.

The initially high error is due to the increased latency of the GPU implementation. Blue: Adaptive controller Loihi implementation with 1,000 neurons reduces error to

26.7%. Results are averaged over five sets of 50 trials with 95% confidence intervals shown. The adaptive controller demonstrates a 2.45 times improvement in

accuracy over PID, and 1.49 and 1.57 times improvement over the CPU and GPU adaptive controller implementations, respectively. (3) Top: A power comparison

between adaptive controller implementations. Running adaptation on the CPU and GPU requires 4.6× and 43.2× more power than Loihi. Bottom: Latency

measurements of the controllers. PD: 2.91 ms, PID: 2.95 ms, Adaptive Loihi: 3.08 ms, Adaptive CPU: 3.13 ms, Adaptive GPU: 4.38 ms.

error. As can be seen, the Loihi system outperforms all other
controllers after 50 trials of training. Unsurprisingly, the CPU
and GPU perform similarly, and better than the PID controller.

Figure 3–3 shows the power and latency measurements
of the controllers during the task, where the neuromorphic
implementation consumes the least energy of the adaptive
controllers, with a minimal increase in latency compared to the
non-adaptive controllers. Specifically, the CPU uses 4.6× more
power, and the GPU 43.2× more. As well, the CPU is a similar
latency (i.e., 2% slower), while the GPU is 42% slower than
the Loihi.

To measure the power use of the CPU, we used the software
package s-tui, available online at https://github.com/amanusk/
s-tui. To measure the power use of the GPU, we used the
nvidia-smi software. To measure the Loihi power use,
we used the Linear Tech DC1613A dongle and LTpowerPlay
software, which provides current and voltage measurements for
the chip’s two power supplies, from which we calculated the total
power use.

5. DISCUSSION

We have demonstrated how to take advantage of neuromorphic
technology to fully implement or augment existing robotic
control systems. In particular, we showed how a set of tools in the
Nengo ecosystem allows efficient execution of four central tasks
for building neurorobotic systems.

1. The NengoInterfaces library provides an easy API for
interfacing with the Mujoco simulation, used in the first
example, both for sending in control signals and receiving

feedback. While the second example is not directly providing
simple API access, it illustrates the flexibility of Nengo to
be incorporated into already developed Python programs
and interfaces.

2. In the rover example, we show how NengoDL provides
a natural way to integrate Keras and TensorFlow models.
For non-neural perception algorithms, Python code can be
directly executed from Nengo or the code can be run outside
Nengo and sent into a Nengo model, as is done in the adaptive
arm example.

3. We illustrated how a circuit design that solves the problem
of interest can be implemented in a neural network using
Nengo, providing white-box neural network systems. In the
first example this was shown with the rover control network
that steered and drove the rover to the target, and the second
example showed the use of a vector-space training signal with
stability guarantees to implement non-linear adaptive control.

4. The Nengo development toolkit allows users to compile
their model to run on multiple different hardware platforms,
including CPU (Bekolay et al., 2014), GPU (Rasmussen, 2019),
FPGA (Morcos, 2019), Intel’s Loihi (Hunsberger et al., 2018),
and SpiNNaker (Mundy et al., 2015).

We have made all of the code used in these examples publicly
available, to provide practical, reproducible examples for the
community. We believe this set of tools and examples helps
address the core challenge of making neurorobotic systems easier
to build, and a wide variety of architectures easier to explore.

In the first example, while we did not benchmark or
quantitatively characterize the result, it provides a demonstration
of how our chosen tools allow the development of complete
perception-action systems for neurorobotics. In particular,

Frontiers in Neurorobotics | www.frontiersin.org 9 October 2020 | Volume 14 | Article 568359

https://github.com/amanusk/s-tui
https://github.com/amanusk/s-tui
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

it demonstrated how to couple white box (i.e., NEF) and
black box (i.e., DNN) techniques and implement them
on a single underlying spiking neuromorphic hardware
platform (i.e., Loihi).

Nengo is unique in its ability to make such integration easily
accessible. Nengo has several advantages in this context: (a) it is
not vendor specific, and supports hardware from several sources;
(b) it allows a high-level model specification for easy portability,
while also allowing hardware specific details to be incorporated
(e.g., via its configuration system); and (c) Nengo removes the
need to have detailed knowledge about SNNs, neuromorphic
hardware, simulator interfaces, embedded programming, and so
on, while allowing those with such knowledge to leverage it (e.g.,
by easily defining new neuron models, using the configuration
system, building new hardware specific backends, and so on).

Our second example provided a more quantitative
characterization of the advantages of neurorobotics. From
a tools perspective, it demonstrated howNengo can be integrated
into existing systems and run the same neural model across
multiple kinds of hardware. But, more importantly, this
example demonstrates the kinds of advantages we expect from
neuromorphics: an increase in speed and accuracy, and several-
fold decrease in power compared to traditional hardware. As is
well-established, low latency and energy efficiency are critical for
many mobile robotics applications.

Possible extensions to the examples provided here are many
and varied. Perhaps one of themore obvious ones is to implement
the entire adaptive controller on neuromorphic hardware. To
the best of our knowledge this has only been done with a 3-link
planar arm (DeWolf et al., 2016). Since the adaptive controller
has performance guarantees, and the white box methods of the
NEF allow us to implement it on neuromorphic hardware while
preserving those guarantees, a full implementation would be a
rare example of an adaptive, fully neurorobotic controller with
clear performance guarantees.

While we believe the Nengo ecosystem is useful for the
development of neurorobotic systems, there remain a variety
of challenges and directions for future development that
stand to improve it. For instance, Nengo backends that
target non-spiking AI acceleration hardware, such as Google’s
Coral chip, would expand the community able to use the
methods we have discussed because spiking neuromorphic
hardware, such as Intel’s Loihi chip, is not commercially or
otherwise widely available. Extending the interfaces offered by

the NengoInterfaces package to improve accessibility, as well

as offering the same automatic conversion from DNNs to
SNNs for PyTorch users also remains important future work.
Perhaps most importantly, continuing to increase the number
of available tutorials, ready-to-use models, and online examples
is critical to reducing the startup overhead for new users and
better supporting the neurorobotics, neural networks, and edge
AI communities.

In conclusion, theNengo ecosystemmakes it possible for users
to quickly develop applications for neuromorphic hardware,
while taking advantage of already developed neural or non-
neural machine learning solutions. We have shown two examples
that demonstrate how the ecosystem can be used to address
four core stages of the development workflow. We encourage
interested researchers to use the code and tools that we have
made available, and look forward to exploring the vast space
of robust, embedded neurorobotics systems with the emerging
research community.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories
and accession number(s) can be found in the article/
supplementary material.

AUTHOR CONTRIBUTIONS

TD directed the project. TD, PJ, and CE implemented the
examples. PJ and CE collected the data for the arm example.
TD wrote the manuscript. CE provided research guidance and
edited the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

The NengoLoihi interface development was funded by Intel. All
other funding was provided by Applied Brain Research, Inc.

ACKNOWLEDGMENTS

The authors would like to thank Daniel Rasmussen, Eric
Hunsberger, and Xuan Choo for their help in the development
of this project. We would also like to thank Intel for access to the
Nahuku board and Kapoho Bay used in the examples, and Mike
Davies for reviewing an early draft of the paper.

REFERENCES

Bam Shrestha, S., and Orchard, G. (2018). Slayer: spike layer error reassignment in

time. arXiv 1810.

Bekolay, T. (2011). Learning in large-scale spiking neural networks (Master’s thesis),

University of Waterloo, Waterloo, ON, Canada.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C., Rasmussen,

D., et al. (2014). Nengo: a python tool for building large-scale functional brain

models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.00048

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.

(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE

Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Davison, A. P., Brüderle, D., Eppler, J. M., Kremkow, J., Muller, E., Pecevski, D.,

et al. (2009). Pynn: a common interface for neuronal network simulators. Front.

Neuroinform. 2:11. doi: 10.3389/neuro.11.011.2008

DeWolf, T., Stewart, T. C., Slotine, J.-J., and Eliasmith, C. (2016). A spiking

neural model of adaptive arm control. Proc. R. Soc. B Biol. Sci. 283:20162134.

doi: 10.1098/rspb.2016.2134

Frontiers in Neurorobotics | www.frontiersin.org 10 October 2020 | Volume 14 | Article 568359

https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.3389/neuro.11.011.2008
https://doi.org/10.1098/rspb.2016.2134
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

DeWolf et al. Nengo for Neurorobotics

Eliasmith, C., and Anderson, C. H. (2003). Neural Engineering: Computation,

Representation, and Dynamics in Neurobiological Systems. Cambridge, MA:

MIT Press.

Falotico, E., Vannucci, L., Ambrosano, A., Albanese, U., Ulbrich, S., Vasquez Tieck,

J. C., et al. (2017). Connecting artificial brains to robots in a comprehensive

simulation framework: the neurorobotics platform. Front. Neurorobot. 11:2.

doi: 10.3389/fnbot.2017.00002

Furber, S. B., Galluppi, F., Temple, S., and Plana, L. A. (2014). The spinnaker

project. Proc. IEEE 102, 652–665. doi: 10.1109/JPROC.2014.2304638

Gewaltig, M.-O., and Diesmann, M. (2007). Nest (neural simulation tool).

Scholarpedia 2:1430. doi: 10.4249/scholarpedia.1430

Goodman, D. F., and Brette, R. (2008). Brian: a simulator for spiking neural

networks in python. Front. Neuroinform. 2:5. doi: 10.3389/neuro.11.005.2008

Gutierrez-Galan, D., Dominguez-Morales, J. P., Perez-Peña, F., Jimenez-

Fernandez, A., and Linares-Barranco, A. (2020). Neuropod: a real-time

neuromorphic spiking CPG applied to robotics. Neurocomputing 381, 10–19.

doi: 10.1016/j.neucom.2019.11.007

Hines, M. L., and Carnevale, N. T. (1997). The neuron simulation environment.

Neural Comput. 9, 1179–1209. doi: 10.1162/neco.1997.9.6.1179

Hunsberger, E., Bekolay, T., Rasmussen, D., Voelker, A., Stewart, T., Patel, K., et al.

(2018). Nengoloihi. Available online at: https://github.com/nengo/nengo-loihi

Hwu, T., Isbell, J., Oros, N., and Krichmar, J. (2017). “A self-driving robot using

deep convolutional neural networks on neuromorphic hardware,” in 2017

International Joint Conference on Neural Networks (IJCNN) (Anchorage, AK:

IEEE), 635–641. doi: 10.1109/IJCNN.2017.7965912

Kreiser, R., Waibel, G., Sandamirskaya, Y., and Renner, A. (2019). “Self-calibration

and learning on chip: towards neuromorphic robots,” in IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS 2019) (Macao).

MacNeil, D., and Eliasmith, C. (2011). Fine-tuning and the stability of recurrent

neural networks. PLoS ONE 6:e0022885. doi: 10.1371/journal.pone.0022885

Markram, H. (2012). The human brain project. Sci. Am. 306, 50–55.

doi: 10.1038/scientificamerican0612-50

Mead, C. (1990). Neuromorphic electronic systems. Proc. IEEE 78, 1629–1636.

doi: 10.1109/5.58356

Morcos, B. (2019). NengoFPGA: an FPGA backend for the nengo neural simulator

(Master’s thesis), University of Waterloo, Waterloo, ON, Canada.

Mundy, A., Knight, J., Stewart, T. C., and Furber, S. (2015). “An efficient

spinnaker implementation of the neural engineering framework,” in 2015

International Joint Conference on Neural Networks (IJCNN) (Killarney: IEEE),

1–8. doi: 10.1109/IJCNN.2015.7280390

Rasmussen, D. (2019). NengoDL: combining deep learning and

neuromorphic modelling methods. Neuroinformatics 17, 611–628.

doi: 10.1007/s12021-019-09424-z

Ray, A., McGrew, B., Schneider, J., Ho, J., Welinder, P., Zaremba, W., et al. (2020).

mujoco-py. Available online at: https://github.com/openai/mujoco-py

Sawada, J., Akopyan, F., Cassidy, A. S., Taba, B., Debole, M. V., Datta, P.,

et al. (2016). “Truenorth ecosystem for brain-inspired computing: scalable

systems, software, and applications,” in SC’16: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis

(Salt Lake City, UT: IEEE), 130–141. doi: 10.1109/SC.2016.11

Slotine, J.-J. E., Khatib, O., and Ruth, D. (1988). Robust control in operational space

for goal-positioned manipulator tasks. Int. J. Robot. Autom. 3, 28–34.

Stagsted, R. K., Vitale, A., Binz, J., Larsen, L. B., Sandarmirskaya, Y., and Renner,

A. (2020). “Towards neuromorphic control: a spiking neural network based

PID controller for UAV,” in Robotics: Science and Systems (Corvalis, OR).

doi: 10.15607/RSS.2020.XVI.074

Taunyazov, T., Sng, W., See, H. H., Lim, B., Kuan, J., Ansari, A. F., et al. (2020).

Event-driven visual-tactile sensing and learning for robots. Perception 4:5.

doi: 10.15607/RSS.2020.XVI.020

Todorov, E., Erez, T., and Tassa, Y. (2012). “Mujoco: a physics engine for model-

based control,” in 2012 IEEE/RSJ International Conference on Intelligent Robots

and Systems (Vilamoura: IEEE), 5026–5033. doi: 10.1109/IROS.2012.6386109

Conflict of Interest: The authors are employees of Applied Brain Research, Inc.,

which develops and distributes Nengo free for academic and non-commercial use.

The authors declare that this study received funding from Applied Brain Research,

Inc. The funder had the following involvement with the study: paid for publication

fees. The NengoLoihi interface development was funded by Intel.

Copyright © 2020 DeWolf, Jaworski and Eliasmith. This is an open-access article

distributed under the terms of the Creative Commons Attribution License (CC BY).

The use, distribution or reproduction in other forums is permitted, provided the

original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 October 2020 | Volume 14 | Article 568359

https://doi.org/10.3389/fnbot.2017.00002
https://doi.org/10.1109/JPROC.2014.2304638
https://doi.org/10.4249/scholarpedia.1430
https://doi.org/10.3389/neuro.11.005.2008
https://doi.org/10.1016/j.neucom.2019.11.007
https://doi.org/10.1162/neco.1997.9.6.1179
https://github.com/nengo/nengo-loihi
https://doi.org/10.1109/IJCNN.2017.7965912
https://doi.org/10.1371/journal.pone.0022885
https://doi.org/10.1038/scientificamerican0612-50
https://doi.org/10.1109/5.58356
https://doi.org/10.1109/IJCNN.2015.7280390
https://doi.org/10.1007/s12021-019-09424-z
https://github.com/openai/mujoco-py
https://doi.org/10.1109/SC.2016.11
https://doi.org/10.15607/RSS.2020.XVI.074
https://doi.org/10.15607/RSS.2020.XVI.020
https://doi.org/10.1109/IROS.2012.6386109
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Nengo and Low-Power AI Hardware for Robust, Embedded Neurorobotics
	1. Introduction
	2. Background
	2.1. Nengo and Supporting Development Packages
	2.2. The Loihi Chip
	2.3. Other Neurorobotic Workflows and Toolkits

	3. Neurorobotic Rover System
	3.1. Interfacing With Mujoco
	3.2. Processing Visual Input Using a Keras DNN Converted to a Nengo SNN
	3.3. Generating Robust, Explainable Control Signals Using the NEF
	3.4. Integration and Compiling to Hardware
	3.5. Performance

	4. Neurorobotic Adaptive Arm Control
	4.1. Interfacing With the Jaco2 Robotic Arm
	4.2. Processing Sensory Feedback Using the NEF
	4.3. Online Learning for Adaptive Control
	4.4. Compiling to Neuromorphic Hardware
	4.5. Performance

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References

