
Neo: A Learned Query Optimizer

Ryan Marcus1, Parimarjan Negi2, Hongzi Mao2, Chi Zhang1,
Mohammad Alizadeh2, Tim Kraska2, Olga Papaemmanouil1, Nesime Tatbul23

1Brandeis University 2MIT 3Intel Labs

1{ryan, chi, olga}@cs.brandeis.edu 2{pnegi, hongzi, alizadeh, kraska, tatbul}@mit.edu

ABSTRACT

Query optimization is one of the most challenging problems in

database systems. Despite the progress made over the past decades,

query optimizers remain extremely complex components that re-

quire a great deal of hand-tuning for specific workloads and datasets.

Motivated by this shortcoming and inspired by recent advances in

applying machine learning to data management challenges, we in-

troduce Neo (Neural Optimizer), a novel learning-based query op-

timizer that relies on deep neural networks to generate query exe-

cutions plans. Neo bootstraps its query optimization model from

existing optimizers and continues to learn from incoming queries,

building upon its successes and learning from its failures. Further-

more, Neo naturally adapts to underlying data patterns and is robust

to estimation errors. Experimental results demonstrate that Neo,

even when bootstrapped from a simple optimizer like PostgreSQL,

can learn a model that offers similar performance to state-of-the-art

commercial optimizers, and in some cases even surpass them.

PVLDB Reference Format:

Ryan Marcus, Parimarjan Negi, Hongzi Mao, Chi Zhang, Mohammad Al-
izadeh, Tim Kraska, Olga Papaemmanouil, Nesime Tatbul. Neo: A Learned
Query Optimizer. PVLDB, 12(11): 1705-1718, 2019.
DOI: https://doi.org/10.14778/3342263.3342644

1. INTRODUCTION
In the face of a deluge of machine learning success stories, every

database researcher has likely wondered if it is possible to learn

a query optimizer. Query optimizers are key to achieving good

performance in database systems, and can speed up query execution

by orders of magnitude. However, building a good optimizer today

takes thousands of person-engineering-hours, and is an art only a

few experts fully master. Even worse, query optimizers need to

be tediously maintained, especially as the system’s execution and

storage engines evolve. As a result, none of the freely available

open-source query optimizers come close to the performance of

commercial optimizers offered by IBM, Oracle, or Microsoft.

Due to the heuristic-based nature of query optimization, there

have been many attempts to apply learning to query optimizers.

This work is licensed under the Creative Commons Attribution­
NonCommercial­NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by­nc­nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. 11
ISSN 2150­8097.
DOI: https://doi.org/10.14778/3342263.3342644

For example, almost two decades ago, Leo, DB2’s LEarning Opti-

mizer, was proposed [53]. Leo learns from its mistakes by adjusting

its cardinality estimations over time. However, Leo still requires a

human-engineered cost model, a hand-picked search strategy, and

a lot of developer-tuned heuristics. Importantly, Leo only improves

its cardinality estimation model, and cannot further optimize its

search strategy based on data (e.g., to account for uncertainty in

cardinality estimates for join order selection).

More recently, the database community has started to explore

how neural networks can be used to improve query optimizers [36,

60]. The majority of this work has focused on replacing a compo-

nent of the optimizer with learned models. For example, DQ [25]

and ReJOIN [35] use reinforcement learning combined with tradi-

tional human-engineered cost models to automatically learn search

strategies and explore the space of possible join orderings. These

papers show that learned search strategies can outperform conven-

tional heuristics on a given cost model. Moreover, in addition to

the cost model, these systems still rely on heuristics for cardinality

estimation, physical operator selection, and index selection.

Other approaches demonstrate how machine learning can be used

to achieve better cardinality estimates [22, 28, 43, 44]. However,

none demonstrate that their improved cardinality estimations actu-

ally lead to better query plans. It is relatively easy to improve the

average error of cardinality estimates, but much harder to improve

estimations for the cases that actually improve query plans [27].

Furthermore, unlike join order selection, selecting join operators

(e.g., hash join, merge join) and choosing indexes cannot be en-

tirely reduced to cardinality estimation. SkinnerDB [56], showed

that adaptive query processing strategies can benefit from reinforce-

ment learning, but it requires a specialized (adaptive) query execu-

tion engine and cannot benefit from operator pipelining.

In this paper, we present Neo (Neural Optimizer), a learned query

optimizer that achieves similar or improved performance compared

to state-of-the-art commercial optimizers (Oracle and Microsoft)

on their own query execution engines. Given a set of query rewrite

rules to ensure semantic correctness, Neo learns to make decisions

about join order, operator, and index selection. Neo optimizes these

decisions using reinforcement learning, tailoring itself to the user’s

database instance and basing its decision on actual query latency.

Neo’s design blurs the boundaries between the main compo-

nents of a traditional query optimizer: cardinality estimation, the

cost model, and the plan search algorithm. Neo does not explic-

itly estimate cardinalities or rely on hand-crafted cost models. Neo

combines these two functions in a value network, a neural network

that takes a partial query plan and predicts the best expected run-

time that could result from completing this partial plan. Guided by

the value network, Neo performs a simple search over the query

plan space to make decisions. As Neo discovers better query plans,

1705

Neo’s value network improves, focusing the search on better plans.

This subsequently leads to further improvements to the value net-

work, resulting in even better plans, and so on. This value iter-

ation [7] reinforcement learning procedure continues until Neo’s

decision-making policy has converged.

Neo required overcoming several key challenges. First, to auto-

matically capture intuitive patterns in tree-structured query plans,

we designed a value network, a deep neural network model, using

tree convolution [40]. Second, to ensure the value network under-

stands the semantics of a given database, we developed row vectors,

a featurization which represent query predicate semantics automat-

ically by using data from the underlying database. Third, we over-

came reinforcement learning’s infamous sample inefficiency by us-

ing a technique known as learning from demonstration [18,36]. Fi-

nally, we integrated these approaches into an end-to-end reinforce-

ment learning system capable of building query execution plans.

While we believe Neo represents a significant step forward, Neo

still has many important limitations. First, Neo requires a-priori

knowledge about query rewrite rules (to guarantee correctness).

Second, we restrict Neo to select-project-equijoin-aggregate queries.

Third, our optimizer does not yet generalize from one database to

another, as our features are specific to a schema — however, Neo

does generalize to unseen queries (containing any number of known

tables). Fourth, Neo requires a traditional query optimizer to boot-

strap its learning process (although this optimizer can be simple).

Interestingly, Neo automatically adapts to changes in the accu-

racy of its inputs. Further, Neo can be tuned depending on the cus-

tomer preferences (e.g., trade off worst-case performance vs. aver-

age performance), adjustments which are not trivial to achieve with

more traditional query optimizers.

We argue that Neo represents a step forward in building an en-

tirely learned optimizer. To the best of our knowledge, Neo is the

first fully-learned system (modulo query rewrite rules) to construct

query execution plans in an end-to-end fashion (i.e., from query

latency). Neo can already be used to improve the performance

of thousands of applications which rely on PostgreSQL and other

open-source database systems (e.g., SQLite). We hope that Neo

inspires many other database researchers to experiment with com-

bining query optimizers and learned systems in new ways.

In summary, we make the following contributions:

• Neo, an end-to-end learning approach to query optimization, in-

cluding join order, index, and physical operator selection.

• We show that, after training with a sample query workload, Neo

is able to generalize even to queries it has not encountered before.

• We evaluate query encoding techniques and propose a new one,

which implicitly represents correlations within the database.

• We show that, after a short training period, Neo is able to achieve

performance comparable to Oracle’s and Microsoft’s query opti-

mizers on their own respective execution engines.

Next, in Section 2, we provide an overview of Neo’s learning

framework. Section 3 describes how queries and query plans are

represented by Neo. Section 4 explains Neo’s value network, the

core learned component of Neo. Section 5 describes row vectors,

an optional learned representation of the underlying database that

helps Neo understand correlation within the user’s data. We present

an experimental evaluation of Neo in Section 6, discuss related

works in Section 7, and offer concluding remarks in Section 8.

2. LEARNING FRAMEWORK OVERVIEW
We next discuss Neo’s system model, depicted in Figure 1, and

overall reinforcement learning strategy. Neo operates in two phases:

an initial phase, in which expertise is collected from an expert op-

timizer, and a runtime phase, where queries are processed.

Neo

E
x
p

e
rtis

e
R

u
n

tim
e

Q’

QQQ
Sample

Workload
Expert

Optimizer
Executed Plans

Featurizer

P
la

n
 S

e
a

rc
h

Database Execution Engine

V
a

lu
e

 M
o

d
e

l

Prediction

Selected plan

E
x
p

e
rie

n
c
e

Latency

User Query

ro
w

 v
e

c
to

rs

Figure 1: Neo system model

Expertise Collection In the first phase, labeled Expertise, Neo gen-

erates experience from a traditional query optimizer, as proposed

in [36]. Neo assumes the existence of a Sample Workload consist-

ing of queries representative of the user’s total workload and of the

underlying engine’s capabilities (i.e., exercising a representative set

of operators). Additionally, we assume Neo has access to a simple,

traditional rule- or cost-based Expert Optimizer (e.g., Selinger [51],

PostgreSQL [3]). Neo uses this optimizer only to create query exe-

cution plans (QEPs) for each query in the sample workload. These

QEPs, along with their latencies, are added to Neo’s Experience

(a set of plan/latency pairs), which are used as a starting point in

the model training phase. Note that the expert optimizer can be

unrelated to the underlying execution engine.

Model Building With the collected experience, Neo builds an ini-

tial Value Model. The value model is a deep neural network de-

signed to predict the final execution time of a given partial or com-

plete plan. We train the value network using the collected expe-

rience in a supervised fashion. This process involves transforming

each collected query into features (Featurizer). These features con-

tain query-level information (e.g., join graph) and plan-level infor-

mation (e.g., join order). Neo can work with a number of differ-

ent featurizations, ranging from simple one-hot encodings to more

complex embeddings (Section 5). Neo’s value network uses tree

convolution [40] to process the tree-structured QEPs (Section 4.1).

Plan Search Once query-level information has been encoded, Neo

uses the value model to search over the space of QEPs (i.e., selec-

tion of join orderings, join operators, and indexes) and discover the

plan with the minimum predicted execution time (i.e., value). Since

the space of all execution plans for a particular query is far too large

to exhaustively search, Neo uses the learned value model to guide

a best-first search of the space (Section 4.2). A complete plan cre-

ated by Neo, which includes a join ordering, join operators (e.g.

hash, merge, loop), and access paths (e.g., index scan, table scan)

is sent to the underlying execution engine, which is responsible for

applying semantically-valid query rewrite rules (e.g., inserting nec-

essary sort operations) and executing the final plan. This ensures

the correctness of the generated execution plans.

Model Retraining As Neo optimizes more queries, the value model

is iteratively improved and custom-tailored to the user’s database.

This is achieved by incorporating newly collected experience re-

garding each executed QEP. Specifically, once a QEP is chosen for

a particular query, it is sent to the underlying execution engine,

which processes the query and returns the result to the user. Addi-

tionally, Neo records the final execution latency of the QEP, adding

the plan/latency pair to its Experience. Then, Neo retrains the value

model based on this experience, iteratively improving its estimates.

1706

π
0

Initial Policy
Expert System

(e.g., PostgreSQL)

v
t+1

Value Network
Trained from Experience

π
t+1

Learned Policy
Search over v

t+1

Figure 2: Value iteration

Discussion This process – searching and model retraining – is re-

peated for each query sent by the user. Neo’s architecture is de-

signed to create a corrective feedback loop: when Neo’s learned

cost model guides Neo to a query plan that Neo predicts will per-

form well, but then the resulting latency is high, Neo’s cost model

learns to predict a higher cost for the poorly-performing plan. Thus,

Neo is less likely to choose plans with similar properties to the

poorly-performing plan in the future. As a result, Neo’s cost model

becomes more accurate, effectively learning from its mistakes.

Neo represents query optimization as an Markov decision pro-

cess (MDP, formalized in Section 3.1), in which each state corre-

sponds to a partial query plan, each action corresponds to a step in

building a query plan in a bottom-up fashion, and a reward is given

only at the final (terminal) state based on the plan’s latency. Neo’s

approach to navigating this MDP is called value iteration [7]. As

depicted in Figure 2, a function is trained to approximate the util-

ity (value) of a particular state based on previous experience. This

function, which we call the value network, is then used to create

a policy. Traditionally, the created policy is simple, like greedily

selecting actions based on the value network.

Neo builds on the traditional value iteration model in two ways.

First, Neo does not greedily follow the suggestions of the value

network: it has recently been shown [33, 52] that using the trained

value network as a heuristic to guide a search can improve results.

Second, Neo does not “start from scratch,” but rather bootstraps

from a dataset of query execution plans built by a traditional query

optimizer (which was designed by human experts). This avoids re-

inforcement learning’s infamous sample inefficiency [18,48]: with-

out bootstrapping, reinforcement learning algorithms may require

millions of iterations [38] before becoming competitive with sys-

tems built manually by human experts. Intuitively, bootstrapping

from an expert source (learning from demonstration) mirrors how

young children acquire language or learn to walk by imitating adults

(experts), and has been shown to drastically reduce the time re-

quired to learn a good policy [18, 49]. This is especially critical

for database management systems: each iteration requires a query

execution, and users are likely unwilling to execute millions of

queries before achieving performance on-par with current optimiz-

ers. Worse yet, executing a poor query plan takes longer than exe-

cuting a good plan, so the initial iterations would take an infeasible

amount of time to complete [36].

An important aspect of any reinforcement learning system is

balancing exploration and exploitation. Neo exploits knowledge

through its plan search procedure, leaning heavily on the value net-

work to guide its best-first search. As in value iteration [38], Neo

ensures that new policies are explored through model retraining:

each time the value network is retrained, its weights are reset to

random values, and the entire network is trained against the col-

lected experience. This ensures that the value network’s prediction

for unseen query plans have a high degree of stochasticity (as un-

seen query plans are “off manifold” [10, 33]). We also note that

the architecture of Neo closely mirrors that of AlphaGo [52], a re-

inforcement learning system created to play the game Go. Due

to space constraints, a detailed comparison between Neo and Al-

phaGo is available in Section 2 of the online appendix [34].

 A B C D E
A 0 0 1 1 0
B 0 0 1 0 0
C 1 1 0 0 0
D 1 0 0 0 0
E 0 0 0 0 0

Join Graph

A.1 A.2 … B.1 B.2 … E.1 E.2
 0 1 … 1 0 … 0 0

Column Predicates

A

B

C

D

A.2 < 5

B.1 = ‘h’

SELECT * FROM A, B, C, D WHERE

A.3=C.3 AND A.4=D.4 AND C.5=B.5

AND A.2<5 AND B.1=‘h’;

 0 1 1 0 1 0 0 0 0 0 0 1 … 1 0 … 0 0

Query-level Vector

Figure 3: Query-level encoding

3. QUERY FEATURIZATION
In this section, we describe how query plans are represented as

vectors, starting with some necessary notation.

3.1 Notation
For a query q, we define the set of base relations used in q as

R(q). A partial execution plan P for a query q (denoted Q(P) = q)

is a forest of trees representing an execution plan that is still being

built. Each internal (non-leaf) tree node is a join operator ⊲⊳i∈ J ,

where J is the set of possible join operators (e.g., hash ⊲⊳H , merge

⊲⊳M , loop ⊲⊳L) and each leaf node is either a table scan, an index

scan, or an unspecified scan over a relation r ∈ R(q), denoted

T (r), I(r), and U(r) respectively.1 An unspecified scan is a scan

that has not been assigned as either a table or an index scan yet. For

example, a partial query execution plan could be denoted as:

[(T (D) ⊲⊳M T (A)) ⊲⊳L I(C)] , [U(B)] (1)

Here, the type of scan for B is unspecified, and no join has been

selected to link B with the rest of the plan. The plan does specify

a table scan of table D and A, which feed into a merge join, whose

result will then be joined using a loop join with C.

A complete execution plan is a plan with only a root and no un-

specified scans; all decisions on how the plan should be executed

have been made. We say that one execution plan Pi is a subplan of

another execution plan Pj , written Pi ⊂ Pj , if Pj could be con-

structed from Pi by (1) replacing unspecified scans with index or

table scans, or (2) combining subtrees in Pi with a join operator.

Building a complete execution plan can be viewed as a Markov

decision process (MDP). The initial state of the MDP is a partial

plan where every scan is unspecified and there are no joins. Each

action involves either (1) fusing together two roots with a join op-

erator or (2) turning a unspecified scan into a table or index scan.

More formally, every action transforms the current plan Pi into a

any plan Pj such that Pi ⊂ Pj . The reward of every action is zero,

except for the final action, which has a reward equal to the latency

of the produced execution plan. Like prior work [25, 35], this for-

mulation has the advantage of being ”loopless”: one always arrives

at a complete query execution plan after a finite number of actions.

3.2 Encodings
Neo uses two encodings: a query encoding, which encodes in-

formation regarding the query, but is independent of the query plan,

and a plan encoding, which represents the partial execution plan.

Query Encoding The representation of query-dependent but plan-

independent information is similar to previous work [25, 35, 43],

1Neo can trivially handle additional scan types, e.g., bitmap scans.

1707

A

B

B

D

MJ

LJ

(scan) (scan)

(index)

[0 1 1 0 0 0 0 1 1 0]

[1 0 1 0 0 0 0 0 1 0] C [0 0 0 0 0 0 0 1 0 0]

[0 0 0 0 0 0 0 0 1 0]

[0 0 0 0 0 1 0 0 0 0]

M
er
ge

Lo
op
A B C D

index
table

[0 0 1 0 0 0 0 0 0 0]

LJ

(index)

[0 1 1 0 0 1 0 1 1 0]

M
er
ge

Lo
op
A B C DM

er
ge

Lo
op
A B C D

M
er
ge

Lo
op
A B C D

M
er
ge

Lo
op
A B C D

M
er
ge

Lo
op
A B C D

M
er
ge

Lo
op

A
B C D

Figure 4: Plan-level encoding

and consists of two components. The first component encodes the

query’s join graph as an adjacency matrix, e.g. in Figure 3, the

1 in the first row, third column corresponds to the join predicate

connecting A and C. Both the row and column corresponding to

the relation E are empty, because E is not involved in the example

query. For simplicity, we assume that at most one foreign key exists

between each relation. However, the representation can easily be

extended to include multiple foreign keys (e.g., by using the index

of the relevant key instead of “1”). Furthermore, since this matrix

is symmetrical, we only encode the upper triangular portion (red).

The second component of the query encoding is the column pred-

icate vector. In Neo, we currently support three increasingly pow-

erful variants, with varying levels of precomputation requirements:

1. 1-Hot (existence of a predicate): a simple “one-hot” encod-

ing of which attributes are involved in any query predicate.

The length of the one-hot encoding vector is the number of at-

tributes over all database tables. For example, Figure 3 shows

the “one-hot” encoded vector with the positions for attribute

A.2 and B.1 set to 1, since both attributes are used as part of

predicate. Join predicates are not considered here. The learning

agent only knows whether an attribute is present in a predicate

or not. While naive, the 1-Hot representation can be built

without any access to the underlying database.

2. Hist (selectivity of a predicate): an extension of the 1-Hot

encoding which replaces “0” or “1” with the predicted selec-

tivity of that predicate (e.g., A.2 could be 0.2, if we predict a

selectivity of 20%). For predicting selectivity, we use an off-

the-shelf histogram approach with uniformity assumptions.

3. R-Vector (semantics of a predicate): the most advanced en-

coding, using row vectors. Based on word2vec [37], a natural

language processing model, each entry in the column predicate

vector is replaced with a vector containing semantic informa-

tion related to the predicate. This encoding requires building a

model over the data in the database, and is the most expensive

option. We discuss row vectors in Section 5.

More powerful the encodings provide more degrees of freedom

for the model to learn complex relationships. However, this does

not mean that simpler encodings preclude the model from learn-

ing complex relationships. For example, even though Hist does

not encode correlations between tables, the model might still learn

about them and accordingly correct the cardinality estimations in-

ternally, e.g. from repeated observation of query latencies. But

the R-Vector encoding make Neo’s job easier by providing a

semantically-enhanced representation of the query predicate.

Plan Encoding In addition to the query encoding, we also require

a representation of partial or complete query execution plan. While

prior works [25, 35] have flattened the tree structure of each partial

execution plan, our encoding preserves the inherent tree structure

of execution plans. We transform each node of the partial execution

plan into a vector, creating a tree of vectors, as shown in Figure 4.

While the number of vectors (i.e., number of tree nodes) can in-

crease, and the structure of the tree itself may change (e.g., left

deep or bushy), every vector has the same number of columns.

This representation is created by transforming each node into a

vector of size |J | + 2|R|, where |J | is the number of join types,

and |R| is the number of relations. The first |J | entries of each

vector encode the join type (e.g., in Figure 4, the root node uses

a loop join), and the next 2|R| entries encode which relations are

used, and the associated scan type (table, index, or unspecified).

For leaf nodes, this subvector is a one-hot encoding, unless the leaf

represents an unspecified scan, in which case it is treated as though

it were both an index scan and a table scan (a 1 is placed in both

the “table” and “index” columns). For internal nodes, these entries

are the union of the corresponding children nodes. For example,

the bottom-most loop join in Figure 4 has 1s in the positions corre-

sponding to table scans over A and D and an index scan over C.

Note that this representation can contain two partial query plans

(i.e., several roots) which have yet to be joined, e.g. to represent

partial plan in Equation 1, when encoded, the U(B) root node

would be encoded as: [0000110000]. The purpose of these en-

codings is merely to provide a representation of execution plans to

Neo’s value network, described next.

4. VALUE NETWORK
Next, we present Neo’s value network, a neural network which

is trained to predict the best-possible query latency for a partial ex-

ecution plan Pi: in other words, the best-possible query latency

achievable by a complete execution plan Pf such that Pi ⊂ Pf .

Since knowing the best-possible execution plan for a query ahead

of time is impossible, we approximate the best-possible query la-

tency with the best query latency seen so far by the system.

Let Neo’s experience E be a set of complete query execution

plans Pf ∈ E with known latency L(Pf). We train a model M to

approximate, for all Pi that are a subplan of any Pf ∈ E:

M(Pi) ≈ min{C(Pf) | Pi ⊂ Pf ∧ Pf ∈ E}

where C(Pf) is the cost of a complete plan. The user can change

the cost function to alter the behavior of Neo. For example, if

the user is concerned only with minimizing total query latency

across the workload, the cost could be defined as the latency, i.e.,

C(Pf) = L(Pf). However, if instead the user prefers to ensure

that every query q in a workload performs better than a particular

baseline, the cost function can be defined as

C(Pf) = L(Pf)/Base(Pf),

where Base(Pf) is latency of plan Pf with that baseline. Re-

gardless of how the cost function is defined, Neo will attempt to

minimize it over time. The model is trained by minimizing a loss

function [50]. We use a simple L2 loss function:

(M(Pi)−min{C(Pf) | Pi ⊂ Pf ∧ Pf ∈ E})2.

The same query plan may exhibit different latencies depend-

ing on external state (cache, concurrent transactions). By default,

Neo’s value model will try to predict the final average latency of

a query plan (this minimizes the L2 loss). However, depending

on the user’s requirements, the loss function could be modified to

encourage the value network to predict the final worst observed la-

tency (e.g., choose query plans that are robust to cache state), or

to predict the best observed latency (e.g., choose query plans that

assume the correct data is currently cached). If desired, one could

even use a piecewise loss function to favor the worst, average, or

best case for different queries in the user’s workload.

1708

Q
u
e
ry

-l e
v
e
l E

n
c
o
d
in

g
1
 x

 6
4

F
u
lly

 C
o
n
n
e
c
te

d
 L

a
y
e
r

1
 x

 1
2
8

F
u
lly

 C
o
n
n
e
c
te

d
 L

a
y
e
r

1
 x

 6
4

F
u
lly

 C
o
n
n
e
c
te

d
 L

a
y
e
r

1
 x

 3
2

1 x 20

1 x 201 x 20

1 x 20 1 x 20

Plan-level Encoding

Concatenation

1 x 52

1 x 521 x 52

1 x 52 1 x 52

Augmented Tree

Tree Convolution

1x512 1x256 1x128

F
u
lly

 C
o
n
n
e
c
te

d
 L

a
y
e
r

1
 x

 1
2
8

F
u
lly

 C
o
n
n
e
c
te

d
 L

a
y
e
r

1
 x

 6
4

F
u
lly

 C
o
n
n
e
c
te

d
 L

a
y
e
r

1
 x

 3
2

F
u
lly

 C
o
n
n
e
c
te

d
 L

a
y
e
r

1
 x

 1

D
y
n
a
m

i c
 P

o
o
li n

g
1
 x

 1
2
8

LayerInput

C
o
s
t P

r e
d
ic

tio
n

Intermediary Output

Figure 5: Value network architecture

Network Architecture The architecture of the Neo value network

is shown in Figure 5.2 The architecture was designed to create an

inductive bias [33] suitable for query optimization: the structure of

the neural network itself is designed to reflect an intuitive under-

standing of what causes query plans to be fast or slow. Humans

studying query plans learn to recognize suboptimal or good plans

by pattern matching: a merge join on top of a hash join with a

shared join key is likely inducing a redundant sort or hash; a loop

join on top of two hash joins is likely highly sensitive to cardinality

estimation errors; a hash join using a fact table as the “build” rela-

tion likely incurs spills; a series of merge joins that do not require

re-sorting is likely to perform well, etc. Our insight is that all of

these patterns can be recognized by analyzing subtrees of a query

execution plan. Neo’s model architecture is essentially a large bank

of these patterns that are learned automatically, from the data itself,

by taking advantage of a technique called tree convolution [40].

As shown in Figure 5, when a partial query plan is evaluated

by the model, the query-level encoding is fed through a number

of fully-connected layers, each decreasing in size. The vector out-

putted by the third fully connected layer is concatenated with the

plan-level encoding, i.e., each tree node (the same vector is added

to all tree nodes). This is a standard technique, known as “spatial

replication” [52,62], for combining fixed-size data (query-level en-

coding) and dynamically-sized data (plan-level encoding). Once

each tree node vector has been augmented, the forest of trees is

sent through several tree convolution layers [40], an operation that

maps trees to trees. Afterwards, a dynamic pooling operation [40]

is applied, flattening the tree structure into a single vector. Several

additional fully connected layers are used to map this vector to a

single value, used as the model’s prediction for the inputted plan.

A formal description of the value network model is given in [34].

4.1 Tree Convolution
Neural network models like CNNs [29] take input tensors with a

fixed structure, such as a vector or an image. For Neo, the features

embedded in each execution plan are structured as nodes in a tree

(e.g., Figure 4). Thus, we use tree convolution [40], an adaption of

traditional image convolution for tree-structured data.

Tree convolution is a natural fit for Neo. Similar to the convo-

lution transformation for images, tree convolution slides a set of

shared filters over each part of the plan tree. Intuitively, these fil-

ters can capture a wide variety of local parent-children relations.

For example, filters can look for hash joins on top of merge joins,

or a join of two relations when a particular predicate is present. The

output of these filters provides signals utilized by the final layers of

the value network; filter outputs could signify relevant factors such

as when the children of a join operator are sorted (suggesting a

merge join), or a filter might estimate if the right-side relation of

a join will have low cardinality (suggesting that an index may be

useful). We provide two concrete examples later in this section.

2We omit activation functions, present between each layer, from
our diagram and our discussion.

Since each node of the query tree has exactly two child nodes,

each filter consists of three weight vectors, ep, el, er . Each filter is

applied to each local “triangle” formed by the vector xp of a node

and two of its left and right child, xl and xr (~0 if the node is a leaf),

to produce a new tree node x′

p:

x′

p = σ(ep ⊙ xp + el ⊙ xl + er ⊙ xr).

Here, σ(·) is a non-linear transformation (e.g., ReLU [16]), ⊙ is a

dot product, and x′

p is the output of the filter. Each filter thus com-

bines information from the local neighborhood of a tree node. The

same filter is “slid” across each tree in a execution plan, allowing

a filter to be applied to plans of arbitrary size. A set of filters can

be applied to a tree in order to produce another tree with the same

structure, but with potentially different sized vectors representing

each node. In practice, hundreds of filters are applied.

Since the output of a tree convolution is another tree, multiple

layers of tree convolution filters can be “stacked.” The first layer

of tree convolution filters will access the augmented execution plan

tree (i.e., each filter will be slid over each parent/left child/right

child triangle of the augmented tree). The amount of information

seen by a particular filter is called the filter’s receptive field [31].

The second layer of filters will be applied to the output of the first,

and thus each filter in this second layer will see information derived

from a node n in the original augmented tree, n’s children, and n’s

grandchildren: each tree convolution layer thus has a larger recep-

tive field than the last. As a result, the first tree convolution layer

learns simple features (e.g., recognizing a merge join on top of a

merge join), whereas the last tree convolution layer learns complex

features (e.g., recognizing a left-deep chain of merge joins).

We present two concrete examples that show how the first layer

of tree convolution can detect interesting patterns in query execu-

tion plans. In Example 1 of Figure 6a, we show two execution

plans that differ only in the topmost join operator (a merge join and

hash join). As depicted in the top portion of Figure 6b, the join

type (hash or merge) is encoded in the first two entries of the fea-

ture vector in each node. A tree convolution filter (Figure 6c top),

comprised of three weight vectors with {1,−1} in the first two po-

sitions and zeros for the rest, will serve as a “detector” for query

plans with two sequential merge joins. This can be seen in Fig-

ure 6d (top): the root node of the plan with two sequential merge

joins receives an output of 2 from this filter, whereas the root node

of the plan with a hash join on top of a merge join receives an output

of 0. Subsequent tree convolution layers can use this information to

form more complex detectors, like to detect three merge joins in a

row (a pipelined query execution plan), or a mixture of merge joins

and hash joins (which may induce re-hashing or re-sorting).

In Example 2, Figure 6, suppose tables A and B are sorted on the

same key, and are thus ideally joined together with a merge join, but

that C is not sorted. The filter shown in Figure 6(c, bottom) serves

as a detector for query plans that join A and B with a merge join,

behavior that is likely desirable. The top weights (ep) recognize

the merge join, and the right weights (er) recognize table B over

all other tables. The result of this convolution (Figure 6d, bottom)

1709

(a) Query trees (b) Features on each node (c) Tree conv filters (d) Output

Merge	join C

A B

[1,0,1,1,0] [0,0,0,0,1]

[0,0,1,0,0] [0,0,0,1,0]

Tree	

Conv

Filter
el

[1,-1,0,0,0]

er

[1,-1,0,0,0]

ep

[1,-1,0,0,0]

1 0

0 0

Merge	join

Merge	join C

A B

Hash	join [1,0,1,1,1]

[1,0,1,1,0] [0,0,0,0,1]

[0,0,1,0,0] [0,0,0,1,0]

[0,1,1,1,1] 2

1 0

0 0

0

Merge	join C

A B

[1,0,1,1,0] [0,0,0,0,1]

[0,0,1,0,0] [0,0,0,1,0]

Tree	

Conv

Filter

3 -1

0 1

Merge	join

Merge	join B

A C

Merge	join [1,0,1,1,1]

[1,0,1,0,1] [0,0,0,1,0]

[0,0,1,0,0] [0,0,0,0,1]

[1,0,1,1,1] -1

-1 1

0 0

2

E
x

a
m

p
le

 1
E

x
a

m
p

le
 2

el

[0,0,0,-1,0]

er

[-1,-1,-1,1,-1]

ep

[1,-1,0,1,-1]

Figure 6: Tree convolution examples

shows its highest output for the merge join of A and B (first plan),

and a negative output for the merge join of A and C (second plan).

In practice, filter weights are learned over time, and not config-

ured by hand. Performing gradient descent to update filter weights

will cause filters that correlate with latency (helpful features) to be

rewarded (remain stable), and filters with no clear relationship to

latency to be penalized (pushed towards more useful values). This

creates a corrective feedback loop, resulting in the development of

filterbanks which extract useful features [29].

4.2 DNN-Guided Plan Search
The value network predicts the quality of an execution plan,

but does not directly give an execution plan. Following recent

works [4, 52], we combine the value network with a search tech-

nique to generate plans, resulting in a value iteration technique [7].

Given a trained value network and an incoming query q, Neo per-

forms a search of the plan space for a given query. In some ways,

this search mirrors the search process used by traditional database

optimizers, with the trained value network taking on the role of the

database cost model. However, unlike these traditional systems,

the value network does not predict the cost of a subplan, but rather

the best possible latency achievable from an execution plan that

includes a given subplan. This difference allows us to perform a

best-first search [12] to find an execution plan with low expected

cost. Essentially, this amounts to repeatedly exploring the candi-

date with the best predicated cost until a halting condition occurs.

The search process for query q starts by initializing an empty min

heap to store partial execution plans. This min heap is ordered by

the value network’s estimation of each partial plan’s cost. Initially,

a partial execution plan with an unspecified scan for each relation in

R(q) is added to the heap. For example, if R(q) = {A,B,C,D},

then the heap is initialized with P0:

P0 = [U(A)], [U(B)], [U(C)], [U(D)].

Each search iteration begins by removing the subplan Pi at the

top of the min heap. We enumerate Pi’s children, Children(Pi),
scoring each child using the value network and adding them to the

min heap. Intuitively, the children of Pi are all the plans creatable

by specifying a scan in Pi or by joining two trees of Pi with a join

operator. Formally, we define Children(Pi) as the empty set if Pi

is a complete plan, and otherwise as the set of available actions at

this state of the MDP (see Section 3.1). Once each child is scored

and added to the min heap, another search iteration begins, explor-

ing the next most promising plan. Each step of search operation

takes O(log n) time, where n is the size of the min heap.

While this process could be terminated when a leaf (a complete

plan) is found, this search procedure can easily be transformed into

a anytime search algorithm [63]: an algorithm that continues to

find better results until a fixed time cutoff. In this variant, Neo

continues exploring the most promising nodes from the heap un-

til a time threshold is reached, at which point the most promising

complete execution plan is returned. This gives the user control

over the tradeoff between planning time and execution time. Users

could select a different time cutoff for different queries depending

on their needs. In the event that the time threshold is reached before

a complete execution plan is found, Neo’s search procedure enters

a “hurry up” mode [55], and greedily explores the most promising

children of the last plan explored until a leaf is reached. The cut-

off time should be tuned on a per-application bases. We find that

250ms is sufficient for a wide variety of workloads (Section 6.6).

5. ROW VECTOR EMBEDDINGS
Neo can represent query predicates in a number of ways, includ-

ing a simple one-hot encoding (1-Hot) or a histogram-based rep-

resentation (Hist), as described in Section 3.2. Here, we motivate

and describe row vectors, Neo’s most advanced option for repre-

senting query predicates (R-Vector).

While cardinality estimation is critical to the success of tradi-

tional query optimizers [26, 30], database systems often make sim-

plifying assumptions, such as uniformity, independence, and/or the

principle of inclusion that often undermine this goal [27]. Neo,

takes a different approach: instead of making simplifying assump-

tions about data distributions and attempting to directly estimate

predicate cardinality, we build a semantically-rich, vectorized rep-

resentation of query predicates that can serve as an input to Neo’s

value model, enabling the network to learn generalizable insights

into data correlations. Following recent work in semantic query-

ing [9], entity matching [41], data discovery [14], and error detec-

tion [17], we build a vectorized representation of each query predi-

cate based on data in the database itself.

Our row vector approach is based on the popular and well-studied

word2vec algorithm [37], a way of transforming natural language

words (e.g., English words) into vectors. While these vectors are

meaningless on their own, the distances between them have seman-

tic meaning: for example, the distance between ”spaghetti” and

”pasta” will be small, whereas the distance between ”banana” and

”doorknob” will be large. Intuitively, word2vec works by taking

advantage of a word’s context: words that frequently appear nearby

in text are assigned similar vector representations, and words that

rarely do so are assigned dissimilar vectors (e.g. ”At the Italian

restaurant, I ordered...”). In Neo, we treat each row of each table

in a database as a sentence, and we treat each column value of a

table row as a word. Thus, values that frequently co-occur in rows

are mapped to similar vectors. We call these vectors row vectors.

Neo’s value network can take these row vectors as inputs, and use

them to identify correlations within the data and predicates with

syntactically-distinct but semantically-similar values (e.g., both ”ac-

tion” and ”adventure” frequently co-occur with ”superhero”).

1710

col1 col2 col3

A C E

A C F

B D F

A

B

C

E

D

F

A

B

C

E

D

F

1

0

0

0

0

0

0

0

1

0

1

0

Example 1
(A, C, E)

A

B

C

E

D

F

A

B

C

E

D

F

0

0

1

0

0

0

1

0

0

0

0

1

Example 2
(A, C, F)

T
ra

in
in

g

A

B

C

E

D

F

A

B

C

E

D

F

Remove
output
layer

0.75

1

0

0

0

0

0

-0.33

A

B

C

E

D

F

Q
u
e
ry

 O
p
ti
m

iz
a
ti
o
n

Embedded
 vector for

“A”

Input layer

Embedding layer

Output layer

Trained network

Figure 7: Row vector embedding process

The remainder of this section first gives a high-level overview

of how Neo’s row vectors are built, and then explores why row

vectors are effective at capturing correlations in real-world data.

For details, see the online appendix [34].

5.1 R-Vector Featurization
At a high level, our goal is to build a semantically rich represen-

tation of a query predicate which Neo can use as an input. For ex-

ample, if a query over the IMDB movie dataset / JOB dataset [26]

looks for all actors in movies tagged with “marvel-comics”, the

query will return many actors who play superheros. Similarly, if

a query looks for all actors in movies tagged with “avengers”, the

query will also return many actors who play superheros. However,

a query for all actors in movies tagged with “romance” is unlikely

to return many superhero actors. Thus, we want to create a vector-

ized representation of “marvel-comics” that is similar to “avengers”

but dissimilar to “romance”. Given such a vectorization, Neo will

have a better chance of making good predictions about a query for

“avengers” movies after having seen a query for “marvel-comics”

movies, thus giving Neo more opportunities to generalize.

Neo’s row vector encoding requires two steps (Figure 7). Be-

fore query optimization, a training step learns an embedding with

a specialized neural network. During query optimization, the out-

put layer of the specialized neural network is removed, creating a

truncated network which maps inputs to an embedded vector [34].

Training To generate row vectors, we use word2vec — a natural

language processing technique for embedding contextual informa-

tion about collections of words [37]. We build an embedding of

each value in the database using an off-the-shelf word2vec imple-

mentation [47]. We depict this process in the top half of Figure 7.

We first construct a three-layer neural network, called the em-

bedding network, with equally-sized input and output layers. The

neural network will be trained to map each one-hot encoded value

in the database to an output vector representing the value’s context.

For example, the top half of Figure 7, Example 1, shows how the

embedding network is trained to map an input of “A” to an output

vector representing “C” and “E”, corresponding to the first row in

the example table. For this first row, the embedding network is also

trained to map “C” to an output vector representing “A” and “E”, as

well as to map “E” to an output vector representing “A” and “C”.

This procedure is repeated for each row in the database (e.g., Exam-

ple 2). Note that the embedding network will never achieve a high

level of accuracy: “A” may appear in multiple contexts, making

this impossible. The goal of the algorithm is to capture statistical

relationships between database values and their context.

(a) Birthplace of each actor (b) Top actors in each genre

Figure 8: The same t-SNE projection (each axis is a unitless quan-

tity) of embedded actor names, colored by (a) birthplace and (b)

genre: the same embedding automatically captures multiple corre-

lations. Correlations appear as semantically meaningful clusters.

Query optimization The bottom half of Figure 7 depicts how Neo

builds row vector encodings during query optimization. After the

embedding network is trained, the output layer is removed, result-

ing in a two layer network (the weights representing the transfor-

mation from the embedding layer to the output layer may also be

discarded). This truncated network can be used by Neo to build a

vectorized representation of a database value by passing it through

the input layer and recording the value of the embedding layer.

To encode a query predicate, we combine information about the

predicate operator (e.g., LIKE or !=) with the embedded vector. In

the simplest case, a query predicate is in the form of tbl.attr

OP VALUE, for example, actor.name = "Robert Downey

Jr". For these simple cases, the query predicate can be encoded

by concatenating a one-hot encoding of the predicate operator (e.g.,

=) with the embedded vector the predicate value (e.g., "Robert

Downey Jr"). This concatenated vector replaces the simple 0 or

1 used in the 1-Hot encoding (Section 3.2).

Embedded vectors can be combined and searched to handle wild-

card LIKE queries or complex logical queries (e.g., ANDs, ORs).

For example, Neo handles wildcard queries by searching for an ex-

ample of a match in the database, and then using the embedded

value of that match [34]. The embeddings can be improved by par-

tially denormalizing the database, allowing the word2vec model to

capture cross-table correlations. Our word2vec training process is

open source, and available on GitHub [1].

Example Next, we explore an example trained word2vec model on

the IMDB / JOB dataset [26]. After training a row vector model on

the entire IMDB dataset, we used t-SNE3 to project the embedded

vectors of actor names space into two-dimensional space for plot-

ting [58]. The results plotted in Figure 8 present a visual example

of how row vectors capture semantic correlations across database

tables. As shown, various semantic groups (e.g., Chinese actors,

Sci-fi movie actors) are clustered together. Intuitively, this pro-

vides helpful signals to estimate query latency given similar pred-

icates: as many of the clusters in Figure 8 are linearly separable,

their boundaries can be learned by machine learning algorithms.

In other words, since predicates with similar semantic values (e.g.,

two American actors) are likely to have similar correlations (e.g.,

be in American films), representing the semantic value of a query

predicate allows the value network to recognize similar predicates

and thus better generalize to unseen predicates.

3The t-SNE algorithm finds low-dimensional embeddings of high-
dimensional spaces that maintain distances between pairs of points:
points that are close together (far apart) in the low-dimensional
space are close together (far apart) in the high-dimensional space.

1711

6. EXPERIMENTS
We evaluated Neo’s performance using both synthetic and real-

world datasets to answer the following questions: (1) how does the

performance of Neo compare to commercial, high-quality optimiz-

ers, (2) how well does Neo generalize to new queries, (3) how much

overhead does Neo’s training and execution incur, (4) how do the

different encoding strategies impact query latency, (5) how do other

parameters (e.g., search time or loss function) impact the overall

performance, and finally, (6) how robust is Neo to estimation er-

rors. Unless otherwise stated, queries are executed on a server with

32GB of RAM, an Intel Xeon CPU E5-2640 v4, and a solid-state

drive. Each DBMS was configured according to the “best prac-

tices” guide provided by the distributing organization.

6.1 Setup
We evaluate Neo across a number of different database systems,

using three different benchmarks:

1. JOB: the join order benchmark [26], with a set of queries

over the Internet Movie Data Base (IMDB) consisting of

complex predicates, designed to test query optimizers.

2. TPC-H: the standard TPC-H benchmark [45], using a scale

factor of 10.

3. Corp: a 2TB dataset together with 8,000 unique queries

from an internal dashboard application, provided by a large

corporation (on the condition of anonymity).

Unless otherwise stated, all experiments are conducted by ran-

domly placing 80% of the available queries into a training set, and

using the other 20% of the available queries as a testing set. In

the case of TPC-H, we generated 80 training and 20 test queries

based on the benchmark query templates without reusing templates

between training and test queries.

Each result presented is the median of 50 randomly initialized

runs. Neural networks are trained with Adam [21]. Layer normal-

ization [5] is used for training stability. Activation functions are

“leaky ReLUs” [16]. We use a search time cutoff of 250ms. The

network architecture follows Figure 5, which we selected after test-

ing several variants on a small subset of JOB. except the size of the

plan-level encoding is dependent on the encoding strategy selected.

Row vectors are build using partial denormalization [34].

We compare Neo against two open-source (PostgreSQL 11.2,

SQLite 3.27.1), and two commercial (Oracle 12c, Microsoft SQL

Server 2017 for Linux) database systems; specifically, we train Neo

to build query plans for each of these systems, and then compare

Neo’s query plans against those produced by each system’s query

optimizer. Due to the license terms [46] of Microsoft SQL Server

and Oracle, we can only show performance in relative terms.

For initial experience collection for Neo, we always used the

PostgreSQL optimizer as the expert. We define the target system as

the system Neo is creating query plans for: that is, if Neo is building

plans to execute on Oracle, we refer to Oracle as the target system.

To train Neo, we first use the PostgreSQL optimizer to create a

query plan for every query in the training set. We then measured

the execution time of this plan on the targeted execution engine

(e.g., Oracle) by forcing the target system, through query hints, to

obey the proposed query plan. Next, we begin training: Neo trains

a value network to predict the latency of the complete and partial

plans in its experience set, and then uses that value network to build

new query plans. These new query plans are then executed by the

underlying DBMS, and their resulting latencies are added to Neo’s

experience. We repeat this process 100 times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

PostgreSQL SQLite SQL Server Oracle

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

JOB
TPC-H

Corporation

Figure 9: Latency of test query plans created by Neo after 100

episodes of training, normalized to plans created by the target sys-

tem’s corresponding optimizer for different workloads.

6.2 Overall Performance
Figure 9 shows the relative performance of Neo after 100 training

iterations on each test workload, using the R-Vector encoding

over the holdout dataset (lower is better). For example, with Post-

greSQL and the JOBworkload, Neo produces queries that take only

60% of average execution time than the ones created by the original

PostgreSQL optimizer. Since the PostgreSQL optimizer is used to

gather initial expertise for Neo, this demonstrates Neo’s ability to

improve upon an existing open-source optimizer.

Moreover, for SQL Server and the JOB and Corp workloads,

the query plans produced by Neo are also 10% faster than the plans

created by the SQL Server commercial optimizer (note that these

plans are executed on SQL Server). Importantly, the SQL Server

optimizer, which includes a multi-phase search procedure and a

hundred-input dynamically-tuned cost model [15, 42], is expected

to be substantially more advanced than PostgreSQL’s optimizer.

Yet, by bootstrapping only with PostgreSQL’s optimizer, Neo is

able to eventually outperform or match the performance of the SQL

Server optimizer on its own platforms. Similar results were found

for Oracle. Note that the faster execution times are solely based on

better query plans (i.e., there are no modifications to the underlying

execution engines). The only exception where Neo does not outper-

form the two commercial systems is for the TPC-H workload. We

suspect that both SQL Server and Oracle have been tuned towards

TPC-H, as it is one of the most common benchmarks.

Overall, this experiment demonstrates that Neo is able to cre-

ate plans, which are as good as, and sometimes even better than,

open-source optimizers and their significantly superior commercial

counterparts. However, Figure 9 only compares the median perfor-

mance of Neo after the 100th training episode. This naturally raises

the following questions: (1) how does the performance compare

with a fewer number of training episodes and how long does it take

to train the model to a sufficient quality (answered in the next sub-

section), and (2) how robust is the optimizer to various estimation

errors (answered in Section 6.4).

6.3 Convergence Time
To analyze the convergence time, we measured the performance

after every training iteration, for a total of 100 complete iterations.

We first report the learning curves in terms of training iterations

to facilitate comparisons between different systems (e.g., a train-

ing episode with MS SQL Server might run much faster than Post-

greSQL, simply because the MS SQL Server execution engine is

better tuned). Afterwards, we report the wall-clock time to train the

models on the different systems. Finally, we answer the question of

how much our bootstrapping method helped with the training time.

1712

6.3.1 Learning Curves

We measured the performance of Neo on each dataset with re-

spect to the targeted system’s optimizer (i.e., in each plot, a perfor-

mance of 1 is equivalent to the target engine’s optimizer) for ev-

ery episode: a full pass over the set of training queries (retraining

the network from the experience, choosing a plan for each training

query, executing that plan, and adding the result to Neo’s expe-

rience). Figure 10 depicts 50 runs: the solid line represents the

median, and the shaded region represents the minimum and max-

imum values. For all DBMSes except for PostgreSQL, we addi-

tionally plot the relative performance of the plans generated by the

PostgreSQL optimizer when executed on the target engine (e.g.,

executing the PostgreSQL plan on Oracle).

Convergence Each figure demonstrates a similar behavior: after

the first iteration, Neo’s performance is poor (nearly 2.5 times worse

than the target system’s optimizer). Then, for several iterations, the

performance of Neo improves sharply, until it levels off. We note

that Neo is able to improve on the PostgreSQL optimizer in as few

as 9 training iterations (i.e., the number of training iterations un-

til the median run crosses the line representing PostgreSQL). It is

not surprising that matching the performance of a commercial opti-

mizer (MS SQL Server or Oracle) requires significantly more train-

ing iterations, as commercial systems are much more sophisticated.

Variance The variance between the different training iterations is

small for all workloads, except for TPC-H. We hypothesize that

TPC-H’s uniform data distribution renders the R-Vector embed-

dings less useful, and thus it takes the model longer to adjust ac-

cordingly. This behavior is not present in the non-synthetic datasets.

6.3.2 Wall­Clock Time

So far, we analyzed how long it took Neo to become competitive

in terms of training iterations; next, we analyze the time it takes for

Neo to become competitive in terms of wall-clock time (real time).

We analyzed how long it took for Neo to reach two milestones: a

policy producing query plans on-par with (1) the plans produced by

PostgreSQL, but executed on the target execution engine, and (2)

the plans produced by the target system’s optimizer and executed

on the target system’s execution engine. The results are plotted

in Figure 11a: the left and right bars represent milestone 1 and 2,

respectively), split into time spent training the neural network and

time spent executing queries. Note that the query execution step is

parallelized, executing queries on different nodes simultaneously.

Unsurprisingly, it takes longer for Neo to become competitive

with the more advanced, commercial optimizers. However, for ev-

ery engine, learning a policy that outperforms the PostgreSQL op-

timizer consistently takes less than two hours. Furthermore, Neo

was able to match or exceed the performance of every optimizer

within half a day. Note that this time does not include the time

for training the query encoding, which in the case of the 1-Hot

and Histogram are negligible. However, this takes longer for

R-Vector (see Section 6.7).

6.3.3 Is Demonstration Even Necessary?

Since gathering demonstration data introduces additional com-

plexity, it is natural to ask if demonstration is necessary at all: is it

possible to learn a good policy from zero knowledge? While pre-

vious work [35] showed that an off-the-shelf deep reinforcement

learning technique can learn to find query plans that minimize a

cost model without demonstration data, learning a policy based on

query latency (i.e., end-to-end) is difficult because a bad plan can

take hours to execute. Unfortunately, randomly chosen query plans

behave exceptionally poorly (i.e., 100x to 1000x worse [26]), po-

tentially increasing the training time of Neo by a similar factor [36].

We attempted to work around this problem by selecting an ad-

hoc query timeout t (e.g., 5 minutes), and terminating query execu-

tions when latencies exceed t. However, this technique destroys a

good amount of the signal that Neo uses to learn: join patterns re-

sulting in a latency of 7 minutes get the same reward as join patterns

resulting in a latency of 1 week, and thus Neo cannot learn that the

join patterns in the 7-minute plan are an improvement over the 1-

week plan. As a result, even after training for over three weeks, we

did not achieve results even on par with the PostgreSQL optimizer.

6.4 Robustness
Here, we test the efficacy of alternative query encoding (e.g.,

1-Hot), Neo’s ability to handle unseen queries invented specifi-

cally to exhibit novel behavior, and Neo’s resilience to noisy inputs.

6.4.1 Query Encoding

Figure 11b shows the performance of Neo across each DBMS

for the JOB dataset, varying the query encoding. Here, we include

two R-Vector encodings: partial denormalization [34], in which

R-Vector are trained on a partially denormalized database, and

a variant without any denormalization (suffixed with “no joins”).

As expected, the 1-Hot encoding consistently performs the worst,

as the 1-Hot encoding contains minimal information about pred-

icates. The Hist encoding, while making naive uniformity as-

sumptions, provides enough information about predicates to im-

prove Neo’s performance. In each case, the R-Vector encodings

produce the best overall performance, with the “no joins” variant

lagging slightly behind. We hypothesize that this is because the

R-Vector encoding contains more semantic information about

the underlying database than other encodings.

6.4.2 On Entirely New Queries

Previous experiments demonstrated Neo’s ability to generalize

to queries in a randomly-selected, held-out test set drawn from

the same workload as the training set. While this shows that Neo

can handle previously-unseen predicates and modifications to join

graphs, it does not necessarily demonstrate that Neo will be able to

generalize to a completely new query. To test Neo’s behavior on

new queries, we created a set of 24 additional queries, which we

call Ext-JOB [2], that are semantically distinct from the original

JOB workload (no shared predicates or join graphs).

After training Neo for 100 episodes on the JOB queries, we

evaluated the performance of Neo on the Ext-JOB queries. Fig-

ure 12a shows the results: the height of the solid bar represents

the average normalized latency of the plans produced Neo on the

unseen queries. First, we note that with the R-Vector featuriza-

tion, the execution plans chosen for the entirely-unseen queries in

the Ext-JOB dataset still outperformed or matched the target sys-

tem’s optimizer. We hypothesize that the larger gap between the

R-Vector featurizations and the Hist/ 1-Hot featurizations is

due to R-Vector capturing information about query predicates

that generalizes to entirely new queries.

Learning new queries Since Neo is able to progressively learn

from query executions, we evaluated Neo’s performance on the

Ext-JOB queries after 5 additional training iterations (which in-

cluded experience from the Ext-JOB queries), depicted by the

patterned bars in Figure 12a. Once Neo has seen each new query a

handful of times, Neo’s performance increases, having learned how

to handle the new patterns introduced by the previously-unseen

queries. While the performance of Neo initially degrades when

confronted by new queries, Neo adapts to suit these new queries.

This showcases the potential for a deep-learning powered query

optimizer to keep up with changes in real-world query workloads.

1713

PostgreSQL SQLite MS SQL Server Oracle
J
O
B

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

Postgres
Neo (R-Vectors)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

SQLite
PostgreSQL on SQLite

Neo (Row Vectors)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

SQL Srv
PostgreSQL on SQL Srv

Neo (Row Vectors)

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

Oracle
PostgreSQL on Oracle

Neo (Row Vectors)

T
P
C
-
H

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

C
o
r
p

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

 0

 0.5

 1

 1.5

 2

 2.5

 0 20 40 60 80 100

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Iterations

Figure 10: Learning curves (normalized latency over time) with variance. For each DBMS and dataset, we measure the latency of plans

created by the DBMS’ corresponding optimizer, the PostgreSQL optimizer, and Neo. Latencies are normalized to the latencies of the plans

produced by the optimizer of the corresponding DBMS (e.g., all values in the fourth column are normalized to the latencies of the plans

created by the Oracle optimizer). Shaded area spans minimum to maximum across fifty runs with different random seeds. Central line is the

median. For a plot with all featurizations, please visit: http://rm.cab/l/lc.pdf

6.4.3 Cardinality Estimates

The strong relationship between cardinality estimation and query

optimization is well-studied [6, 39]. However, effective query opti-

mizers must take into account that most cardinality estimates tend

to become significantly less accurate as the number of joins in-

creases [26]. While deep neural networks are generally regarded

as black boxes, here we show that Neo is capable of learning when

to trust cardinality estimates and when to ignore them.

To measure the robustness of Neo to cardinality estimation er-

rors, we trained two Neo models with an additional feature at each

tree node. The first model received the PostgreSQL optimizer’s car-

dinality estimation (PostgreSQL), and the second model received

the true cardinality (True cardinality). We then plotted a histogram

of both model’s outputs across every state encountered while opti-

mizing queries in the JOB workload when the number of joins was

≤ 3 and > 3, introducing artificial error.

Figure 13a and 13b shows the histogram of value network pre-

dictions for the PostgreSQL model for states with ≤ 3 or > 3 joins,

respectively. Figure 13a shows that, when there are at most 3 joins,

an increase in cardinality estimation error from zero orders of mag-

nitude to two and five orders of magnitude causes an increase in the

variance of the distribution: when the number of joins is at most

3, Neo learns a model that varies with the PostgreSQL cardinality

estimate. However, in Figure 13b, we see that the distribution of

network outputs hardly changes at all when the number of joins is

greater than 3: when the number of joins is greater than 3, Neo

learns to ignore the PostgreSQL cardinality estimates all together.

Figure 13c and 13d show that when Neo’s value model is trained

with true cardinalities as inputs, Neo learns a model that varies its

prediction with the cardinality regardless of the number of joins.

In other words, when provided with true cardinalities, Neo learns

to rely on the cardinality information regardless of the number of

joins. This demonstrates that Neo is capable of learning which in-

put features are reliable, even when the reliability of those features

is dependent on factors such as the number of joins.

6.4.4 Per Query Performance

Next, we analyze Neo’s performance at the query level. The

absolute performance improvement (or regression) in seconds for

each query in the JOB workload between the Neo and PostgreSQL

plans (executed on PostgreSQL) are shown in Figure 14 (purple).

While Neo improves the execution time of some queries, by up to

40 seconds, Neo also worsens the execution time of a few of queries

(e.g., query 24a becomes 8.5 seconds slower).

In contrast to a traditional optimizer, Neo’s optimization goal can

easily be changed. So far, we always aimed to optimize the total

workload cost, i.e., the total latency across all queries. However,

we can also change the optimization goal to optimize for the rela-

tive improvement per query (green bars in Figure 14), as discussed

in Section 4. This implicitly penalizes changes in the query per-

formance from the baseline (e.g., PostgreSQL). When trained with

this optimization goal, the total workload time is still accelerated

(by 289 seconds, as opposed to nearly 500 seconds), and all but

one query sees improved performance from the PostgreSQL base-

line (29b regresses by 43 milliseconds). This provides evidence

that Neo responds to different optimization goals, allowing it to be

customized for different scenarios.

It is possible that Neo’s loss function could be further customized

to weigh queries differently depending on their importance to the

user, i.e. query priority. It may also be possible to build an op-

timizer that is directly aware of service-level agreements (SLAs).

We leave such investigations to future work.

1714

 0

 100

 200

 300

 400

 500

 600

PostgreSQL SQLite SQL Server Oracle

P
o
s
tg

re
S
Q

L
 o

p
ti

m
iz

e
r

S
Q

L
it

e
 o

p
ti

m
iz

e
r

P
o
s
tg

re
S
Q

L
 o

p
ti

m
iz

e
r

S
Q

L
 S

e
rv

e
r

o
p
ti

m
iz

e
r

P
o
s
tg

re
S
Q

L
 o

p
ti

m
iz

e
r

O
ra

c
le

 o
p
ti

m
iz

e
r

T
im

e
 (

m
)

Engine

Neural network time
Query execution time

(a) For each engine, training time for Neo to match
the performance of the plans generated by the Post-
greSQL optimizer and each engine’s correspond-
ing optimizer (identical for PostgreSQL). JOB.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

PostgreSQL SQLite SQL Server Oracle

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Engine

R-Vectors
R-Vectors (no joins)

Histograms
1-Hot

(b) Effect of different featurizations on latency
of Neo’s query plans after 100 training iterations
(JOB dataset). Normalized to the latency of each
DBMS’ corresponding optimizer’s query plans.

 1

 10

 100

 1000

 10000

JOB TPC-H Corp

T
im

e
 t

o
 b

u
il
d
 (

m
)

Dataset

Joins
No joins

(c) Row vector training time for all three datasets.
The ”join” variant performs partial denormaliza-
tion, which is included in the measured time. The
”no join” variant performs no denormalization.

Figure 11

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 1.3

PostgreSQL SQLite SQL Server Oracle

N
o
rm

a
li
z
e
d
 L

a
te

n
c
y

Engine

R-Vectors
R-Vectors (no joins)

Histograms
1-Hot

(a) After training on JOB, new queries (Ext-JOB)
are introduced. Solid bars represent the average
normalized latency of Neo’s initial plans for the
Ext-JOB queries. Patterned bars show the aver-
age normalized latency of Neo’s plans after seeing
Ext-JOB queries 5 times. Normalized to plans
created by each DBMS’ optimizer.

 50

 100

 150

 200

 250

4 5 6 7 8 9 10 11 12 14 17

S
e
a
rc

h
 T

im
e
 (

m
s
)

Number of Joins

 1

 2

 3

 4

 5

F
a
c
to

r
W

o
rs

e
 T

h
a
n
 B

e
s
t

(b) After training, we plot the average query per-
formance normalized to the best seen performance
based on the number of joins in a query and the
time spent in search. For queries with ≤ 9 joins,
the best seen performance is achieved with only
100ms of search time. Queries with more joins
needed up to 230ms of search time.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

A
c
c
u
ra

c
y
 (

s
²)

Iterations

Accuracy on final policy
Accuracy on previous policy

(c) Accuracy (MSE) of the value network per train-
ing iteration. Blue shows the accuracy of the value
network at iteration i (x-axis) at predicting the la-
tency of plans produced at iteration 100. Green
shows the accuracy of the value network at itera-
tion i at predicting the latency of plans produced at
the previous iteration (iteration i− 1).

Figure 12: Robustness and accuracy (all using Neo trained on JOB with PostgreSQL for 100 iterations)

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
li
z
e
d
 F

re
q
u
e
n
c
y

Value Network Output

Error = 0
Error = 2
Error = 5

(a) PostgreSQL, ≤ 3 joins

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
li
z
e
d
 F

re
q
u
e
n
c
y

Value Network Output

Error = 0
Error = 2
Error = 5

(b) PostgreSQL, > 3 joins

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
li
z
e
d
 F

re
q
u
e
n
c
y

Value Network Output

Error = 0
Error = 2
Error = 5

(c) True cardinality, ≤ 3 joins

 0

 0.5

 1

 1.5

 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

N
o
rm

a
li
z
e
d
 F

re
q
u
e
n
c
y

Value Network Output

Error = 0
Error = 2
Error = 5

(d) True cardinality, > 3 joins

Figure 13: Histograms of Neo’s normalized value network outputs for the JOB dataset when trained with PostgreSQL’s cardinality estimates

(Figure 13a and 13b) and with true cardinalities (Figure 13c and 13d). Each plot shows histograms representing artificially adding 0, 2, and

5 orders of magnitude of random noise (error) to the cardinality estimates given to Neo. For query plans with 3 or fewer joins (13a and 13c),

Neo’s predictions vary when error is added. However, for query plans with more than 3 joins (13b and 13d), the model trained with

PostgreSQL’s estimates (13b) shows significantly less variance than the model trained with true cardinalities (13d). This is evidence that

Neo can learn to “trust” its inputs conditionally. Note that Neo does not receive explicit cardinality estimates in any other experiment.

-50

-40

-30

-20

-10

 0

 10

 20

1
6
b

1
7
d

1
7
a

1
7
c

1
7
f

6
d
*

1
7
e

2
5
c

1
8
a

2
0
a

8
a

1
8
c 6
f

1
7
b

3
0
c

2
5
a
*

7
a
*

1
6
c

1
9
d

1
6
d

7
c
*

2
6
c

2
0
b

2
6
a
*

2
2
d

2
2
c

1
2
c

3
1
c

1
4
c

3
0
b

3
0
a

1
0
a
*

3
1
a

7
b
*

2
5
b

3
1
b

6
b

1
3
c

2
3
c

1
3
a

1
3
b

2
2
b

1
3
d

2
0
c
*

2
d

2
c

2
6
b

1
4
b

1
6
a

1
1
c
*

1
4
a

2
a

1
1
d

2
b

2
2
a

2
1
a

1
1
b

1
1
a
*

3
b

3
a

2
8
b

9
d
*

2
1
b

2
1
c

4
c

2
9
a

1
0
c

6
a

1
5
d

2
7
c

1
2
a

5
b

6
c

8
b

6
e

1
d

5
a

5
c

1
b

1
5
b
*

8
d

9
a
*

8
c

1
c

9
b
*

3
2
a

3
c

1
a

1
9
b

1
0
b

3
3
b

2
7
b
*

1
5
c

1
9
a

1
2
b
*

4
a

2
4
b
*

3
2
b
*

9
c
*

4
b

2
7
a

1
9
c

2
8
c

3
3
c

2
9
c

3
3
a

2
9
b

2
3
a

1
5
a

2
3
b

2
8
a

1
8
b

2
4
a

D
iff

e
re

n
c
e
 f

ro
m

 P
o
s
tg

re
S
Q

L
 (

s
)

Query

Workload cost
Relative cost

Figure 14: Absolute difference in time for Neo and PostgreSQL plans for each JOB query after training for 100 iterations with workload vs.

relative cost functions (lower is better). Queries suffixed with * are part of the test set, and are never added to Neo’s experience.

1715

6.5 Value Network Accuracy
Neo’s value network is responsible for accurately predicting the

final latency of partial and complete query plans. We evaluated the

value network’s accuracy during training on the JOB dataset using

PostgreSQL. After each iteration, we measured the mean squared

error (MSE) of the value network’s prediction vs. the true latencies

of the plans produced (1) in the previous iteration and (2) in the

final iteration. Figure 12c shows the results. Initially, the value

network does a relatively poor job estimating the latencies of both

the previous iteration and the final iteration. However, as training

continues, the two curves converge. The convergence of the two

curves – the value network’s accuracy on the most recent iteration

vs. the last iteration – is indicative that the policy is becoming

stable [54], a desirable property that generally (but not nessecarily)

correlates with decreased runtime variance.

6.6 Search
Neo uses the trained value network to search for query plans until

a fixed-time cutoff (Section 4.2). Figure 12b shows how the perfor-

mance of a query with a particular number of joins (selected ran-

domly from the JOB dataset, executed on PostgreSQL) varies as the

search time is changed. Note that the x-axis skips some values (the

JOB dataset has no queries with 13 joins). Here, query performance

is given relative to the best observed performance. For example,

when the number of joins is 10, Neo found the best-observed plan

whenever the cutoff time was greater than 120ms. We also tested

significantly extending the search time (to 5 minutes), and found

that such an extension did not change performance regardless of

the number of joins in the query (up to 17 in the JOB dataset).

The relationship between the number of joins and sensitivity to

search time is unsurprising: queries with more joins have a larger

search space, and thus require more time to optimize. While 250ms

to optimize a query with 17 joins is acceptable in many scenarios,

other options [59] may be more desirable when this is not the case.

6.7 Row Vector Training Time
Neo builds its R-Vector encoding using the open source gen-

sim package [47]. Figure 11c shows the time taken to train row

vectors on each dataset, for both the “joins” (partially denormal-

ized) and “no joins” (normalized) variants [34]. The time to train a

R-Vector encoding is related to the size of the database. For the

JOB dataset (≈ 4GB), the “no joins” variant trains in under 10 min-

utes, whereas the “no joins” variant for the Corp dataset (≈ 2TB)

requires two hours to train. The “joins” variant takes significantly

longer to train, e.g. three hours (JOB) to over a day (Corp).

Building row vectors may be prohibitive in some cases. How-

ever, compared to Hist, we found that the “joins” variant (on av-

erage) resulted in 5% faster query times and that the “no joins”

variant (on average) resulted in 3% faster query times. Depending

on the multiprocessing level, query arrival rate, etc., row vectors

may “pay for themselves” quickly: for example, the training time

for the “joins” variant on the Corp dataset is “paid for” after 540

hours of query processing, since the row vectors speed up query

processing by 5% and require 27 hours to train. As the corporation

constantly executes 8 queries simultaneously, this amounts to just

three days. The “no joins” variant (improves performance by 3%,

takes 217 minutes to train) is “paid for” after just 15 hours.

We do not analyze the behavior of row vectors on a changing

database. It is possible that, depending on the database, row vectors

quickly become “stale”, or remain relevant for long periods of time.

New techniques [13,61] suggest that retraining word vector models

when the underlying data has changed can be done quickly, but we

leave investigating these methods to future work.

7. RELATED WORK
Query optimization has been studied for more than forty years [11,

51]. Yet, query optimization is still an unsolved problem [30],

especially due to the difficulty of accurately estimating cardinali-

ties [26, 27]. The LEO optimizer was the first to introduce the idea

of a query optimizer that learns from its mistakes [53]. In follow-

up work, CORDS [19] proactively discovered correlations between

any columns using data samples in advance of query execution.

Since proposed [60], deep learning is seeing traction in databases

research. For example, recent work [20, 57] showed how to ex-

ploit reinforcement learning for Eddies-style, fine-grained adap-

tive query processing. The SkinnerDB system [56] shows how

regret-bounded reinforcement learning can be applied to dynami-

cally improve the execution of an individual query in an adaptive

query processing system [56]. [43] used reinforcement learning to

build state representations of traditional optimizers. [44] offered

query-driven mixture models as an alternative to histograms and

sampling for selectivity learning. [22,28] proposed a deep learning

approach to cardinality estimation, specifically designed to capture

join-crossing correlations. Word2vec-style embeddings have been

applied to data exploration [14] and error detection [17]. The clos-

est works to ours are [25, 35], which proposed a learning based

approach exclusively for join ordering, and only for a given cost

model. The key contribution of Neo is that it provides an end-to-

end, continuously learning solution to the database query optimiza-

tion problem. Our solution does not rely on any hand-crafted cost

model or data distribution assumptions.

This paper builds on recent progress from our own team. Re-

JOIN [35] proposed a deep reinforcement learning approach for

join order enumeration, which was generalized into a broader vi-

sion in [36]. Decima [32] proposed a reinforcement learning-based

scheduler, utilizing a graph neural network. SageDB [23, 24] laid

out a vision towards building a new type of data processing system

that makes heavy used of learned components. This paper is one of

the first steps to realizing this overall vision.

8. CONCLUSIONS
This paper presents Neo, the first end-to-end learning optimizer

that generates highly efficient query execution plans using deep

neural networks. Neo iteratively improves its performance through

a combination of reinforcement learning and a search strategy. On

four database systems and three query datasets, Neo consistently

outperforms or matches existing commercial query optimizers (e.g.,

Oracle’s and Microsoft’s) which have been tuned over decades.

In the future, we plan to investigate methods for generalizing a

learned model to unseen schemas (using e.g. transfer learning [8]).

We are interested in measuring the performance of Neo when boot-

strapping from both more primitive and advanced commercial op-

timizers. Critically, Neo ignores many pieces of database state

that are critical to achieving optimal query performance: cache

state, concurrent queries, other applications on the same server, etc.

While traditional optimizers tend to ignore these factors as well,

Neo lays a foundation for building query optimizers that automat-

ically adapt to such external factors – doing so may only require

finding appropriate ways of encoding these factors as inputs to the

value network, or may require significantly more research.

9. ACKNOWLEDGMENTS
This research is supported by Google, Intel, and Microsoft as

part of the MIT Data Systems and AI Lab (DSAIL), NSF IIS 1815701,

NSF IIS Career Award 1253196, and an Amazon Research Award.

We also thank Tim Mattson (Intel) for his valuable feedback.

1716

10. REFERENCES
[1] Embedding tools,

https://github.com/parimarjan/db-embedding-tools.

[2] Ext-JOB queries, https://git.io/extended job.

[3] PostgreSQL database, http://www.postgresql.org/.

[4] T. Anthony, Z. Tian, and D. Barber. Thinking Fast and Slow

with Deep Learning and Tree Search. In Advances in Neural

Information Processing Systems 30, NIPS ’17, pages

5366–5376, 2017.

[5] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer Normalization.

arXiv:1607.06450 [cs, stat], July 2016.

[6] B. Babcock and S. Chaudhuri. Towards a Robust Query

Optimizer: A Principled and Practical Approach. In

Proceedings of the 2005 ACM SIGMOD International

Conference on Management of Data, SIGMOD ’05, pages

119–130, New York, NY, USA, 2005. ACM.

[7] R. Bellman. A Markovian Decision Process. Indiana

University Mathematics Journal, 6(4):679–684, 1957.

[8] Y. Bengio. Deep Learning of Representations for

Unsupervised and Transfer Learning. In Proceedings of

ICML Workshop on Unsupervised and Transfer Learning,

ICML WUTL ’12, pages 17–36, June 2012.

[9] R. Bordawekar and O. Shmueli. Using Word Embedding to

Enable Semantic Queries in Relational Databases. In

Proceedings of the 1st Workshop on Data Management for

End-to-End Machine Learning (DEEM), DEEM ’17, pages

5:1–5:4, 2017.

[10] P. P. Brahma, D. Wu, and Y. She. Why Deep Learning

Works: A Manifold Disentanglement Perspective. IEEE

Transactions on Neural Networks and Learning Systems,

27(10):1997–2008, Oct. 2016.

[11] S. Chaudhuri. An Overview of Query Optimization in

Relational Systems. In ACM SIGMOD Symposium on

Principles of Database Systems, SIGMOD ’98, pages 34–43,

1998.

[12] R. Dechter and J. Pearl. Generalized Best-first Search

Strategies and the Optimality of A*. J. ACM, 32(3):505–536,

July 1985.

[13] M. Faruqui, J. Dodge, S. K. Jauhar, C. Dyer, E. H. Hovy, and

N. A. Smith. Retrofitting Word Vectors to Semantic

Lexicons. In The 2015 Conference of the North American

Chapter of the Association for Computational Linguistics:

Human Language Technologies, NAACL ’15, pages

1606–1615, 2015.

[14] R. C. Fernandez and S. Madden. Termite: A System for

Tunneling Through Heterogeneous Data. In AIDM @

SIGMOD 2019, aiDM ’19, 2019.

[15] L. Giakoumakis and C. A. Galindo-Legaria. Testing SQL

Server’s Query Optimizer: Challenges, Techniques and

Experiences. IEEE Data Eng. Bull., 31:36–43, 2008.

[16] X. Glorot, A. Bordes, and Y. Bengio. Deep Sparse Rectifier

Neural Networks. In G. Gordon, D. Dunson, and M. Dudı́k,

editors, Proceedings of the Fourteenth International

Conference on Artificial Intelligence and Statistics,

volume 15 of PMLR ’11, pages 315–323, Fort Lauderdale,

FL, USA, Apr. 2011. PMLR.

[17] A. Heidari, J. McGrath, I. F. Ilyas, and T. Rekatsinas.

HoloDetect: Few-Shot Learning for Error Detection.

arXiv:1904.02285 [cs], Apr. 2019.

[18] T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul,

B. Piot, D. Horgan, J. Quan, A. Sendonaris,

G. Dulac-Arnold, I. Osband, J. Agapiou, J. Z. Leibo, and

A. Gruslys. Deep Q-learning from Demonstrations. In

Thirty-Second AAAI Conference on Artifical Intelligence,

AAAI ’18, New Orleans, Apr. 2017. IEEE.

[19] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga.

CORDS: Automatic Discovery of Correlations and Soft

Functional Dependencies. In ACM SIGMOD International

Conference on Management of Data, SIGMOD ’04, pages

647–658, 2004.

[20] T. Kaftan, M. Balazinska, A. Cheung, and J. Gehrke.

Cuttlefish: A Lightweight Primitive for Adaptive Query

Processing. arXiv preprint, Feb. 2018.

[21] D. P. Kingma and J. Ba. Adam: A Method for Stochastic

Optimization. In 3rd International Conference for Learning

Representations, ICLR ’15, San Diego, CA, 2015.

[22] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and

A. Kemper. Learned Cardinalities: Estimating Correlated

Joins with Deep Learning. In 9th Biennial Conference on

Innovative Data Systems Research, CIDR ’19, 2019.

[23] T. Kraska, M. Alizadeh, A. Beutel, Ed Chi, Ani Kristo,

Guillaume Leclerc, Samuel Madden, Hongzi Mao, and

Vikram Nathan. SageDB: A Learned Database System. In

9th Biennial Conference on Innovative Data Systems

Research, CIDR ’19, 2019.

[24] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis.

The Case for Learned Index Structures. In Proceedings of the

2018 International Conference on Management of Data,

SIGMOD ’18, pages 489–504, New York, NY, USA, 2018.

ACM.

[25] S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and

I. Stoica. Learning to Optimize Join Queries With Deep

Reinforcement Learning. arXiv:1808.03196 [cs], Aug. 2018.

[26] V. Leis, A. Gubichev, A. Mirchev, P. Boncz, A. Kemper, and

T. Neumann. How Good Are Query Optimizers, Really?

PVLDB, 9(3):204–215, 2015.

[27] V. Leis, B. Radke, A. Gubichev, A. Mirchev, P. Boncz,

A. Kemper, and T. Neumann. Query optimization through

the looking glass, and what we found running the Join Order

Benchmark. The VLDB Journal, pages 1–26, Sept. 2017.

[28] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte.

Cardinality Estimation Using Neural Networks. In

Proceedings of the 25th Annual International Conference on

Computer Science and Software Engineering, CASCON ’15,

pages 53–59, Riverton, NJ, USA, 2015. IBM Corp.

[29] W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu, and F. E. Alsaadi.

A survey of deep neural network architectures and their

applications. Neurocomputing, 234:11–26, Apr. 2017.

[30] G. Lohman. Is Query Optimization a ‘”Solved” Problem? In

ACM SIGMOD Blog, ACM Blog ’14, 2014.

[31] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional

Networks for Semantic Segmentation. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), CVPR ’15, June 2015.

[32] H. Mao, M. Schwarzkopf, S. B. Venkatakrishnan, Z. Meng,

and M. Alizadeh. Learning Scheduling Algorithms for Data

Processing Clusters. arXiv:1810.01963 [cs, stat], 2018.

[33] G. Marcus. Innateness, AlphaZero, and Artificial

Intelligence. arXiv:1801.05667 [cs], Jan. 2018.

[34] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh,

T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo: Towards

A Learned Query Optimizer. arXiv:1904.03711 [cs], Apr.

2019.

1717

[35] R. Marcus and O. Papaemmanouil. Deep Reinforcement

Learning for Join Order Enumeration. In First International

Workshop on Exploiting Artificial Intelligence Techniques for

Data Management, aiDM ’18, Houston, TX, 2018.

[36] R. Marcus and O. Papaemmanouil. Towards a Hands-Free

Query Optimizer through Deep Learning. In 9th Biennial

Conference on Innovative Data Systems Research, CIDR

’19, 2019.

[37] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient

Estimation of Word Representations in Vector Space.

arXiv:1301.3781 [cs], Jan. 2013.

[38] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland,

and G. Ostrovski. Human-level control through deep

reinforcement learning. Nature, 518(7540):529–533, 2015.

[39] G. Moerkotte, T. Neumann, and G. Steidl. Preventing Bad

Plans by Bounding the Impact of Cardinality Estimation

Errors. PVLDB, 2(1):982–993, 2009.

[40] L. Mou, G. Li, L. Zhang, T. Wang, and Z. Jin. Convolutional

Neural Networks over Tree Structures for Programming

Language Processing. In Proceedings of the Thirtieth AAAI

Conference on Artificial Intelligence, AAAI ’16, pages

1287–1293, Phoenix, Arizona, 2016. AAAI Press.

[41] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park,

G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep

Learning for Entity Matching: A Design Space Exploration.

In Proceedings of the 2018 International Conference on

Management of Data, SIGMOD ’18, pages 19–34, New

York, NY, USA, 2018. ACM.

[42] B. Nevarez. Inside the SQL Server Query Optimizer. Red

Gate books, Mar. 2011.

[43] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi.

Learning State Representations for Query Optimization with

Deep Reinforcement Learning. In 2nd Workshop on Data

Managmeent for End-to-End Machine Learning, DEEM ’18,

2018.

[44] Y. Park, S. Zhong, and B. Mozafari. QuickSel: Quick

Selectivity Learning with Mixture Models.

arXiv:1812.10568 [cs], Dec. 2018.

[45] M. Poess and C. Floyd. New TPC Benchmarks for Decision

Support and Web Commerce. SIGMOD Records,

29(4):64–71, Dec. 2000.

[46] A. G. Read. DeWitt clauses: Can we protect purchasers

without hurting Microsoft. Rev. Litig., 25:387, 2006.

[47] R. Řehůřek and P. Sojka. Software Framework for Topic

Modelling with Large Corpora. In Proceedings of the LREC

2010 Workshop on New Challenges for NLP Frameworks,

LREC ’10, pages 45–50. ELRA, May 2010.

[48] S. Schaal. Learning from Demonstration. In Proceedings of

the 9th International Conference on Neural Information

Processing Systems, NIPS’96, pages 1040–1046, Cambridge,

MA, USA, 1996. MIT Press.

[49] M. Schaarschmidt, A. Kuhnle, B. Ellis, K. Fricke, F. Gessert,

and E. Yoneki. LIFT: Reinforcement Learning in Computer

Systems by Learning From Demonstrations.

arXiv:1808.07903 [cs, stat], Aug. 2018.

[50] J. Schmidhuber. Deep learning in neural networks: An

overview. Neural Networks, 61:85–117, Jan. 2015.

[51] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A.

Lorie, and T. G. Price. Access Path Selection in a Relational

Database Management System. In J. Mylopolous and

M. Brodie, editors, SIGMOD ’89, SIGMOD ’89, pages

511–522, San Francisco (CA), 1989. Morgan Kaufmann.

[52] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. van den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,

J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,

M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.

Mastering the game of Go with deep neural networks and

tree search. Nature, 529(7587):484–489, Jan. 2016.

[53] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO -

DB2’s LEarning Optimizer. In VLDB, VLDB ’01, pages

19–28, 2001.

[54] R. S. Sutton and A. G. Barto. Introduction to Reinforcement

Learning. MIT Press, Cambridge, MA, USA, 1st edition,

1998.

[55] N. Tran, A. Lamb, L. Shrinivas, S. Bodagala, and J. Dave.

The Vertica Query Optimizer: The case for specialized query

optimizers. In 2014 IEEE 30th International Conference on

Data Engineering, ICDE ’14, pages 1108–1119, Mar. 2014.

[56] I. Trummer, S. Moseley, D. Maram, S. Jo, and

J. Antonakakis. SkinnerDB: Regret-bounded Query

Evaluation via Reinforcement Learning. PVLDB,

11(12):2074–2077, 2018.

[57] K. Tzoumas, T. Sellis, and C. Jensen. A Reinforcement

Learning Approach for Adaptive Query Processing.

Technical Reports, June 2008.

[58] L. van der Maaten and G. Hinton. Visualizing Data using

t-SNE. Journal of Machine Learning Research,

9(Nov):2579–2605, 2008.

[59] F. Waas and A. Pellenkoft. Join Order Selection (Good

Enough Is Easy). In Advances in Databases, BNCD ’00,

pages 51–67. Springer, Berlin, Heidelberg, July 2000.

[60] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C. Ooi, and

K.-L. Tan. Database Meets Deep Learning: Challenges and

Opportunities. SIGMOD Rec., 45(2):17–22, Sept. 2016.

[61] L. Yu, J. Wang, K. R. Lai, and X. Zhang. Refining Word

Embeddings Using Intensity Scores for Sentiment Analysis.

IEEE/ACM Transactions on Audio, Speech, and Language

Processing, 26(3):671–681, Mar. 2018.

[62] J.-Y. Zhu, R. Zhang, D. Pathak, T. Darrell, A. A. Efros,

O. Wang, and E. Shechtman. Toward Multimodal

Image-to-Image Translation. In I. Guyon, U. V. Luxburg,

S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and

R. Garnett, editors, Advances in Neural Information

Processing Systems, NIPS ’17, pages 465–476. Curran

Associates, Inc., 2017.

[63] S. Zilberstein. Using Anytime Algorithms in Intelligent

Systems. AI Magazine, 17(3):73–73, Mar. 1996.

1718

