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Neoclassical Solution of 

Transient Interaction of Plane 

Acoustic Waves with a 

Spherical Elastic Shell 

A detailed solution to the transient interaction of plane acoustic waves with a spherical 
elastic shell was obtained more than a quarter of a century ago based on the classical 
separation of variables, series expansion, and Laplace transform techniques. An eight
term summation of the time history series was sufficient for the convergence of the 
shell deflection and strain, and to a lesser degree, the shell velocity. Since then, the 
results have been used routinely for validation of solution techniques and computer 
methods for the evaluation of underwater explosion response of submerged structures. 
By utilizing modern algorithms and exploiting recent advances of computer capacities 
and floating point mathematics, sufficient terms of the inverse Laplace transform 
series solution can now be accurately computed. Together with the application of the 
Cesaro summation using up to 70 terms of the series, two primary deficiencies of the 
previous solution are now remedied: meaningful time histories of higher time derivative 
data such as acceleration and pressure are now generated using a sufficient number 
of terms in the series; and uniform convergence around the discontinuous step wave 
front is now obtained, completely eradicating spurious oscillations due to the Gibbs' 
phenomenon. New results of time histories of response items of interest are pre
sented. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

A detailed solution to the transient interaction of 

plane acoustic waves with a spherical elastic shell 

was obtained more than a quarter of a century 

ago based on the classical separation of variables, 

series expansion, and Laplace transform tech

niques (Huang, 1969). The solution for each term 

of the series is a rational function of the Laplace 
transform parameter s. The inverse Laplace 

transforms were obtained by the standard heavi

side formula. An eight-term summation of the 

time history series was sufficient for the conver
gence of the shell deflection and strain, and to a 

lesser degree, the shell velocity. Since then, the 

results have been used by many authors for vali

dation of computational models of submerged 

structures subject to underwater shock. As recent 
as in the 1990s, there have been many such appli

cations; a partial list is cited here. Swegle and 

Attaway (1995) compared the shell radial velocity 

time histories to those obtained by an advanced 

numerical technique termed smoothed particle 

hydrodynamics (SPH), a gridless Lagrangian 
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technique, to determine the feasibility of using 

the SPH technique for the analysis of underwater 

explosion problems involving fluid/structure and 

shock/structure interactions. For the same pur

pose, Chisum and Shin (1995) compared the shell 

radial velocity time histories to those computed 

by the DYTRAN coupled Eulerian/Lagrangian 

hydrocode. Hibbit, Karlsson & Sorensen, Inc. 

(1992) compared the shell radial velocity time his

tories to demonstrate the capabilities of the dou

bly asymptotic approximation (DAA) implemen

tation in the USA-ABAQUS code. Whang (1991) 

proposed that the results be used as benchmarks 

for the validation of underwater explosion re

sponse computer codes. Chan and Atkatsh (1991) 

used the deflection, strain, and velocity time his

tories to test the DAA implementation in the 

EPSA code. Chan (1990, 1993) used the shell ra

dial velocity time histories to demonstrate the 

validity of his modified finite element (MFE) pro

cedures for underwater shock analysis. Wright 

(1991) comparerd the shell radial velocity time 

histories validating his direct time integration 

methods for structural acoustics. Waldo (1994) 

also used these time histories to test his virtual

source model for fluid/structure interaction. In 

all cases, the agreement in the comparison of re

sults is less than perfect. The eight-term solution, 

nevertheless, was sufficient for these validations. 

Zhang and Geers (1993) solved this canonical 

problem again using a different method, and 

based on which Geers and Ju (1994) developed a 

computer program to generate results for verify

ing the correctness and accuracy of FE/bound

ary-element codes used to analyze the response 

of marine structures to underwater explosions. 

There were two primary deficiencies in the 

eight -term series solution, namely, meaningful 

time histories of higher time derivative items such 

as acceleration and pressure were not generated 

due to the insufficient number of terms in the 

series, and uniform convergence around the dis

continuous step wave front was not obtained be

cause of the Gibbs' phenomenon. Actually, the 

asymptotic solution, exact within shell theory for 

all shell response items of the neighborhood of 

the first point of impact at very early time (roughly 

one twentieth of the time for the incident wave 

front to traverse the diameter of the shell), was 

previously found by Milenkovic and Raynor 

(1966) using the approach of geometric acoustics, 

and by Tang and Yen (1970) using Watson's trans

formation of the modal series together with the 

steepest descent method. Because these results 

are for very early time, they are not suitable, and 

therefore seldom used, for the validation of shell 

response results obtainable by other methods. 

Zhang and Geers (1993) innovatively developed 

and incorporated a simpler version of this type 

of early time solution into the modal series and 

successfully solved the convergence problem for 

this early space-time domain. The present article 

addresses these two deficiencies for the entire 

space-time domain and they have now been rem

edied with the advent and availability of more 

powerful computers and increased sophistication 

of computational algorithms. In particular, a large 

number of terms (up to 70) of the series solution 

are now accurately computed, and the Cesaro 

summation of the series is employed to effectively 

eradicate all spurious oscillations due to the 

Gibbs' phenomenon. The series solution now 

converges uniformly toward the true solution. 

Thus, the early time waveform of the velocity 

time history and the time of its maximum can be 

accurately defined, and meaningful time histories 

for higher time derivatives (e.g., shell accelera

tion and pressure acting on the shell) can be ob

tained. The present work reports such an en

deavor and presents refined numerical results. 

These results are particularly useful for validation 

of computational models that attempt to repro

duce the higher time derivatives, which are sig

nificantly more difficult to obtain. 

RECAPITULATION OF 
CLASSICAL SOLUTION 

For the convenience of discussion, the geometry 

of the problem is sketched in Fig. I. The origin 

o of a Cartesian coordinate system (x, y, z) and 

a spherical coordinate system (r, e, cp) coincides 

with the center of the spherical elastic shell. For 

consistency, the same symbols and notations to 

denote various quantities in the original article 

(Huang, 1969) will also be used here. The incident 

plane wave travels in the negative z direction. 

The spherical shell is considered to be made of 

isotropic elastic material and its properties are 

middle surface radius a, thickness 2h (h is the half

thickness), elastic (Young's) modulus E, Poisson 

ratio v, and mass density Ps. The middle surface 

deflections of the shell in the rand e directions 

are denoted by Or and 00 , respectively. The iso

tropic and homogeneous fluid medium of infinite 

extent surrounding the shell is completely charac

terized by its unperturbed mass density p and 
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FIGURE 1 Geometry of the problem. 

sound speed c. The following dimensionless 

quantities are also used here. 

8r 
W = , 

80 
u=

a' 
T= ct R =!.. 

a' a' 
Z=!:. 

a' a 

c2 = E M = 2Pha , 
p,.(1 - V)c2' Ps 

- P 
IT - -" 

pc-

(1) 

where t and p denote time and pressure, respec

tively. The total pressure field in the surrounding 

fluid medium is the sum of two separable parts, 

I.e. , 

IT(R, 0, T) = ITinc(R, 0, T) + ITSla(R, 0, T), (2) 

where IT inc denotes the incident pressure and IT sra 

denotes the sum of the scattered and the radiated 

pressure. Adjusting the origin of the time coordi

nate such that the incident wavefront impinges 

upon the vertex of the shell (R = 1, ° = 0) at 

T = 0, an arbitrary incident plane wave can be 

expressed as 

= F(Z - 1 + T)H(Z - 1 + T) 

= F(R cos ° - 1 + T) 
(3) 

H(R cos e - 1 + T), 

where H is the heaviside step function and F is 

an arbitrary function of its argument. For a step 

wave, F = 1, and for an exponentially decaying 

wave, F = exp[ -/3(Z - 1 + T)] where /3 is the 

dimensionless decay constant. IT sra, its first time 

derivative, the deflection and velocity of the shell 

have quiescent initial conditions at T = o. The 

boundary condition of the total pressure field at 

the fluid-shell interface is 

aIT 

aR 
(4) 

and IT sra also satisfies the radiation condition at 

far field. The total pressure loading acting on the 
shell is ITO, e, T). IT inc and IT sra satisfy the wave 

equation separately. The same bending theory 

shell equation of motion in the original work 

(Huang, 1969) is again used here. The shell de

flections and the pressure field can be expanded 

in terms of Legendre functions as the following: 

x 

wee, T) = 2: wl/1(T)PI/1(cos e), 
111=0 

(5) 

II(R, e, T) = 2: ITm(R, T)Pm( cos e). 
m=O 

Applying the Laplace transform with respect to 

T with s as the transform parameter, solving the 

wave equation for IT sra and the shell equation of 

motion for the deflections satisfying the initial and 

boundary conditions, the Laplace transformed 

solution of the modal radial deflection of the shell 

is obtained (Huang, 1969). 

- -sf(s)(2m + l)M(S2 + C )sm-I (6) 
w (s) = III 

In Q,nCs) 



88 Huang and Mail' 

where an overbar designates Laplace trans

formed quantities, f(s) is the Laplace transform 

of F(T), and 

C = CZ (1 + h2
)· m(m + 1) - (1 - v). (7) 

'" 3a2 I + v 

On the right-hand side ofEq. (6), the denominator 

Q", is a function of the shell and fluid properties. 

It is a finite polynomial of (m + 5)th degree with 

real and positive coefficients. For the detailed 

expression of Qm and other quantities, the reader 

is again referred to the original article (Huang, 

1969). The right-hand side of Eq. (6) is therefore 

a rational function and its inverse Laplace trans

form can be accurately computed as long as the 

roots of Qm can be accurately found. Expressions 

similar to Eq. (6), involving the same QIII' can 

also be written for other quantities of interest 

such as shell strain and the total pressure. 

GIBBS' PHENOMENON AND 
CEsARO'S SUMMA liON 

The Laplace transform of the expression for the 

incident pressure, Eq. (3), is 

II inc(z, s) = f(s)exp[ -(1 - Z)s] 

= f(s)exp[ -(I - R cos 8)s], 
(8) 

and its series expansion in terms of Legendre 

functions is 

II inc(R, 8, s) = f(s)e- S ~ (2m + I) 
m=O 

r- (9) 

~ 2;s I",+l!z(Rs)PIII(cos 8), 

where V 7r/2RSI",+liz(Rs) is a modified Bessel 

function of the first kind. For a unit step wave, 

f(s) = lis, and or an exponentially decaying 

wave, f(s) = I/(s + (3). It can be shown that 

for a step wave at R = 1, the inverse Laplace 

transform of the series in Eq. (9) is 

II inc(1 , 8, T)= 0.5T + 0.5 ~ (P",-I(1 - T) 
m=l 

- P",+I(1 - T)) 

. Pm(cos 8) for 0 :s T:s 2 

= 1.0 forT2:2. 

(10) 

Because the wave front of this step wave is a 

discontinuity, Gibbs' phenomenon appears in the 

interval 0 :s T :s 2, when Eq. (10) is used to 

compute the time histories of II inc, such that the 

series in Eq. (10) never converges to the true 

wave form of the unit step wave. Because IIinc is 

the excitation pressure to the shell, it is obvious 

that Gibbs' phenomenon also appears in the shell 

response time histories, predominantly the inter

val 0 :s T:s 2 and will propagate beyond this time 

interval depending on the damping characteristics 

of the system. It is known that the use of Cesaro 

type of summation of the series could eradicate 

the Gibbs' phenomenon effects. Previous applica

tions of Cesaro summations to this problem 

(Berger, 1972; Geers and Ju, 1994), using only 

the first nine terms of the series, did not suffi

ciently show the effect of the remedy for higher 

time derivative items such as velocity, accelera

tion, and pressure. It will be demonstrated here 

that a sufficiently large number of terms is re

quired in the Cesaro sum of the series in Eq. (10) 

to approach the true sum. Using the first N terms 

of the series, the (C 1) Cesaro sum can be written 

as (Whittaker and Watson, 1958) 

N 

II inc(1, 8, T) = 0.5T + 0.5 ~ 
rn=1 

(1 -m ~ 1) P",(cos 8) 

(11) 

for 0 :s T:s 2. 

The above Cesaro sum was mathematically 

proven to converge to the true sum (Whittaker 

and Watson, 1958). This formula is also referred 

to as Fejer's arithmetic means (Carslaw, 1930). 

The essence of this summation is to gradually 

reduce the contribution of each term as m in

creases. It is readily seen from Eq. (11) that if N 

is small the early m terms could be prematurely 

and wrongly overreduced. Numerical computa

tions of II inc(1, 8, T) at 8 = 0, 0.57T, and 7r com

puted using regular summation, Eq. (10), and 

Cesaro summation, Eq. (11), are juxtaposed in 

the left and right columns and compared to the 

respective true waveforms in Figs. 2, 3, 4, and 5. 

The true wave forms of this unit step incident 

wave at these three locations are unit step func

tions beginning at T = 0, 1.0, and 2.0, respec

tively. Figure 2 plots the results of using the first 

nine terms (N = 8) of the series. The spurious 
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FIGURE 2 Nine-term series representations of II inc( 1, (), T). 

Gibbs' phenomenon oscillations can be seen from 

the left column; the amplitude of the oscillations 

are largest near the wave fronts, and deviate as 

much as 40% from the true sum. It can also be 

seen from the right column that the use of the 

(Cl) Cesaro summation significantly reduces 

these spurious oscillations but also decreases the 

steepness ofthe wave fronts due to the premature 

reduction of each term of the series as discussed 

earlier. The use of the first nine terms of the series 

is far from sufficient to converge to the true wave

forms. Figure 3 plots the corresponding results 

of using the first 51 terms (N = 50) of the series. 

From the left column, it can be seen that the 

frequency of the Gibbs' phenomenon oscillation 

increases significantly and the amplitude de

creases somewhat. From the right column, it can 

be seen that the Cesaro summation has basically 

eradicated all Gibbs' phenomenon oscillation ef

fects and has converged to the true sum except 
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FIGURE 5 Five hundred one-term series representations of IIinc(l, (J, T). 

in small neighborhoods of the wave fronts. The 

waveforms thus computed could already be ac

ceptable for many applications. Figures 4 and 5 

present the results of using 101 (N = 100) and 

501 (N = 500) terms of the series, respectively. 

Again, it is seen from the left columns that with 

increasing N the amplitudes of the Gibbs' phe

nomenon oscillations decrease but remain sig

nificant near the wave fronts, and that the fre

quencies of oscillation increase greatly such that 

the oscillations appear as black bands for the case 

of N = 500. From the right columns, it is seen 

that with increasing N, the Cesaro summations 

further narrow the imperfect neighborhoods of 

the wave fronts, and for N = 500 the series repre

sentations approach very close to the true wave

forms. It is now adequately demonstrated that 

the series solution to this problem using the (Cl) 

Cesaro summation of a sufficiently large number 

of terms will converge uniformly to the true solu-



tion. Except in neighborhoods of the wave fronts, 

the series converges quickly. 

NEOCLASSICAL SOLUTION 

To obtain refined time histories of the shell veloc

ity, acceleration, and pressure, large numbers of 

terms in the modal series are needed. The crux 

for the inverse Laplace transform of Eq. (6) is 

the accurate computation of the complex roots 

of the polynomial Qm(s). The nature of Qm(s) is 
such that the magnitudes of its coefficients in

crease rapidly and its roots clutter closely to

gether as m increases; correspondingly, numeri

cal difficulties in floating-point mathematics 

are encountered. Recently, Jones-Oliveira and 

Harten (1994) studied the proliferation of roots 

in this problem. Equation (6) can be simplified 

by using asymptotic representations of the modi

fied Bessel functions for large m, but this is out

side the scope of the present article. Here, only 

the exact Qm(s) was used. Again, the same mate
rial properties used in the previous publication 

(Huang, 1969) for a 2% (ratio of thickness to ra

dius) steel shell submerged in water were used 

here: hla = 0.01, Ps = 486 Ib/ft3 , E = 30 X 106 

psi, v = 0.3, P = 62.4 Ib/ft3, and c = 4794 ft/s. 

The computations were carried out on personal 

computers and workstations using a code written 

in the FORTRAN language. Care was exercised 
in programming to avoid floating-point pitfalls. 

Many algorithms for finding the complex roots of 

a real polynomial were investigated; both Jen-
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kins' method (Jenkins, 1975) and the eigenvalue 

method (Press et al., 1992) were employed for 

cross-checking. Using double precision arithme

tic (REAL *8), the complex roots of Qm(s) can be 

accurately computed up to m = 69 for the above 

material properties. Therefore, the inverse La

place transform of the first 70 terms in the series 

ofEq. (6) and the corresponding series represen

tations of the shell velocity, acceleration, and 

pressure were accurately computed. Results for 

higher m could certainly be obtained using higher 

precision floating-point arithmetic, but was not 

pursued here. 
The relative radial deflection of the shell be

tween the points (R = 1, () = 0) and (R = 1, () = 
7T) and the radial deflection at (R = 1, () = 0.57T) 

due to a step incident wave were first recomputed. 

The present results of regular summations of 8, 

15, and 30 terms as well as the Cesaro summation 

of 60 terms of the deflection series all fall on the 

same curves of Fig. 6. These curves are exactly 

the same as those of the previously published 

eight-term sum. 
The time histories of shell middle surface 

hoop strain 

1 a8B 8,. 
e =--+-

I a a() a 
(12) 

at () = 0, 0.57T, and 7T due a step incident wave 

were obtained by the Cesaro summation of the 

first 60 terms in the series, and are plotted in Fig. 
7. It can be seen there that due to the focusing 

effect, the back apex «() = 7T) of the shell has the 

0.80 +....J..........J..........J..........J..........J..........J..........J..........J..........J.........L......J..........J..........J..........l...-...L......l...-....l...-....l...-....l...-+ 
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FIGURE 6 Time histories of w(O, T) due to a step incident wave. 
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FIGURE 7 Time histories of 8,(0, T) due to a step 

incident wave. 

largest hoop strain. The formula for the arrival 

time of any disturbance at a given point on the 

shell derived by Payton (1960) and Tang and Yen 

(1969) in the present notation is 

(13) 
= 1 - cos 00 + (0 - Oo)sin 00 for ° ;::: °0 , 

where 

_ . -1(Vt+v\ 
00 - sm -----c-) . (14) 

Accordingly, the strain and pressure waves arrive 

at (J = 0.57T and 7T on the shell at T = 0.38784 and 

0.81245, respectively. The arrival times in Fig. 7 

agree closely with these values. Again except for 

some small spurious oscillations due to the Gibbs' 

phenomenon, the regular summation of the first 

eight terms of the series produces the same curves 

as in Fig. 7. Because the step incident wave is 

infinitely long, it has masked many details in the 

strain time histories. Therefore, the hoop strain 

time histories due to an exponentially decaying 

incident wave with a decaying time constant equal 

to one-twentieth of a transit time, i.e., {3 = 10.0, 

was also computed using the 6O-term Cesaro sum 

and is presented in Fig. 8. Here it can be vividly 

seen that the strain circumnavigates the shell with 

the shell bending and stretching wave speed as 

was found in the corresponding cylindrical shell 

case (Huang, 1970). The time interval between 

consecutive sharp peaks in the strain time histor

ies of the two apexes of the shell is about 1.7, 

which is the time required by the strain wave to 

circumnavigate a distance of 27T. The correspond

ing time interval is 0.85 for the ° = 057T curve. 

The effect of the Gibbs' phenomenon is more 

pronounced for the regularly summed series for 

the shell velocity for 0 ~ T ~ 2. Figure 9 plots 

the time histories of the shell radial velocity at 

(J = 0.0 due to a step incident wave calculated by 

the regular summations of the first 9, 15, and 

21 terms in the velocity series. Here it can be 

visualized that the curves oscillate around the 

true velocity time history in the Gibbs' phenome

non fashion and that near T = 2 the sums are 

converging. The same radial velocities calculated 

by the regular summations of the first 37, 39, and 

41 terms in the velocity series is plotted in Fig. 10 

where the Gibbs' phenomenon oscillations have 

smaller amplitudes and higher frequencies but 

otherwise do not seem to settle in any regular 

manner. Here the sums converged after T = 1.5. 

The bump near T = 1.7 belongs to the true time 

history; it is due to the return of the elastic wave 

initiated at ° = 0.0, as can be correlated from 

Figs. 7 and 8. 
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FIGURE 8 Time histories of 81(0, T) due to a expo

nentially decaying incident wave. 
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FIGURE 9 Time histories of shell radial velocity due 

to a step incident wave calculated by the regular sum

mations of 9, \5, and 21 terms of the velocity series. 

It is possible to completely eradicate the Gibbs' 

phenomenon effects and reveal the true time his

tory by the application ofthe (C I) Cesaro summa

tion. Figure 11 shows the time history of the shell 

radial velocity at (J = 0.0 calculated by the Cesaro 

summation of the first 70 terms of the velocity 

series, and compares it to that of a nine-term 

Cesaro sum and that of an asymptotic small time 

solution obtained by Tang and Yen (1970) using 

Watson's transformation of the modal series. The 

result of Tang and Yen (1970) for the shell velocity 

in the neighborhood of the frontal apex agrees 

exactly with the earlier solution of Milenkovic 

and Raynor (1966) using the approach of geomet

rical acoustics. This asymptotic solution is the 

true solution for very early time but deviates from 

the true solution as T increases due to the nature 

of the mathematical approximations. In Fig. 11, 

the 70-term Cesaro sum early time velocity and 

its early time slope (acceleration) agree almost 

completely with the Watson transformation 

asymptotic solution. In other words, the "wave 

front" of the 70-term Cesaro sum velocity very 

closely approached the true solution. As demon

strated earlier, because the imperfection of the 

modal series solution using Cesaro summation of 

a sufficient number of terms is confined to a small 

neighborhood of the wave front, it can therefore 

be concluded that the 70-term Cesaro sum here 

has converged satisfactorily to the true velocity 

time history. It can also be seen from Fig. 11 that 

the nine-term Cesaro sum has the correct form 
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FIGURE 10 Time histories of shell radial velocity 

due to a step incident wave calculated by the regular 

summations of 37, 39, and 41 terms of the velocity 

series. 

for the velocity time history, but is insufficient 

for convergence; the reason for its smaller slope 

at early time was pointed out in the discussion 

of Fig. 2. More extensive shell radial velocity 

histories at (J = 0.0, 0.57T, and 7T for 0.0 ::; T ::; 

50.0 using 70-term Cesaro sums are presented in 

Fig. 12. Here, the very high frequency and very 

small amplitude oscillations of the velocity curves 

are due to the terms involving (hi a)2 in the shell 
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FIGURE 11 Comparison ofthe Cesaro sum represen

tations of shell radial velocity due to a step incident 

wave to the Watson's transformation solution. 
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FIGURE 12 Time histories for 0.0 :s T:s 50.0 of shell radial velocity due to a step incident wave. 

equations of motion for high m modes (shell the

ory becomes less valid as m increases). Other

wise, these curves for T > 2.0 are the same as 

those previously calculated by the eight-term reg

ular sum (Huang, 1969). The very high m terms 

in the Legendre series expansions in Eq. (5) only 

contribute to improving the wave fronts and have 

no effect outside their immediate neighborhoods. 

By comparing responses of shells of equal masses 

made of steel, aluminum, and brass, Milenkovic 

and Raynor (1966) convincingly demonstrated 

that near the wave fronts, in a dimensionless time 

span of 0.1 after the arrival of the disturbance, 

the inertia effect completely dominates the shell 

responses. Based on this fact, Zhang and Geers 

(1993) developed their "partial closed form solu

tion." For the present 70-term series summation, 

the 70th term (m = 69) has a modal structural 

wavelength equal to about only five shell thick

nesses. For the very high m shell modes, it may 

appear that the use of the present bending shell 

theory has overstepped its boundary of validity, 

and that higher order theories such as the one 

used by Payton (1960) and Tang and Yen (1970) 

or even 3-dimensional elasticity theory should be 

used. On the contrary, for the reasons just dis

cussed, it is not necessary to use any better shell 

theory for the high m shell modes and the use of 

the present shell theory for the purpose here is 

still appropriate. 

Figure 13 plots the time history of the total 

pressure acting on the shell at () = 0.0 due to a 

step incident wave and compares it to the Tang 

and Yen (1970) Watson's transformation asymp

totic solution. The true solution here is that the 

total pressure reaches the value 2.0 at T = 0.0 

with zero rise time. The 70-term Cesaro sum here 

starts from 0.0 at T = 0.0 and reaches a maximum 

of 1.76459 at T = 0.003. lfthe shell has a radius 

of 5 ft, this corresponds to a real rise time of 3 

fLS and is sufficiently small for most shell damage 

calculations. The early time decaying slope of 

the Cesaro sum agrees very well with that of the 

Watson's transformation solution. The 70-term 

series solution is not perfect in a small neighbor

hood of the pressure wave front, as expected, 

but it fairly closely approached the true solution. 

After T = 0.04, the pressure time histories pro

duced by the 40-term and 50-term Cesaro sums 

coincide with that of the 70-term sum. Finally, 

more extensive time histories of the total pressure 

acting on the shell at () = 0.00, 0.57T, and 7T for 

0.0 ::s T ::s 50.0 due to a step incident wave are 

presented in Fig. 14. The sharp spike at T = 1.0 

for the () = 0.57T curve signifies the arrival of the 

incident wave front; prior to this time the pressure 

was initiated at T = 0.38784 by the elastic re

sponse of the shell. Due to the imperfection of 

the calculated wave front here, the magnitude of 

the spike is lower than the true value and its slope 

is not infinitely steep as it is supposed to be. The 

incident wave front does not reach the back apex 

of the shell at () = 7T; the pressure there is initiated 

at T = 0.81245 by the shell response and later at 

T = 2.57079 reinforced by the diffracted incident 

wave. Again, apart from small neighborhoods of 
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FIGURE 13 Comparison of the 70-term Cesaro sum representation of ITO, 0, T) to the Watson's 

transformation solution. 

the wave fronts, the pressure time histories in Fig. 

14 have adequately converged. It is interesting to 
note that the values of the total pressure on the 

shell are very much above zero for all times. 

Therefore, for the case of a step incident wave, 

cavitation will not occur at the shell. It is also 

obvious that cavitation at the shell will occur for 

short incident waves and more likely occur near 

the back apex. 

2.00 

1.00 

0.00 

W 2.00 
It: 
:) 
(/) 
(/) 
W 
It: 1.00 
IL 
...r 

~ 
~ 0.00 

2.00 

1.00 

0.00 10.00 20.00 30.00 40.00 50.00 

T 
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SUMMARY 

Although a detailed solution to the transient inter
action of plane acoustic waves with a spherical 

elastic shell was obtained more than a quarter of 

a century ago, two primary deficiencies existed, 

namely, meaningful solution histories of the 

higher time derivatives such as acceleration and 

pressure were not generated due to an insufficient 

number of terms in the series solution, and uni

form convergence around the discontinuous step 
wave front was not obtained because of the 

Gibbs' phenomenon. These two deficiencies have 

been remedied with the advent and availability 

of more powerful computers and increased so

phistication of computational algorithms. The 

utility of the classical modal series for this type of 
problem in particular, and for transient dynamic 

problems in general, is now greatly enhanced, 

because a similarly convergent solution is still 

difficult to obtain with more general solution tech

niques. 

Many terms (up to 70) of the series solution are 
now accurately computed, and the (Cl) Cesaro 

summation of the series is employed to effectively 

eradicate all spurious oscillations due to the 

Gibbs' phenomenon. Except for small neighbor

hoods about the wave fronts, the series solution 

now converges uniformly toward the solution. 

The early time waveform of the velocity time 

history and the time of its maximum can be accu

rately defined, and meaningful solution histories 

for the higher time derivatives (e.g., shell acceler-
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ation and the pressure acting on the shell) are 

obtained. Refined numerical results are pre

sented; these results are particularly useful for 

validation of computational models that attempt 

to reproduce the higher time derivatives, which 

are significantly more difficult to obtain. 
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