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Abstract. A neural network model for a mechanism of 

visual pattern recognition is proposed in this paper. 

The network is self-organized by "learning without a 

teacher", and acquires an ability to recognize stimulus 

patterns based on the geometrical similarity (Gestalt) 

of their shapes without affected by their positions. This 

network is given a nickname "neocognitron". After 

completion of self-organization, the network has a 

structure similar to the hierarchy model of the visual 

nervous system proposed by Hubel and Wiesel. The 

network consists of an input layer (photoreceptor 

array) followed by a cascade connection of a number of 

modular structures, each of which is composed of two 

layers of cells connected in a cascade. The first layer of 

each module consists of "S-cells', which show charac- 

teristics similar to simple cells or lower order hyper- 

complex cells, and the second layer consists of 

"C-cells" similar to complex cells or higher order 

hypercomplex cells. The afferent synapses to each 

S-cell have plasticity and are modifiable. The network 

has an ability of unsupervised learning: We do not 

need any "teacher" during the process of self- 

organization, and it is only needed to present a set of 

stimulus patterns repeatedly to the input layer of the 

network. The network has been simulated on a digital 

computer. After repetitive presentation of a set of 

stimulus patterns, each stimulus pattern has become to 

elicit an output only from one of the C-cells of the last 

layer, and conversely, this C-cell has become selectively 

responsive only to that stimulus pattern. That is, none 

of the C-cells of the last layer responds to more than 

one stimulus pattern. The response of the C-cells of the 

last layer is not affected by the pattern's position at all. 

Neither is it affected by a small change in shape nor in 
size of the stimulus pattern. 

1. Introduction 

The mechanism of pattern recognition in the brain is 

little known, and it seems to be almost impossible to 

reveal it only by conventional physiological experi- 

ments. So, we take a slightly different approach to this 

problem. If we could make a neural network model 

which has the same capability for pattern recognition 

as a human being, it would give us a powerful clue to 

the understanding of the neural mechanism in the 

brain. In this paper, we discuss how to synthesize a 

neural network model in order to endow it an ability of 

pattern recognition like a human being. 

Several models were proposed with this intention 

(Rosenblatt, 1962; Kabrisky, 1966; Giebel, 1971; 

Fukushima, 1975). The response of most of these 

models, however, was severely affected by the shift in 

position and/or by the distortion in shape of the input 

patterns. Hence, their ability for pattern recognition 

was not so high. 

In this paper, we propose an improved neural 

network model. The structure of this network has been 

suggested by that of the visual nervous system of the 

vertebrate. This network is self-organized by "learning 

without a teacher", and acquires an ability to recognize 

stimulus patterns based on the geometrical similarity 

(Gestalt) of their shapes without affected by their 

position nor by small distortion of their shapes. 

This network is given a nickname "neocognitron"l, 

because it is a further extention of the "cognitron", 

which also is a self-organizing multilayered neural 

network model proposed by the author before 

(Fukushima, 1975). Incidentally, the conventional 

cognitron also had an ability to recognize patterns, but 

its response was dependent upon the position of the 

stimulus patterns. That is, the same patterns which 

were presented at different positions were taken as 

different patterns by the conventional cognitron. In the 

neocognitron proposed here, however, the response of 

the network is little affected by the position of the 
stimulus patterns. 

1 Preliminary report of the neocognitron already appeared else- 
where (Fukushima, 1979a, b) 
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The neocognitron has a multilayered structure, too. 

It also has an ability of unsupervised learning: We do 

not need any "teacher" during the process of self- 

organization, and it is only needed to present a set of 

stimulus patterns repeatedly to the input layer of the 

network. After completion of self-organization, the 

network acquires a structure similar to the hierarchy 

model of the visual nervous system proposed by Hubel 

and Wiesel (1962, 1965). 
According to the hierarchy model by Hubel and 

Wiesel, the neural network in the visual cortex has a 

hierarchy structure : LGB (lateral geniculate 

body)--*simple cells-.complex cells~lower order hy- 

percomplex cells--*higher order hypercomplex cells. It 

is also suggested that the neural network between 

lower order hypercomplex cells and higher order hy- 

percomplex cells has a structure similar to the network 

between simple cells and complex cells. In this hier- 

archy, a cell in a higher stage generally has a tendency 

to respond selectively to a more complicated feature of 

the stimulus pattern, and, at the same time, has a larger 

receptive field, and is more insensitive to the shift in 

position of the stimulus pattern. 

It is true that the hierarchy model by Hubel and 

Wiesel does not hold in its original form. In fact, there 

are several experimental data contradictory to the 

hierarchy model, such as monosynaptic connections 

from LGB to complex cells. This would not, however, 

completely deny the hierarchy model, if we consider 

that the hierarchy model represents only the main 

stream of information flow in the visual system. Hence, 

a structure similar to the hierarchy model is introduced 

in our model. 
Hubel and Wiesel do not tell what kind of cells 

exist in the stages higher than hypercomplex cells. 

Some cells in the inferotemporal cortex (i.e. one of the 

association areas) of the monkey, however, are report- 

ed to respond selectively to more specific and more 

complicated features than hypercomplex cells (for ex- 

ample, triangles, squares, silhouettes of a monkey's 

hand, etc.), and their responses are scarcely affected by 

the position or the size of the stimuli (Gross et al., 

1972; Sato et al., 1978). These cells might correspond 

to so-called "grandmother cells". 

Suggested by these physiological data, we extend 

the hierarchy model of Hubel and Wiesel, and hy- 

pothesize the existance of a similar hierarchy structure 
even in the stages higher than hypercomplex cells. In 

the extended hierarchy model, the cells in the highest 

stage are supposed to respond only to specific stimulus 

patterns without affected by the position or the size of 

the stimuli. 

The neocognitron proposed here has such an ex- 

tended hierarchy structure. After completion of self- 
organization, the response of the cells of the deepest 

layer of our network is dependent only upon the shape 

of the stimulus pattern, and is not affected by the 

position where the pattern is presented. That is, the 

network has an ability of position-invariant pattern- 

recognition. 

In the field of engineering, many methods for 

pattern recognition have ever been proposed, and 

several kinds of optical character readers have already 

been developed. Although such machines are superior 

to the human being in reading speed, they are far 

inferior in the ability of correct recognition. Most of 

the recognition method used for the optical character 

readers are sensitive to the position of the input 

pattern, and it is necessary to normalize the position of 

the input pattern beforehand. It is very difficult to 

normalize the position, however, if the input pattern is 

accompanied with some noise or geometrical distor- 

tion. So, it has long been desired to find out an 

algorithm of pattern recognition which can cope with 

the shift in position of the input pattern. The algorithm 

proposed in this paper will give a drastic solution also 
to this problem. 

2. Structure of the Network 

As shown in Fig. 1, the neocognitron consists of a 

cascade connection of a number of modular structures 

preceded by an input layer U o. Each of the modular 

structure is composed of two layers of cells connected 

in a cascade. The first layer of the module consists of 

"S-cells", which correspond to simple cells or lower 

order hypercomplex cells according to the classifi- 

cation of Hubel and Wiesel. We call it S-layer and 

denote the S-layer in the /-th module as Us~. The 

second layer of the module consists of "C-cells", which 

correspond to complex cells or higher order hyper- 

complex cells. We call it C-layer and denote the 

C-layer in the/-th module as Uc~. In the neocognitron, 

only the input synapses to S-cells are supposed to have 

plasticity and to be modifiable. 

The input layer U 0 consists of a photoreceptor 

array. The output of a photoreceptor is denoted by 

u0(n ), where n=(nx, ny ) is the two-dimensional co- 
ordinates indicating the location of the cell. 

S-cells or C-cells in a layer are sorted into sub- 

groups according to the optimum stimulus features of 
their receptive fields. Since the cells in each subgroup 

are set in a two-dimensional array, we call the sub- 
group as a "cell-plane". We will also use a terminology, 

S-plane and C-plane representing cell-planes consist- 

ing of S-cells and C-cells, respectively. 

It is assumed that all the cells in a single cell-plane 

have input synapses of the same spatial distribution, 
and only the positions of the presynaptic cells are 
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Fig. 1. Correspondence between the hierarchy model by Hubel and Wiesel, and the neural network of the neocognitron 

shifted in parallel from cell to cell. Hence, all the cells in 

a single cell-plane have receptive fields of the same 

function, but at different positions. 

We will use notations Us~(k~,n ) to represent the 

output of an S-cell in the kr th  S-plane in the l-th 

module, and Ucl(k~, n) to represent the output of a C-cell 

in the kr th  C-plane in that module, where n is the two- 

dimensional co-ordinates representing the position of 

these cell's receptive fields in the input layer. 

Figure 2 is a schematic diagram illustrating the 

interconnections between layers. Each tetragon drawn 

with heavy lines represents an S-plane or a C-plane, 

and each vertical tetragon drawn with thin lines, in 

which S-planes or C-planes are enclosed, represents an 

S-layer or a C-layer. 

In Fig. 2, a cell of each layer receives afferent 

connections from the cells within the area enclosed by 

the elipse in its preceding layer. To be exact, as for the 

S-cells, the elipses in Fig. 2 does not show the connect- 
ing area but the connectable area to the S-cells. That is, 

all the interconnections coming from the elipses are 

not always formed, because the synaptic connections 

incoming to the S-cells have plasticity. 

In Fig. 2, for the sake of simplicity of the figure, 

only one cell is shown in each cell-plane. In fact, all the 

cells in a cell-plane have input synapses of the same 

spatial distribution as shown in Fig. 3, and only the 

positions of the presynaptic cells are shifted in parallel 

from cell to cell. 

R3 ~I 

modifioble synapses 

) unmodifiable synopses 

Since the cells in the network are interconnected in 

a cascade as shown in Fig. 2, the deeper the layer is, the 

larger becomes the receptive field of each cell of that 

layer. The density of the cells in each cell-plane is so 

determined as to decrease in accordance with the 

increase of the size of the receptive fields. Hence, the 

total number of the cells in each cell-plane decreases 

with the depth of the cell-plane in the network. In the 

last module, the receptive field of each C-cell becomes 

so large as to cover the whole area of input layer U0, 

and each C-plane is so determined as to have only one 

C-cell. 

The S-cells and C-cells are excitatory cells. That is, 

all the efferent synapses from these cells are excitatory. 

Although it is not shown in Fig. 2, we also have 

Fig. 3. Illustration showing the input interconnections to the cells 
within a single cell-plane 

Fig. 2. Schematic diagram illustrating the 
interconnections between layers in the 
neocognitron 
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inhibitory cells Vsl(n ) and Vcl(n ) in S-layers and 
C-layers. 

Here, we are going to describe the outputs of the 

cells in the network with numerical expressions. 

All the neural cells employed in this network is of 

analog type. That is, the inputs and the output of a cell 

take non-negative analog values proportional to the 

pulse density (or instantaneous mean frequency) of the 

firing of the actual biological neurons. 

S-cells have shunting-type inhibitory inputs simi- 

larly to the cells employed in the conventional cognit- 

ron (Fukushima, 1975). The output of an S-cell in the 

kz-th S-plane in the/-th module is described below. 
Kz- 1 

I!+ ~ ~ az(kl-1, v, kt).Ucl_l(k,_x, n+  v) 

Usl(k z, n) = r 1. qo k,_l = 1 v~s, 2rl 

1 + ~ .  bl(kl).Vc,_ l(n) 

where 

{oX  ~ ~oEx] = x < 0 .  (2) 

In case of l=  1 in (1), Ucl_ l(kt_ i, n) stands for uo(n), and 

we have K z_ 1 = 1. 
Here, al(k z_ 1, v, kl) and bz(kl) represent the efficien- 

cies of the excitatory and inhibitory synapses, re- 

spectively. As was described before, it is assumed that 

all the S-cells in the same S-plane have identical set of 

input synapses. Hence, al(k l_ 1, v, kl) and bl(kz) do not 

contain any argument representing the position n of 

the receptive field of the cell Usl(kl, n). 

Parameter r z in (1) prescribes the efficacy of the 

inhibitory input. The larger the value of r z is, more 

selective becomes cell's response to its specific feature 

(Fukushima, 1978, 1979c). Therefore, the value of r z 

should be determined with a compromise between the 

ability to differentiate similar patterns and the ability 

to tolerate the distortion of the pattern's shape. 

The inhibitory cell VC/_l(n), which have in- 

hibitory synaptic connections to this S-cell, has an 

r.m.s.-type (root-mean-square type) input-to-output 

characteristic. That is, 

1 /  Kz-1 

Vct l (n)=l /k ,~ lV 1- ~s, ~cz-l(v)'u2l-l(kl-l'n+v)' (3) 

where cz l(v) represents the efficiency of the unmodifi- 

able excitatory synapses, and is set to be a monotoni- 
cally decreasing function of [v]. The employment of 

r.m.s.-type cells is effective for endowing the network 

with an ability to make reasonable evaluation of the 

similarity between the stimulus patterns. Its effective- 

ness was analytically proved for the conventional 
cognitron (Fukushima, 1978, 1979c), and the same 
discussion can be applied also to this network. 

As is seen from (t) and (3), the area from which a 

single cell receives its input, that is, the summation 

range S z of v is determined to be identical for both cells 

Ust(kl, n) and Vcl_ l(n). 
The size of this range SI is set to be small for the 

foremost module (/=1) and to become larger and 

larger for the hinder modules (in accordance with the 
increase of I). 

After completion of self-organization, the pro- 

cedure of which will be discussed in the next chapter, a 

number of feature extracting cells of the same function 

are formed in parallel within each S-plane, and only 

(1) 

the positions of their receptive fields are different to 

each other. Hence, if a stimulus pattern which elicits a 

response from an S-cell is shifted in parallel in its 

position on the input layer, another S-cell in the same 

S-plane will respond instead of the first cell. 

The synaptic connections from S-layers to C-layers 

are fixed and unmodifiable. As is illustrated in Fig. 2, a 

C-cell have synaptic connections from a group of 

S-cells in its corresponding S-plane (i.e. the preceding 

S-plane with the same k~-number as that of the C-cell). 

The efficiencies of these synaptic connections are so 

determined that the C-cell will respond strongly when- 

ever at least one S-cell in its connecting area yields a 

large output. Hence, even if a stimulus pattern which 

has elicited a large response from a C-cell is shifted a 

little in position, the C-cell will keep responding as 

before, because another presynaptic S-cell will become 

to respond instead. 

Quantitatively, C-cells have shunting-type inhib- 

itory inputs similarly as S-cells, but their outputs 

show a saturation characteristic. The output of a C-cell 

in the k/-th C-plane in the/-th module is given by the 
equation below. 

ii + ~ dt(v)'Usl(kz, n+v) ll 
Ucl(kt, n) = ~ wD, 1 + Vst(n ) , (4) 

where 

[x ]  = q~[x/(c~ + x) ] .  (5) 

The inhibitory cell Vsz(n ), which sends inhibitory sig- 
nals to this C-cell and makes up the system of lateral 

inhibition, yields an output proportional to the 

(weighted) arithmetic mean of its inputs : 

1 Kz 

Vs'(n) = ~ k ~ ,  ~;, d'(v)'us'(k''n+v)" (6) 



197 

In (4) and (6), the efficiency of the unmodifiable 

excitatory synapse dz(v ) is set to be a monotonically 

decreasing function of Iv[ in the same way as q(v), and 

the connecting area D~ is small in the foremost module 

and becomes larger and larger for the hinder modules. 

The parameter a in (5) is a positive constant which 

specifies the degree of saturation of C-cells. 

3. Self-organization of the Network 

The self-organization of the neocognitron is performed 

by means of "learning without a teacher". During the 

process of self-organization, the network is repeatedly 

presented with a set of stimulus patterns to the input 

layer, but it does not receive any other information 

about the stimulus patterns. 

As was discussed in Chap. 2, one of the basic 

hypotheses employed in the neocognitron is the as- 

sumption that all the S-cells in the same S-plane have 

input synapses of the same spatial distribution, and 

that only the positions of the presynaptic cells shift in 

parallel in accordance with the shift in position of 

individual S-cells' receptive fields. 

It is not known whether modifiable synapses in the 

real nervous system are actually self-organized always 

keeping such conditions. Even if it is assumed to be 

true, neither do we know by what mechanism such a 

self-organization goes on. The correctness of this hy- 

pothesis, however, is suggested, for example, from the 

fact that orderly synaptic connections are formed 

between retina and optic rectum not only in the initial 

development in the embryo but also in regeneration in 

the adult amphibian or fish: In regeneration after 

removal of half of the tectum, the whole retina come to 

make a compressed orderly projection upon the re- 

maining half tectum (e.g. review article by Meyer and 

Sperry, 1974). 

In order to make self-organization under the con- 

ditions mentioned above, the modifiable synapses are 

reinforced by the following procedures. 

At first, several "representative" S-cells are selected 

from each S-layer every time when a stimulus pattern 

is presented. The representative is selected among the 

S-cells which have yielded large outputs, but the 

number of the representatives is so restricted that more 

than one representative are not selected from any 

single S-plane. The detailed procedure for selecting the 

representatives is given later on. 

The input synapses to a representative S-cell are 

reinforced in the same manner as in the case of r.m.s.- 

type cognitron 2 (Fukushima, 1978, 1979c). All the 

2 Qualitatively, the procedure of self-organization for r.m.s.-type 
cognitron is the same as that for the conventional cognitron 
(Fukushima, 1975) 

other S-cells in the S-plane, from which the repre- 

sentative is selected, have their input synapses rein- 

forced by the same amounts as those for their repre- 

sentative. These relations can be quantitatively ex- 

pressed as follows. 

Let cell UsSq, fi) be selected as a representative. The 

modifiable synapses al(k l_ 1, v, ~l) and bl(/~l), which are 

afferent to the S-cells of the kcth S-plane, are rein- 

forced by the amount shown below: 

Aal(kz_ l, v,[q)=ql.cz_ l(v).Ucl_ l(k~_ l,fi + v), (7) 

Abt([q) = (qz/2). Vcl_ l(fi), (8) 

where ql is a positive constant prescribing the speed of 

reinforcement. 

The cells in the S-plane from which no repre- 

sentative is selected, however, do not have their input 

synapses reinforced at all. 

In the initial state, the modifiable excitatory syn- 

apses al(k l_ 1, v, kt) are set to have small positive values 

such that the S-cells show very weak orientation 

selectivity, and that the preferred orientation of the 

S-cells differ from S-plane to S-plane. That is, the 

initial values of these modifiable synapses are given by 

a function of v, (kl/Kz) and [k z_ 1/Kl_ 1 --k]K~l, but they 

don't have any randomness. The initial values of 

modifiable inhibitory synapses b~(kt) are set to be zero. 

The procedure for selecting the representatives is 

given below. It resembles, in some sense, to the pro- 

cedure with which the reinforced cells are selected in 

the conventional cognitron (Fukushima, 1975). 

At first, in an S-layer, we watch a group of S-cells 

whose receptive fields are situated within a small area 

on the input layer. If we arrange the S-planes of an 

S-layer in a manner shown in Fig. 4, the group of 

S-cells constitute a column in an S-layer. Accordingly, 

we call the group as an "S-column". An S-column 

contains S-cells from all the S-planes. That is, an 

S-column contains various kinds of feature extracting 

cells in it, but the receptive fields of these cells are 

situated almost at the same position. Hence, the idea of 

S-columns defined here closely resembles that of 

"hypercolumns" proposed by Hubel and Wiesel (1977). 

There are a lot of such S-columns in a single S-layer. 

Since S-columns have overlapping with one another, 

there is a possibility that a single S-cell is contained in 

two or more S-columns. 

From each S-column, every time when a stimulus 

pattern is presented, the S-cell which is yielding the 

largest output is chosen as a candidate for the repre- 

sentatives. Hence, there is a possibility that a number 

of candidates appear in a single S-plane. If two or more 

candidates appear in a single S-plane, only the one 

which is yielding the largest output among them is 

selected as the representative from that S-plane. In 
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Fig. 4. Relation between S-planes and S-columns within an S-layer 

case only one candidate appears in an S-plane, the 

candidate is unconditionally determined as the repre- 

sentative from that S-plane. If no candidate appears in 

an S-plane, no representative is selected from that 

S-plane. 

Since the representatives are determined in this 

manner, each S-plane becomes selectively sensitive to 

one of the features of the stimulus patterns, and there is 

not a possibility of formation of redundant con- 

nections such that two or more S-planes are used for 

detection of one and the same feature. Incidentally, 

representatives are selected only from a small number 

of S-planes at a time, and the rest of the S-planes are to 

send representatives for other stimulus patterns. 

As is seen from these discussions, if we consider 

that a single S-plane in the neocognitron corresponds 

to a single excitatory cell in the conventional cognitron 

(Fukushima, 1975), the procedures of reinforcement in 

the both systems are analogous to each other. 

4. Rough Sketches of the Working of the Network 

In order to help the understanding of the principles 

with which the neocognitron performs pattern re- 

cognition, we will make rough sketches of the working 

of the network in the state after completion of self- 

organization. The description in this chapter, however, 

is not so strict, because the purpose of this chapter is 

only to show the outline of the working of the network. 

At first, let us assume that the neocognitron has 

been self-organized with repeated presentations of 

stimulus patterns like "A", "B", "C" and so on. In the 

state when the self-organization has been completed, 

various feature-extracting cells are formed in the net- 

work as shown in Fig. 5. (It should be noted that Fig. 5 

shows only an example. It does not mean that exactly 

the same feature extractors as shown in this figure are 

always formed in this network.) 

Here, if pattern "A" is presented to the input layer 

U o, the cells in the network yield outputs as shown in 

^ 

UsI Ucl Us2 
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Fig. 5. An example of the interconnections between ceils and the 
response of the cells after completion of self-organization 

Fig. 5. For instance, S-plane with k 1 = 1 in layer Us1 
consists of a two-dimensional array of S-cells which 

extract A-shaped features. Since the stimulus pattern 

"A" contains A-shaped feature at the top, an S-cell 

near the top of this S-plane yields a large output as 

shown in the enlarged illustration in the lower part of 

Fig. 5. 

A C-cell in the succeeding C-plane (i.e. C-plane in 

layer Ucl with k~ = 1) has synaptic connections from a 

group of S-cells in this S-plane. For example, the C-cell 

shown in Fig. 5 has synaptic connections from the 

S-cells situated within the thin-lined circle, and it 

responds whenever at least one of these S-cells yields a 

large output. Hence, the C-cell responds to a A-shaped 

feature situated in a certain area in the input layer, and 

its response is less affected by the shift in position of 

the stimulus pattern than that of presynaptic S-cells. 

Since this C-plane consists of an array of such C-cells, 

several C-cells which are situated near the top of this 

C-plane respond to the A-shaped feature contained in 

the stimulus pattern "A". In layer Ucl, besides this 

C-plane, we also have C-planes which extract features 

with shapes l ike/- ,  ~, and so on. 
In the next module, each S-cell receives signals 

from all the C-planes of layer Ucl. For example, the 
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S-cell shown in Fig. 5 receives signals from C-cells 

within the thin-lined circles in layer Ucl. Its input 

synapses have been reinforced in such a way that this 

S-cell responds only when A-shaped, /--shaped and 

~-shaped features are presented in its receptive field 

with configuration like A �9 Hence, pattern "A" elicits 

a large response from this S-cell, which is situated a 

little above the center of this S-plane. If positional 

relation of these three features are changed beyond 

some allowance, this S-cell stops responding. This 

S-cell also checks the condition that other features 

such as ends-of-lines, which are to be extracted in 

S-planes with k 1 =4,  5 and so on, are not presented in 

its receptive field. The inhibitory cell Vc~, which makes 

inhibitory synaptic connection to this S-cell, plays an 

important role in checking the absence of such irrel- 

evant features. 
Since operations of this kind are repeatedly applied 

through a cascade connection of modular structures of 

S- and C-layers, each individual cell in the network 

becomes to have wider receptive field in accordance 

with the increased number of modules before it, and, at 

the same time, becomes more tolerant of shift in 

position of the input pattern. Thus, one C-cell in the 

last layer Uc3 yields a large response only when, say, 

pattern "A" is presented to the input layer, regardless 

of the pattern's position. Although only one cell which 

responds to pattern "A" is drawn in Fig. 5, cells which 

respond to other patterns, such as "B',  "C" and so on, 

have been formed in parallel in the last layer. 

From these discussions, it might be felt as if an 

enormously large number of feature-extracting cell- 

planes become necessary with the increase in the 

number of input patterns to be recognized. However, it 

is not the case. With the increase in the number of 

input patterns, it becomes more and more probable 

that one and the same feature is contained in common 

in more than two different kinds of patterns. Hence, 

each cell-plane, especially the one near the input layer, 

will generally be used in common for the feature 

extraction, not from only one pattern, but from nu- 

merous kinds of patterns. Therefore, the required 

number of cell-planes does not increase so much in 

spite of the increase in the number of patterns to be 

recognized. 

Viewed from another angle, this procedure for 

pattern recognition can be interpreted as identical in 

its principle to the information processing mentioned 

below. 

That is, in the neocognitron, the input pattern is 

compared with learned standard patterns, which have 

been recorded beforehand in the network in the form 

of spatial distribution of the synaptic connections. This 

comparison is not made by a direct pattern matching 

in a wide visual field, but by piecewise pattern match- 

ings in a number of small visual fields. Only when the 

difference between both patterns does not exceed a 

certain limit in any of the small visual fields, the 

neocognitron judges that these patterns coincide with 

each other. 

Such comparison in small visual fields is not 

performed in a single stage, but similar processes are 

repeatedly applied in a cascade. That is, the output 

from one stage is used as the input to the next stage. In 

the comparison in each of these stages, the allowance 

for the shift in pattern's position is increased little by 

little. The size of the visual field (or the size of the 

receptive fields) in which the input pattern is compared 

with standard patterns, becomes larger in a higher 

stage. In the last stage, the visual field is large enough 

to observe the whole information of the input pattern 

simultaneously. 

Even if the input pattern does not match with a 

learned standard pattern in all parts of the large visual 

field simultaneously, it does not immediately mean 

that these patterns are of different categories. Suppose 

that the upper part of the input pattern matches with 

that of the standard pattern situated at a certain 

location, and that, at the same time, the lower part of 

this input pattern matches with that of the same 

standard pattern situated at another location. Since 

the pattern matching in the first stage is tested in 

parallel in a number of small visual fields, these two 

patterns are still regarded as the same by the neocog- 

nitron. Thus, the neocognitron is able to make a 

correct pattern recognition even if input patterns have 

some distortion in shape. 

5. Computer Simulation 

The neural network proposed here has been simulated 

on a digital computer. In the computer simulation, we 

consider a seven layered network: Uo-~ Us1 -~ Ucl-~ Us2 
-~Uc2-~Us3-~Uc3. That is, the network has three 

stages of modular structures preceded by an input layer. 

The number of cell-planes Kz in each layer is 24 for all 

the layers except U o. The numbers of excitatory cells in 

these seven layers are: 16x 16 in Uo, 16x 16x24  in 

Us1, 10x 10x 24in Ucl, 8 • 8 x 24in Us2, 6 x  6 x  24in 

Uc2, 2 x 2 • 24 in Us3, and 24 in Uc3. In the last layer 

Uc3, each of the 24 cell-planes contains only one 

excitatory cell (i.e. C-cell). 

The number of cells contained in the connectable 

area S t is always 5 x 5 for every S-layer. Hence, the 

number of input synapses 3 to each S-cell is 5 x 5 in 

layer Us~ and 5 x 5 x 24 in layers Usz and Us3, because 

3 It does not necessarily mean that all of these input synapses are 
always fully reinforced. In usual situations, only some of these input 
synapses are reinforced, and the rest of them remains in small values 
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U0 

a b c d e f g h 

Fig. 6. Some examples of distorted stimulus patterns which the 
neocognitron has correctly recognized, and the response of the final 
layer of the network 

Fig. 7. A display of an example of the response of all the individual 

cells in the neocognitron 

layers Us2 and Us3 are preceded by C-layers consisting 

of 24 cell-planes. Although the number of cells con- 

tained in S t is the same for every S-layer, the size of S~, 

which is projected to and observed at layer U0, 

increases for the hinder layers because of decrease in 

density of the cells in a cell-plane. 

The number of excitatory input synapses to each 

C-cell is 5 x 5 in layers Ucl and Uc2, and is 2 • 2 in 

layer Uc3. Every S-column has a size such that it 

contains 5 x 5 x 24 cells for layers Usi and Usz, and 

2 x 2 x 24 cells for layer Usa. That is, it contains 5 x 5, 

5 x 5, and 2 x 2 cells from each S-plane, in layers Usl, 
Us2, and Us3, respectively. 

Parameter rl, which prescribe the efficacy of in- 

hibitory input to an S-cell, is set such that r 1 =4.0 and 

r 2 = r 3 = 1.5. The efficiency of unmodifiable excitatory 

synapses c~ l(v) is determined so as to satisfy the 

equation 

Kt-i 

Z 2 Cl- 1(v) = 1. (9) 
kz- 1 = 1 vest 

The parameter % which prescribe the speed of rein- 

forcement, is adjusted such that ql = l . 0  and 

q2=qa=16.0.  The parameter e, which specifies the 

degree of saturation, is set to be c~=0.5. 

In order to self-organize the network, we have 

presented five stimulus patterns "0", "1", "2", "3", and 

"4", which are shown in Fig. 6 (a) (the leftmost column 

in Fig. 6), repeatedly to the input layer U 0. The 

positions of presentation of these stimulus patterns 

have been randomly shifted at every presentation 4. 

Each of the five stimulus patterns has been pre- 

sented 20 times to the network. By that time, self- 

organization of the network has almost been 

completed. 
Each stimulus pattern has become to elicit an 

output only from one of the C-cells of layer Uc3, and 

conversely, this C-cell has become selectively respon- 

sive only to that stimulus pattern. That is, none of the 

C-cells of layer Uc3 responds to more than one 

stimulus pattern. It has also been confirmed that the 

response of cells of layer Uc3 is not affected by the shift 

in position of the stimulus pattern at all. Neither is it 

affected by a slight change of the shape or the size of 

the stimulus pattern. 

Figure 6 shows some examples of distorted stim- 

ulus patterns which the neocognitron has correctly 

recognized. All the stimulus patterns (a)~(g) in each 

row of Fig. 6 have elicited the same response to C-cells 

of layer Uc3 as shown in (h) (i.e. the rightmost patterns 

in each row). That is, the neocognitron has correctly 

recognized these patterns without affected by shift in 

position like (a)~ (c), nor by distortion in shape or size 

like (d)~ (f), nor by some insufficiency of the patterns 

or some noise like (g). 

Figure7 displays how individual cells in the 

neocognitron have responded to stimulus pattern "4". 

Thin-lined squares in the figure stand for individual 

cell-planes (except in layer Uc3 in which each cell- 

plane contains only one cell). The magnitude of the 

output of each individual cell is indicated by the 

darkness of each small square in the figure. (The size of 

the square does not have a special meaning here.) 

4 It does not matter, of course, even if the patterns are presented 

always at the same position. On the contrary, the self-organization 

generally becomes easier if the position of pattern presentation is 

stationary than it is shifted at random. Thus, the experimental result 

under more difficult condition is shown here 



In order to check whether the neocognitron can 

acquire the ability of correct pattern recognition even 

for a set of stimulus patterns resembling each other, 

another experiment has been made. In this experiment, 

the ueocognitron has been self-organized using four 

stimulus patterns "X", "Y", "T", and "Z". These four 

patterns resemble each other in shape: For instance, 

the upper parts of "X" and "Y" have an identical 

shape, and the diagonal lines in "Z" and "X" have an 

identical inclination, and so on. After repetitive pre- 

sentation of these resembling patterns, the neocognit- 

ron has also acquired the ability to discriminate them 

correctly. 

In a third experiment, the number of stimulus 

patterns has been increased, and ten different patterns 

"0", "1", "2", .... "9" have been presented during the 

process of self-organization. Even in the case of ten 

stimulus patterns, it is possible to self-organize the 

neocognitron so as to recognize these ten patterns 

correctly, provided that various parameters in the 

network are properly adjusted and that the stimulus 

patterns are skillfully presented during the process of 

self-organization. In this case, however, a small de- 

viation of the values of the parameters, or a small 

change of the way of pattern presentation, has criti- 

cally influenced upon the ability of the self-organized 

network. This would mean that the number of cell- 

planes in the network (that is, 24 cell-planes in each 

layer) is not sufficient enough for the recognition of ten 

different patterns. If the number of cell-planes is 

further increased, it is presumed that the neocognitron 

would steadily make correct recognition of these ten 

patterns, or even much more number of patterns. The 

computer simulation for the case of more than 24 cell- 

planes in each layer, however, has not been made yet, 

because of the lack of memory capacity of our 

computer. 
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recognition in the brain, but he proposes it as a 

working hypothesis for some neural mechanisms of 

visual pattern recognition. 

As was stated in Chap. 1, the hierarchy model of 

the visual nervous system proposed by Hubel and 

Wiesel is not considered to be entirely correct. It is a 

future problem to modify the structure of the neocog- 

nitron lest it should be contradictory to the structure 

of the visual system which is now being revealed. 

It is conjectured that, in the human brain, the 

process of recognizing familiar patterns such as al- 

phabets of our native language differs from that of 

recognizing unfamiliar patterns such as foreign al- 

phabets which we have just begun to learn. The 

neocognitron probably presents a neural network 

model corresponding to the former case, in which we 

recognize patterns intuitively and immediately. It 

would be another future problem to model the neural 

mechanism which works in deciphering illegible letters. 

The algorithm of information processing proposed 

in this paper is of great use not only as an inference 

upon the mechanism of the brain but also to the field 

of engineering. One of the largest and long-standing 

difficulties in designing a pattern-recognizing machine 

has been the problem how to cope with the shift in 

position and the distortion in shape of the input 

patterns. The neocognitron proposed in this paper 

gives a drastic solution to this difficulty. We would be 

able to extremely improve the performance of pattern 
recognizers if we introduce this algorithm in the design 

of the machines. The same principle can also be 

applied to auditory information processing such as 

speech recognition if the spatial pattern (the envelope 

of the vibration) generated on the basilar membrane in 

the cochlea is considered as the input signal to the 

network. 

6. Conclusion 

The "neocognitron" proposed in this paper has an 

ability to recognize stimulus patterns without affected 

by shift in position nor by a small distortion in shape 

of the stimulus patterns. It also has a function of self- 

organization, which progresses by means of "learning 

without a teacher". If a set of stimulus patterns are 

repeatedly presented to it, it gradually acquires the 

ability to recognize these patterns. It is not necessary 

to give any instructions about the categories to which 

the stimulus patterns should belong. The performance 

of the neocognitron has been demonstrated by com- 

puter simulation. 

The author does not advocate that the neocognit- 

ron is a complete model for the mechanism of pattern 
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