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γ-aminobutyric acid (GABA) pathways play an important role in neuronal circuitry

formation during early postnatal development. Our previous studies revealed an

increased risk for adverse neurodevelopmental consequences in animals exposed to

benzodiazepines, which enhance GABA inhibition via GABAA receptors. We reported

that administration of the benzodiazepine clonazepam (CZP) during postnatal days 7–

11 resulted in permanent behavioral alterations. However, the mechanisms underlying

these changes are unknown. We hypothesized that early CZP exposure modifies

development of glutamatergic receptors and their composition due to the tight

developmental link between GABAergic functions and maturation of glutamatergic

signaling. These changes may alter excitatory synapses, as well as neuronal connectivity

and function of the neural network. We used quantitative real-time PCR and quantitative

autoradiography to examine changes in NMDA and AMPA receptor composition and

binding in response to CZP (1 mg/kg/day) administration for five consecutive days,

beginning on P7. Brains were collected 48 h, 1 week, or 60 days after treatment

cessation, and mRNA subunit expression was assessed in the hippocampus and

sensorimotor cortex. A separate group of animals was used to determine binding

to NMDA in different brain regions. Patterns of CZP-induced alterations in subunit

mRNA expression were dependent on brain structure, interval after CZP cessation,

and receptor subunit type. In the hippocampus, upregulation of GluN1, GluN3, and

GluR2 subunit mRNA was observed at the 48-h interval, and GluN2A and GluR1 mRNA

expression levels were higher 1 week after CZP cessation compared to controls, while

GluN2B was downregulated. CZP exposure increased GluN3 and GluR2 subunit mRNA

expression levels in the sensorimotor cortex 48 h after treatment cessation. GluA3 was

higher 1 week after the CZP exposure, and GluN2A and GluA4 mRNA were significantly

upregulated 2 months later. Expression of other subunits was not significantly different

from that of the controls. NMDA receptor binding increased 1 week after the end of

exposure in most hippocampal and cortical areas, including the sensorimotor cortex at

the 48-h interval. CZP exposure decreased NMDA receptor binding in most evaluated

hippocampal and cortical areas 2 months after the end of administration. Overall, early

CZP exposure likely results in long-term glutamatergic receptor modulation that may

affect synaptic development and function, potentially causing behavioral impairment.
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INTRODUCTION

Since the introduction of benzodiazepines (BZDs) into clinical
practice, these drugs have been among the most frequently
used, and their stable efficacy throughout development has been
documented in both clinical and preclinical studies (for rev.,
Farrell, 1986; Kubová et al., 1993). BZDs are used for a wide
variety of medical indications in all patient age groups, including
newborns because these agents exhibit distinct anticonvulsant,
sedative, anxiolytic, hypnotic, and myorelaxant effects (Rennie
and Boylan, 2003). The effects of early BZD exposure on brain
development are of great concern due to use of these agents
in pediatric patients. Studies in rodents demonstrated that
BZD exposure during brain development resulted in persistent
modification of brain function, behavioral alterations, and
cognitive deficits (for review Gai and Grimm, 1982; Tucker, 1985;
Kellogg, 1988). Enduring behavioral, biochemical, and molecular
effects in response to early BZD exposure also occurs when
these drugs are administered after neuronal differentiation but
before complete maturation of the central nervous system, that
is, during the first 3 weeks of life in rats (Avishai-Eliner et al.,
2002).

The effects of BZDs are mediated via interaction with the
BZD receptor-binding site, which modulates the efficacy of the
major inhibitory neurotransmitter, γ-aminobutyric acid (GABA),
on GABAA receptors. Long lasting increases of GABA-mediated
inhibition during chronic BZD administration triggers adaptive
processes that involve GABAergic and glutamatergic systems.
The impact of BZD exposure on the glutamatergic system
has been extensively studied in mature animals, and transient
changes associated with withdrawal phenomena and tolerance
development have been reported (for rev. Allison and Pratt, 2003;
Uusi-Oukari and Korpi, 2010).

Development of the GABAergic system is tightly associated
with NMDA and AMPA receptor development. GABA serves
as a major inhibitory neurotransmitter in the adult brain, but it
plays multiple roles during early development. GABA operates
as an excitatory neurotransmitter in neonatal neurons, and its
depolarizing effects gradually change to hyperpolarizing effects
with maturation of Cl− homeostasis systems (Ben-Ari et al.,
1997). However, previous studies suggest that GABA exerts
dual effects on immature neurons. In addition to its excitatory
depolarizing effects, GABA also exerts inhibitory shunting effects
that are observed in mature neurons (Staley and Mody, 1992;
Chen et al., 1996).

The switch in GABAergic effects from depolarizing to
hyperpolarizing parallels upregulation of NMDA and AMPA
receptor expression that occurs during the first postnatal week
(Ben-Ari et al., 1989). The subunit composition of NMDA
and AMPA receptors follows distinct developmental profiles
that determine the functional properties of these receptors
(Cull-Candy et al., 2001; Miyamoto et al., 2001). NMDA and
AMPA receptors are tetrameric receptors composed of multiple
subunits. NMDA receptors are composed of subunits that include
the obligatory GluN1 in combination with GluN2 (A-D) and
GluN3 (A-B) (Moriyoshi et al., 1991; Das et al., 1998; Hollmann,
1999). The various subunits of the NMDA receptor complex

undergo differential maturation during the first weeks of life in
rodents, resulting in divergent receptor functions. Brain levels
of GluN1 and GluN2A are lowest at birth and peak during
the second and third weeks of life (Riva et al., 1994; Zhong
et al., 1995; Liu et al., 2004). In contrast, GluN2B subunit levels
are high at birth and decrease with age. GluN3A levels are
high in newborns and decrease beginning on postnatal day 7
(P7) (Wenzel et al., 1997). AMPA receptors are composed of
subunits GluA1, GluA2, GluA3, and GluA4 (Sommer et al.,
1991; Hollmann and Heinemann, 1994). AMPA receptor subunit
composition is crucial for their conductance, trafficking, and
calcium permeability. These properties are primarily dependent
on the presence or absence of the GluA2 subunit and its editing
(for rev. Henley and Wilkinson, 2016). AMPA receptors either
lacking the GluA2 subunit or containing its unedited form are
calcium permeable (Lawrence and Trussell, 2000). Expression
of GluA1, GluA2, and GluA3 begin to arise during the second
week, and GluA4 levels drop after the first week (Zhu et al.,
2000). Accurate orchestration of changes in the composition of
glutamate receptors during development is critical for synaptic
plasticity, the establishment of neuronal circuitry, and normal
development of brain function (for rev. Lohmann and Kessels,
2014).

Our previous study demonstrated that BZDs exhibit strong
anticonvulsant and anxiolytic effects in immature rats during
the first 2 weeks of life. Infantile rats also develop signs of BZD
withdrawal after very short exposures (Kubová and Mareš, 1989;
Mikulecká et al., 2011; Kubová and Mareš, 2012), suggesting
the involvement of neuroadaptive processes in the glutamatergic
system.

The present study characterized the effects of short
BZD exposure during the first 2 weeks of postnatal life
on glutamatergic receptor development in rats. This study
investigated whether the previously reported withdrawal
phenomena after cessation of BZD exposure in infantile rats were
associated with changes in glutamatergic receptors similar to the
changes described in mature rats. Further, whether modulation
of the GABAergic system by BZDs during the developmental
period critical for proper formation of neuronal circuitry resulted
in permanent alterations of glutamatergic receptors was also
investigated. We used PCR to evaluate alterations in GluN1,
GluN2A, GluN2B, and GluN3A subunits of NMDA receptors
and GluA1, GluA2, GluA3, and GluA4 subunits of AMPA
receptors in the cortex and hippocampus in animals exposed
to clonazepam for five consecutive days beginning on P7. We
used autoradiography to evaluate binding of the noncompetitive
NMDA receptor antagonist MK-801 in several cortical (cingular,
frontoparietal, sensorimotor, temporal, piriform, and enthorinal
cortices) and hippocampal (the CA1, CA2, and CA3 areas
both dorsal and ventral and dentate gyrus of the hippocampus)
regions. In addition, binding was also assessed in the substantia
nigra, caudate putamen, and the periaqueductal gray. Animals
were examined 48 h, 1 week, and 2 months after CZP cessation.

We selected clonazepam (CZP) as our model BZD based on
our previous studies demonstrating its profound anticonvulsant
and anxiolytic effects in infantile rats (Kubová and Mareš, 1989;
Mikulecká et al., 2011) and resulting permanent alteration of
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cognitive functions and social behavior in exposed animals
(Mikulecká et al., 2014a,b).

MATERIALS AND METHODS

Experiments were performed in male Wistar albino rats (n = 90;
45 controls and 45 CZP-treated). The day of birth was considered
day zero (P0). Each litter consisted of 10 males randomly selected
at P5 from at least 2 l. Rats were housed in a controlled
environment (temperature 22 ± 1◦C, humidity 50–60%, lights
on 06:00–18:00 h) with free access to food and water. Animals
were weaned on P28. All procedures involving animals and their
care were performed in accordance with ARRIVE guidelines
https://www.nc3rs.org.uk/arrive-guidelines and in compliance
with national (Act No 246/1992 Coll.) and international laws
and policies (EU Directive 2010/63/EU) for animal experiments
and the National Institutes of Health Guide for the Care and
Use of Laboratory Animals (NIH Publications No. 8023, revised
1978). The Ethical Committee of the Czech Academy of Sciences
approved this experimental protocol (Approval No. 128/2013).

Pharmacological Treatment
CZP was suspended in physiological saline supplemented with
Tween 80 (1 mg/5 ml of saline and one drop of Tween 80)
and intraperitoneally injected at 1 mg/kg/day for five consecutive
days from P7–P11. At P7, animals in each litter were randomly
divided into either control (n = 5) or CZP animals (n = 5).
As previously reported, a single administration of the selected
dose of CZP produced anticonvulsant effects for greater than
24 h in immature rats subjected to the PTZ model (Kubová and
Mareš, 1989; Mikulecká et al., 2011). Control animals received
solvent instead of CZP. Pups were immediately returned to their
dams after injection. Separation from the mother during drug
administration never exceeded 20 min.

Body weight was monitored daily from P6 to P15. These data
were used to calculate relative body weight (body weight at P6 was
taken as 100%) to minimize the effects of variability in individual
groups. The difference in relative body weights between two
consecutive days was used as a measure of weight gain. In P18
and P60 groups, body weight of control and CZP animals was
compared prior to euthanasia.

Body temperature of pups was maintained at 32 ± 2◦C
during CZP administration using an electric heating pad
connected to a digital thermometer to compensate for
immature thermoregulatory functioning at this age (Conklin and
Heggeness, 1971).

Rats were euthanized via decapitation under ether anesthesia
48 h, 1 week, or 2 months after cessation of CZP administration,
and brains were rapidly removed and treated as described below.

Quantitative Real-Time RT–PCR
Hippocampi and sensorimotor cortices were immediately
dissected and homogenized in RNAzol RT (Molecular Research
Center). Total RNA was extracted using Direct-zolTM RNA
MiniPrep (Zymo Research) according to the manufacturer’s
instructions. Total RNA (1 µg) was converted to cDNA using

TABLE 1 | The list of TaqMan probes used in the study.

Ref. No Gene

symbol

Gene name

Rn00690933_m1 Pipa peptidylprolyl isomerase A, cyclophilin A

Rn00561341_m1 Grin2a glutamate receptor, ionotropic N-methyl

D-aspartate 2A

Rn00680474_m1 Grin2b glutamate receptor, ionotropic N-methyl

D-aspartate 2B

Rn01436034_m1 Grin1 glutamate receptor, ionotropic N-methyl

D-aspartate 1

Rn01448553_m1 Grin3a glutamate receptor, ionotropic N-methyl

D-aspartate 3A

Rn00709588_m1 Gria1 glutamate receptor, ionotropic AMPA 1

Rn01451960_m1 Gria2 glutamate receptor, ionotropic AMPA 2

Rn00583547_m1 Gria3 glutamate receptor, ionotropic, AMPA 3

Rn00568544_m1 Gria4 glutamate receptor, ionotropic, AMPA 4

the one-step SuperScript R© VILO cDNA Synthesis Kit and Master
Mix (Invitrogen) according to the manufacturer’s instructions.
Samples of cDNA (1 µl) were amplified in 20 µl of PCR
reaction mixture containing 5× HOT FIREPol R© Probe qPCR
Mix Plus (Baria) plus TaqMan probes (Life Technologies;
Table 1). All qPCR reactions were performed in triplicate in a
LightCycler R© 480 Instrument (Roche Life Science, Indianapolis,
IN, United States) using the following temperature profile: initial
denaturation at 95◦C for 15 min, followed by 60 cycles consisting
of denaturation at 95◦C for 18 s and annealing/elongation at 60◦C
for 60 s. The mean of the crossing point (Cp) obtained from
qPCR was normalized to the level of the housekeeping gene Ppia
(Cyclophilin A) and used for analysis of relative gene expression
by the 11CT method (Livak and Schmittgen, 2001). Briefly,
the threshold cycle (Ct) values for the housekeeping gene Ppia
generated from PCR reactions were subtracted from Ct values for
target genes (NMDARs and AMPAs), yielding 1Ct. The mean
1Ct values of control samples were subtracted from 1Ct values
of treated (CZP) samples to yield11Ct. The final value 2–11CT
represents relative fold changes. With this method, we obtained
a set of values for each group of control and treated animals.
Mean values of the controls were normalized to zero, and values
of CZP-treated animals were plotted as percent difference from
controls (i.e., zero). For statistics, all values for controls were
counted as percent distribution around the mean and compared
with treatment groups.

The reproducibility of assays was evaluated using calculation
of the coefficient of variation according to following formula:
%CV = σ/µ (σ = SD and µ = mean value). Chosen criterion was
% CV < 10.

Receptor Binding
Brains (five animals per treatment and interval group) were
rapidly frozen in pulverized dry ice and stored at −70◦C until
processing. Brains were sectioned in the coronal plane (20 mm),
and serial sections (1-of-5) through the entire brain were thaw-
mounted on gelatin-coated slides and stored at −70◦C. The set
of sections used for MK801 binding assessment contained three
microscopic glasses and each glass contained seven to eight brain
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sections taken from different anatomical regions: the first glass
contained sections from levels 3.0 to −0.8 relative to bregma,
the second glass from levels −0.8 to −4.5, and the third glass
sections from −4.5 to −6.5 relative to bregma (Paxinos and
Watson, 1986). Serial and parallel sections were produced from
each brain for subsequent autoradiography procedures. Brains of
CZP-treated and age-matched control rats were always examined
simultaneously.

Quantitative Autoradiography

Experiments were performed using previously described
procedures (Sakurai et al., 1991). Brain sections were removed
from the freezer, dried in a stream of cool air, and immediately
washed in 50 mM Tris-acetate buffer (pH 7.4, 23◦C) for 30 min
to remove endogenous ligands. Sections were incubated in
50-mM Tris-acetate buffer (pH 7.4, 23◦C) with 10 µM glycine
and 10 µM L-glutamate containing [3H]-MK-801 (10 nM;
specific activity 17.1 Ci/mmol) in the presence or absence of
10 mM nonlabeled MK-801. Specific binding was calculated as
the difference between values obtained from both experimental
conditions. Sections were incubated for 2 h at 4◦C, washed twice
in consecutive buffer solutions, and rinsed with distilled water for
2 s at 4◦C. Sections were quickly dried in a mild steam of cold air
and arranged in X-ray cassettes with 3H standards (Amersham)
followed by 12 weeks exposure to [3H]-sensitive film (Kodak
MR) at 22◦C. Each film allowed simultaneous exposure of 21
slides plus one standard, that is, each film included sections
from seven animals. Each film contained sections from CZP
animals and age matched controls. All slides were processed
in one autoradiography assay in order to avoid variability in
experimental conditions.

Film was developed at 18–20◦C using Kodak D19 developer
and fast fixer solutions. In every animal, optical density was
assessed as the mean of 10 measurements performed in at
least three parallel sections for each evaluated structure. Mean
value was calculated and used for statistical evaluation. Optical
densities were evaluated using JAVA Jandel image analysis
software. A standard curve was generated based on optical
density values of the standards, and the specific activity of
[3H]-MK-801 (17.1 Ci/mmol) and tissue thickness (20 µm)
were used to express radioactivity values as fmol/mg of
protein. Optical density readings of the standards were used
to construct a standard curve to determine tissue radioactivity
values for accompanying tissue sections (dpm/mm2). Tritium
standards were previously calibrated to brain homogenates with
known protein concentrations to allow transformation of gray
values into total binding. Subsequently, dpm/mm2 values were
converted to fmol/mg protein based on the specific activity of
[3H]-MK-801 (17.1 Ci/mmol) and tissue thickness (20 µm).

Statistics
Sample size was determined in advance based on previous
experience and following the principles of the three Rs
(Replacement, Reduction, and Refinement1). All efforts were
made to minimize the number of animals used and their

1https://www.nc3rs.org.uk/the-3rs

suffering. Simple randomization was used to assign each rat
to a particular treatment group prior to experimentation. Data
analyses were performed by those blinded to treatment. The ages
and time points for each group consisted of five to seven animals
for the binding study and 10 animals per group used for real-time
PCR. Total mRNA subunits are the sum of relative mRNA levels
of individual subunits for each time and experimental group
plotted as the % of controls. The ratio between GluN2A and
GluN2B was calculated from the sum of both subunits in each
time and experimental group.

Data were analyzed using GraphPad Prism 7 (GraphPad
Software, United States) software. Using the D’Agostino-Pearson
normality test, all data sets were first analyzed to determine
whether the values were derived from a Gaussian distribution.
Outliers were identified with the ROUT test (Q = 1%). Differences
between age-matched controls and CZP-treated animals were
analyzed using two-tailed unpaired t-tests, and a p-value < 0.05
was required for significance. Data are expressed as the
means ± SEM and plotted as % of controls.

RESULTS

Effect of CZP Administration on Growth
CZP-treated animals gained significantly less weight during
the first 4 days of CZP administration compared to controls
(Figure 1). Animals in the CZP group gained significantly more
weight than their littermates after the end of administration
(at P12 and P13), compensating for slower growth during
CZP administration. There was no difference in body weight
between controls and CZP-exposed animals at P18 (45.4 ± 1.1
vs. 44.2 ± 0.7; p = 0.3683) or P60 (404 ± 5.5 vs. 391.3 ± 6.6;
p = 0.2788).

Effect of CZP Administration on NMDA
Receptor Subunit Expression
Early CZP exposure caused short-term upregulation of GluN1,
GluN2A, and GluN3 subunit mRNA in the hippocampus
(Figures 2, 3). Total mRNA for all evaluated NMDA subunits
remained elevated for 1 week after the end of CZP exposure,
and increased expression was significant 48 h after cessation
of treatment (t = 2.541, df = 72; p = 0.0132). Expression of
GluN1 and GluN3 was significantly elevated 48 h after CZP
cessation (two-tailed unpaired t-tests t = 2.236, df = 16; p = 0.039
and t = 2.271, df = 15; 0.0383, respectively). GluN2A subunit
mRNA was overexpressed at the 1 week interval (two-tailed
unpaired t-tests t = 2.64; df = 17; p = 0.0172). At the same
interval, expression of GluN2B was lower in CZP-treated animals
compared to controls (t = 2.287 df = 16; p = 0.0362). This
difference in expression was associated with significant shift
of the GluN2A/GluN2B ratio (38% in controls and 50% in
CZP-exposed animals; t = 3.611, df = 20; p = 0.0017). Two
months after the end of CZP exposure, expression of NMDA
subunit mRNA in the hippocampus had normalized and was
not significantly different from control levels. In the cortex, total
mRNA expression for all evaluated NMDA subunits was elevated
48 h after CZP cessation (t = 3.249, df = 72; p = 0.0018) mostly
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FIGURE 1 | Relative daily weight gain between P7 and P14. Body weight at P6 was normalized to 100% and differences in relative body weight between two

consecutive days is presented (y-axis). The x-axis shows age. CZP (1 mg/kg/day) was administered for five consecutive days beginning at P7 (black line on the

x-axis). Data are presented as means ± SEM. Controls (empty circles) gained 10.5–18.1% of their body weight daily. CZP animals (red circles) gained significantly

less weight up to the fourth day of administration. Asterisks denote significant differences compared to controls. C, controls; CZP, clonazepam-treated animals.

due to significant up regulation of GluN3A subunit mRNAs
(t = 2.198, df = 18; p = 0.0413). At later points, expression of
mRNA NMDA subunits normalized, with the exception of the
GluN2A subunit, which continued to be overexpressed 2 months
after the end of CZP exposure (t = 3.038, df = 17; p = 0.0074)
(Figure 3).

Effect of CZP Administration on AMPA
Receptor Subunit Expression
In the hippocampus, early exposure to CZP resulted in transiently
increased total mRNA at 48 h (t = 2.941, df = 74; p = 0.0044)
mostly due to significant overexpression of the GluA2 subunit
(t = 2.206, df = 17; p = 0.0414) (Figures 2, 3). GluA1
subunit mRNA was overexpressed 1 week after CZP cessation
(t = 2.844, df = 16; p = 0.0117), and expression of both
mRNAs normalized, exhibiting no differences at 2 mo. No
differences were observed in expression of GluA3 and GluA4
subunit mRNA at any interval examined. In the cortex, GluA2
subunit mRNA was overexpressed at 48 h (t = 3.651, df = 18;
p = 0.0018) and GluA3 subunit mRNA at 1 week (t = 3.495,
df = 17; p = 0.0028) after the end of CZP exposure. Two months
after CZP cessation, total mRNA for all AMPA subunits was
elevated (t = 2.383, df = 76; p = 0.0197), primarily due to

overexpression of GluA4 subunit mRNA (t = 2.553, df = 18;
p = 0.02).

Effect of CZP Administration on NMDA
Receptor Binding
Patterns of NMDA ([3H] MK-801) receptor binding generally
paralleled changes in expression of NMDA receptor subunit
mRNAs. Binding was increased within 1 week after CZP cessation
in several brain areas (Table 1 and Figures 4, 5). At 48 h,
binding was significantly elevated in several cortical (cx) areas
(frontoparietal cx – t = 3.011, df = 11; p = 0.0119; sensorimotor
cx – t = 30374, df = 11; p = 0.0062 and in the temporal
cx – t = 2.516, df = 11; p = 0.0287), the amygdala (t = 2.746,
df = 11; p = 0.0190), thalamus (t = 2.768, df = 11; 0.0183),
caudate putamen (t = 2.323, df = 11; p = 0.0404), and in the
periaqueductal gray (t = 2.321, df = 11; p = 0.0405), whereas at
1 week, increased binding was detected in several areas of the
dorsal (CA2 – t = 2.700, df = 13; p = 0.0182; CA3 – t = 2.231,
df = 13; p = 0.0440) and ventral hippocampus (CA1 – t = 2.799,
df = 13; p = 0.0150; CA2 – t = 2.17, df = 13; p = 0.0492 and
CA3 – t = 2.653, df = 13; p = 0.0199). Two months after the end
of CZP exposure, NMDA receptor binding tended to be lower in
almost all evaluated brain regions. Decreases were significant in
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FIGURE 2 | Mean transcriptional levels of evaluated NMDA and AMPA receptor subunits in hippocampus and cortex at three intervals after CZP cessation. mRNA

levels were determined using quantitative RT-PCR, and values were converted to a percentage of the control values, which were considered baseline (zero) levels.

Mean percent changes in all evaluated subunits are presented (±SEM). Asterisks denote significant differences compared to controls.

several cortical areas (cingular cx – t = 2.585, df = 11; p = 0.0254,
frontoparietal cx – t = 2.61, df = 11; p = 0.0243, temporal cx –
t = 2.224, df = 11; p = 0.0480 and entorhinal cx – t = 2.954,
df = 11; p = 0.0131), the caudate putamen (t = 2.444, df = 11;
p = 0.0326), the CA1 area of the dorsal hippocampus (t = 2.777,
df = 10; p = 0.0195), and in the periaqueductal gray (t = 2.298,
df = 11; p = 0.0422).

[3H] MK-801 receptor binding in fmol/mg protein is
presented in Supplementary Table S1.

DISCUSSION

Our data demonstrate that exposure to clonazepam during
early stages of postnatal development affects NMDA and AMPA
receptors both shortly after the end of administration and
in the long term. The exact pattern of change depended on
the individual receptor subunit, brain structure, and interval
after CZP discontinuation. The most pronounced effects were
observed within 1 week after CZP cessation in both the
hippocampus and cortex. Two days after the end of CZP

administration, NMDA receptor subunit mRNAs were elevated
in both the hippocampus and cortex, primarily due to GluN3A
overexpression. Increased AMPA subunit mRNAs seen in the
hippocampus were primarily due to GluA2 mRNA upregulation.
The period after abrupt discontinuation of BZD administration
is often associated with development of withdrawal symptoms
(Michelini et al., 1996; Tobias, 2000, 2005), which present serious
treatment complications in both adults and children (Lader,
2014). Despite their clinical importance, withdrawal phenomena,
as well as their mechanisms and consequences are only rarely
studied in developing animals. We previously reported a rebound
increase in seizure susceptibility after both repeated (Kubová and
Mareš, 2012) and single (Kubová and Mareš, 1989; Mikulecká
et al., 2011) BZD administration in both P7 and P12 rats. These
data suggest that the immature brain may be more prone to
development of BZD withdrawal phenomena than the adult
brain.

Previously published studies on mechanisms underlying
dependence and tolerance to benzodiazepines have demonstrated
that BZD-induced inhibition is counteracted by modification
of the glutamatergic system (for rev. Allison and Pratt,
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FIGURE 3 | Transcriptional levels of NMDA and AMPA receptor subunits in hippocampus and cortex at three intervals after CZP cessation. mRNA levels were

determined using quantitative RT-PCR and values were converted to a percentage of the control values, which were considered as baseline (zero) levels. Data are

presented as means ± SEM. Asterisks denote significant differences compared to controls.

2003; Korpi et al., 2015) and that chronic administration
of BZDs regulates expression of NMDA and AMPA in
adult animals. Moreover, juvenile brains responded to BZD
exposure with changes in expression of these receptors, but
the profile of changes was partially different. Whereas in adult
cerebral cortex BZD withdrawal resulted in overexpression
of GluN1, GluN2B (Tsuda et al., 1999), and GluA1 (Izzo
et al., 2001), in the juvenile cortex expression of GluN2B,
GluN3A, GluA2, and GluA3 was upregulated 1 week after
CZP cessation. Interestingly, response to early CZP exposure
was substantially stronger in the juvenile hippocampus and
partially different than in the cortex. Within 1 week after
CZP cessation, GluN1, GluN3A, and GluN2A subunits were
concomitantly upregulated, whereas GluN2B subunit expression

was downregulated. In the hippocampus of adult rats, chronic
diazepam resulted in upregulation of both GluN1 and GluN2B
subunit mRNAs (Pérez et al., 2003). Overexpression of GluA1
subunit seen in juvenile hippocampus is in agreement with
studies in adult rats showing that increased AMPA receptor
function in hippocampal CA1 neurons is attributed to the
GluA1 subunit (Van Sickle et al., 2004; Xiang and Tietz,
2007; Das et al., 2008). GluA2 subunit was upregulated in
the hippocampus of juveniles but not in animals exposed
to chronic BZD as adults. Differences in effects of chronic
BZD exposure on NMDA and AMPA receptor subunit
expression between adult and juvenile animals is difficult to
interpret, but most likely, developmental changes in receptor
composition and function are playing important roles in these
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FIGURE 4 | Relative changes in [3H]-M-K801 binding to NMDA receptors

(means ± SEM). Binding in control animals is considered as baseline (zero)

level. On the top: hippocampal structures; in the middle: cortical structures;

on the bottom: (amygdala (AMG), thalamus (thal), caudate putamen (CPU),

substantia nigra (SN), and periaqueductal gray (PAG). [3H]-MK-801 binding

was assessed at three different intervals (48 h, 1 week, and 2 months –

legend on the top) after CZP cessation. DG, dentate gyrus of the

hippocampus; CA, CA1 subfield of the hippocampus (d – dorsal, v – ventral);

CA3, CA3 subfield of the hippocampus (d – dorsal, v – ventral); CgC,

cingulate cortex; FrPc, frontoparietal cortex; SMC, sensorimotor cortex; TeC,

temporal cortex; PirC, piriform cortex; EctC, entorhinal cortex.

differential molecular responses. Discrepancies in experimental
design could also substantially affect results of individual
studies.

In line with a study by Tsuda et al. (1998), CZP withdrawal
was associated with transient increase of [3H]-MK-801binding
in most brain areas. Changes in NMDA receptor binding
were generally in agreement with upregulated NMDA subunit
mRNA expression. Small differences between subunit mRNA and
subsequent protein expression might be explained by alterations
in transcriptional and translational regulation and possible
widespread uncoupling between these two processes (Tebaldi
et al., 2012). In addition, changes in subunit composition can
substantially affect NMDA binging because NMDA receptors
containing GluN3 subunits exhibit reduced sensitivity to MK801
(Chatterton et al., 2002).

While in adult brain, response to drug challenge returns to
original baseline, in juvenile rat brain, drug-induced changes
may be incorporated as a permanent developmental alteration
of the system (for rev. Andersen and Navalta, 2004). In our

FIGURE 5 | Autoradiograms illustrate the distribution of binding to NMDA

receptors labeled with [3H]-MK-801 in brain sections from the dorsal

hippocampus (–3.3 mm relative to bregma according to Paxinos and Watson,

1986; left panels) and striatum (0.2 mm relative to bregma according to

Paxinos and Watson, 1986; right panels) of rats treated with vehicle (C) or

clonazepam (CZP), at 1 week (1 w) and 2 months (2 mo) posttreatment. High

binding appears as black areas. Compared to controls, animals exposed to

CZP exhibited increased [3H]-MK-801 binding in the hippocampus 1 week

after CZP cessation, whereas 2 months later, binding was lover in the

cingulate and frontal cortex and caudate putamen.

study, animals were exposed to CZP and subsequent CZP
withdrawal during a highly vulnerable period of development.
In rodents, the first 4 weeks of life represent a period of
growth spurt and increased synaptic plasticity (Dobbing and
Smart, 1974; Semple et al., 2013; Lohmann and Kessels, 2014) to
create synaptic networks and to properly process environmental
stimuli. Synaptic plasticity is particularly driven by chemical
neurotransmission with glutamate as a key player (for rev.
Lohmann and Kessels, 2014). Glutamatergic pathways undergo
striking developmental changes typified by a sequence of changes
in composition of both NMDA and AMPA receptors (for
rev. Herlenius and Lagercrantz, 2004; Lohmann and Kessels,
2014). Receptor composition determines the function of these
receptors and their role in synaptic formation and stabilization
(Alvarez et al., 2007). Thus, even transient changes in receptor
structure can permanently alter neuronal networks and their
functions.

Early in development, expression of GluN1 and GluN2A
subunits is low and increases during maturation, whereas
GluN2B is highly expressed in the first 2 weeks of life
and decreases thereafter (Watanabe et al., 1992; Monyer
et al., 1994; Sans et al., 2000). In the hippocampus of CZP
exposed animals, expression of GluN1 and GluN2A subunits
was upregulated, while GluN2B subunit was concomitantly
downregulated, resembling more mature receptor structures.
Such a shift may result in reduced ability to undergo synaptic
plasticity because GluN2Bs have higher affinity for glutamate
(Laurie and Seeburg, 1994) and traffic more rapidly than
do GluN2As (Groc et al., 2006). In addition, expression of
GluN2A in immature cortex shortens NMDA receptor currents
(Flint et al., 1997). Function of NMDA receptors in animals
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exposed to CZP are further influenced by overexpression
of GluN3A that was observed in both the hippocampus
and cortex 48 h after the end of treatment. The GluN3A
subunit is prominently expressed during a narrow window
of intense synaptogenesis during the second and third weeks
(Pérez-Otaño et al., 2016). The presence of this subunit
decreases Ca2+ permeability and sensitivity to Mg2+ (Kehoe
et al., 2013) and glutamate (Chatterton et al., 2002; Yao and
Mayer, 2006). As previously demonstrated, GluN3A mediates
some neuroprotective properties, likely by preventing Ca2+

influx (Wang et al., 2013). Changes in NMDA receptor
subunit expression seen after CZP cessation resemble protective
mechanisms and may prevent overexcitation associated with
BZD withdrawal and protect immature neurons from damage.
On the other hand, exposure to BZDs and consequent
changes in receptor structure can alter synaptic plasticity and
disrupt synaptic development (Forcelli et al., 2012). GluN3A
overexpression has been found to decrease spine density and
attenuate LTP induction in the hippocampus (Roberts et al.,
2009). In contrast, deletion of this subunit increased spine
density (Das et al., 1998). Overexpression of the GluN3A
subunit therefore affects formation or elimination of specific
synaptic populations that are formed during the second and
third weeks of life and modify development of neuronal
circuits.

In addition to prominent changes in NMDA receptor
subunit expression, CZP exposure resulted in upregulation of
GluA2 subunit in both the hippocampus and cortex. Early
in development, GluA2 expression is relatively low, and the
mRNA remains unedited, even when expressed. AMPA receptors
lacking GluA2 or containing unedited GluA2 subunit are calcium
permeable. Thus, many AMPA receptors in the immature brain
are Ca2+ permeable (Kumar et al., 2002; Eybalin et al., 2004; Talos
et al., 2006; Brill and Huguenard, 2008).

Early CZP exposure also resulted in long-term alteration
of AMPA and NMDA receptors. GluA4 subunit, which is
normally tightly developmentally regulated and it is sparse
in the adult brain (Zhu et al., 2000), was upregulated in the
cortex. Upregulation of GluR4 expression was previously
reported in adult animals exposed to morphine and was
associated with increased Ca2+ permeability (Cabañero et al.,
2013). Interestingly, GluA4 containing AMPA receptors
mediate fast EPSPs in parvalbumin-containing GABAergic
interneurons in the adult brain (Geiger et al., 1997). These
neurons play important roles in the regulation of plasticity
and learning, and alteration of their function is associated
with many neuropsychiatric diseases (for rev. Hu et al.,
2014).

At the 2 month interval, [3H]-MK-801 binding was decreased
in several brain regions, including the ventral hippocampus,
caudate-putamen, periaqueductal gray, temporal lobe cortices
(cingulate, temporal and entorhinal cortex), and prefrontal
cortex. These structures are part of neuronal networks associated
with emotional behavior, anxiety, and cognitive functions (for
rev. Fyhn et al., 2004; White, 2009; Fanselow and Dong, 2010;
Panksepp, 2011; Benarroch, 2012), and both emotional behavior
and cognitive function are impaired in animals exposed to

BZDs early in life (File, 1986a,b,c, 1987; Schroeder et al.,
1997; Mikulecká et al., 2014a,b). What molecular and cellular
mechanisms are responsible for these functional alterations and
what the exact role NMDA receptors play therein remains to be
clarified.

CONCLUSION

In conclusion, our study suggests that relatively short exposure
to CZP during early postnatal stages of development results in
substantial expression changes in NMDA and AMPA receptor
subunit mRNAs and [3H]-MK-801 binding, both shortly after
treatment cessation and over the long term. How these changes
affect synaptic plasticity and their impact on these early
changes in development of neuronal networks warrants further
investigation. We suggest that the changes described in this
study may be involved in the development of withdrawal
signs after BZD cessation in the immature brain. Together
with increased apoptosis (Ikonomidou et al., 2001; Bittigau
et al., 2002; Jevtovic-Todorovic et al., 2003) and suppressed
neurogenesis (Chen et al., 2009) previously described in
immature animals exposed to BZDs, changes in the glutamatergic
system participate in behavioral alterations observed later in
life.
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