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Abstract

Brown-Norway (BN) rats are highly susceptible to drug-induced immune dysregulations and when
injected with mercuric chloride (HgCl2) or sodium aurothiopropanolsulfonate (ATPS), they develop
a syndrome characterized by a polyclonal B cell activation depending upon CD4� Th2 cells that
recognize self-MHC class II molecules. Since peripheral tolerance of Th2 cells might be crucial in
the prevention of immunological manifestations such as allergy, establishing conditions for
inducing tolerance to HgCl2- or ATPS-mediated immune manifestations appeared to be of large
interest. We report here that BN rats neonatally injected with HgCl2: (i) do not develop the mercury
disease, (ii) remain resistant to HgCl2-induced autoimmunity at 8 weeks of age and later, provided
they are regularly exposed to HgCl2, (iii) are still susceptible to ATPS-induced immune
manifestations, and (iv) exhibit spleen cells that adoptively transfer tolerance to HgCl2-induced
autoimmunity in naive, slightly irradiated, syngeneic recipients. These findings demonstrate that
dominant specific tolerance can be neonatally induced using a chemical otherwise responsible for
Th2-mediated autoimmunity.

Introduction

For a long time the neonatal period has been thought to be diseases. They play a role in EAE in immunocompromised
mice (15), in lupus syndrome developed in B/W mice (16,17)a privileged period to manipulate the immune system, and

particularly to tolerize against self and non-self antigens (1). and in allogeneic reactions (18). Moreover, Th2 cells were
first accepted as not susceptible to tolerization (19,20) andRevisiting neonatal tolerance, recent papers have demon-

strated that regarding the tolerance induction, the neonatal even though induction of peripheral tolerance of Th2 cells is
no longer controversial (21), a tolerant state appears moreperiod is rather quantitatively different from the later stages

of development (2–4). difficult to achieve in Th2 than in Th1 cells (22). For example,
injections of parental spleen cells in F1 neonates lead toThree non-mutually exclusive mechanisms have been pos-

ited to account for acquired unresponsiveness of T cells: tolerance of Th1 cells, whereas Th2 cells escape this phenom-
enon and induce autoimmunity (23,24).clonal deletion, clonal anergy and active suppression (5). In

this latter case, tolerance was shown to be restored or Mercury- or gold-induced autoimmune disorders in the
Brown-Norway (BN) strain of rats represent another examplebroken by passive transfer or depletion of regulatory T cells

respectively (6). of Th2-mediated autoimmunity. Indeed BN rats injected with
mercuric chloride (HgCl2) or sodium aurothiopropanol-Most autoimmune disorders, either organ-specific, such as

experimental allergic encephalomyelitis (EAE), or systemic, sulfonate (ATPS) develop a similar lupus-like syndrome
with lymphoproliferation (25–27), hypergammaglobulinemiasuch as the MRL/lpr lupus model, depend upon Th1 cells

(7–9). Induction of tolerance has been well established in affecting mainly IgE and IgGl (28), production of numerous
autoantibodies (against laminin, DNA, type II and IV collagen,these autoimmune conditions by either intra-thymic injection

(10–12) or by oral administration of the corresponding auto- and thyroglobulin) (26,29–31), and an autoimmune glomerulo-
nephritis due to the deposition of anti-laminin antibodies (32–antigen with regulatory T cells being generated (13) or by

passive transfer of regulatory T cells (14). By contrast, Th2 cells 34). All the immune disorders autoregulate and thereafter
animals are relatively resistant to rechallenge with HgCl2appear to be much less frequently involved in autoimmune
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Table 1. Effect of HgCl2 administration in BN neonates(35,36). In humans, mercury and gold salts are also associated
with the occurrence of various immune-mediated manifesta-

Neonatal n IgE Anti-laminin Glomerulartions (37) and thus make the animal models valuable to study
injectionsa concentration antibody titer Ig depositsthe role of environmental factors in the development of

(µg/ml) (AU)b
systemic autoimmunity.

For both mercury- and gold-induced immune disorders, H2O 9 1.4 � 0.6 1.3 � 0.1 –
HgCl2 9 2.3 � 0.5 1.6 � 0.1c –previous studies pointed to the pivotal role of autoreactive

CD4� T cells that proliferate in the presence of naive
aNeonates received six injections of H2O or HgCl2 starting withinsyngeneic MHC class II� cells (34,38,39) and induce a

24 h after birth and were sacrificed at 2 weeks of age.
polyclonal B cell activation (26,34). These CD4� T cells bExpressed as percent of maximum binding activity of a serum
belong to the Th2 subset (18) and Th2 cell lines derived from reference.

cNot significant using the Student’s t-test when compared to H2O-gold salt-injected rats were demonstrated to transfer the whole
injected neonates.autoimmune syndrome in naive, CD8-depleted recipients (40).

Taking advantage of this strong mediation by the Th2 subset
(34,40–43), we investigated, in this study, the conditions to
induce a solid tolerance to Th2-mediated autoimmunity. We Twenty-four hours after adoptive transfer, irradiated BN rats

were exposed to 50 µg/100 g body wt of HgCl2 3 times ashow that neonatal injections of HgCl2 in BN rats establish
a solid metal-specific tolerance to HgCl2-induced immune week as described (33).
manifestations. Moreover, transfer of spleen cells from animals

Proteinuria and renal immunofluorescence studiesneonatally exposed to HgCl2 is shown to protect syngeneic
naive rats against mercury disease, therefore suggesting a Proteinuria was assessed once a week using the biuret

method and was considered as abnormal when exceedingrole for an active suppressive mechanism.
20 mg/24 h (33). Open wedge kidney biopsy was performed
in 8- to 12-week-old rats on day 15 of the second set of

Methods injections. Kidneys were obtained after killing of 2-week-old
rats on day 15 of the first set of injections or of 8- to 12-week-Animals
old rats on day 30 of the second set of injections. Kidney

BN rats, originating from the CSEAL (Orléans, La Source, cryostat sections were stained with a fluoresceinated sheep
France), were bred in our own animal facilities. Animals were antibody to rat Ig as previously described (33).
weaned at 3 weeks of age, and were cared for and handled

Detection of anti-laminin and anti-DNA antibodies in serumaccording to the principles expressed in the Declaration of
Helsinki on the use of animals in research. Neonates and 2- Individual serum titers of antibodies to laminin and DNA were
to 9-month-old female and male rats were used in the following measured by ELISA as already described (44,45). Results
experiments. were expressed as percent of maximum binding activity of

a standard pool of sera originated from BN rats injected
Experimental procedure with HgCl2.
BN rats were s.c. injected with HgCl2 3 times a week for

Quantification of serum IgE concentration2 weeks at a dose of 100 µg/100 g body wt (33) starting
within 24 h after birth. Control rats received the same volume Individual serum IgE concentrations were determined by a
of distilled water adjusted to the same pH (3.8) as the HgCl2 sandwich ELISA as follows. Microtiter plates (Maxi-Sorp;
solution, following the same schedule as for HgCl2 injections. Nunc, Rocksilde, Denmark) were coated with 100 µl of the
At 8–12 weeks of age, several BN rats received a second set mouse monoclonal MARE antibody to the rat ε chain (Immex,
of injections of either HgCl2 or H2O as above, or of ATPS at Brussels, Belgium), diluted to 5 µg/ml in PBS containing
a dose of 2 mg/100 g body wt 3 times a week for 8 weeks, 0.01% NaN3 for 90 min at 37°C and overnight at 4°C. Rat
as already described (34). serum samples were diluted in PBS buffer containing 0.1%

gelatine and 0.01% Tween 20 (PBS gel Tw) and incubated
Experimental groups for 2 h at 37°C. Mouse monoclonal MARK-1 antibody to the
BN rats were neonatally injected with HgCl2 (Hg rats) or H2O rat κ chain labeled with horseradish peroxidase (HRP) (a gift
rats) (first set of injections). Rats from each of these two from H. Bazin, Brussels, Belgium) was used as a second
groups were either sacrificed at 2 weeks of age or were antibody, diluted 1:6 000 in PBS gel Tw and incubated for 1 h
injected, at 8–12 weeks of age, with HgCl2 (Hg-Hg or H2O- at 37°C; bound HRP activity was revealed as described (44)
Hg rats) or H2O (Hg-H2O or H2O-H2O rats) or ATPS (Hg-ATPS and absorbance at 490 nm was determined with a microplate
or H2O-ATPS rats) (second set of injections). In another set ELISA reader (MR610; Dynatech, Alexandria, VA). Results
of experiments, BN rats neonatally injected with HgCl2 were were expressed by comparison to a standard pool of BN rat
re-exposed to HgCl2 either at 2, 4, 6 or 9 months of age. sera containing known amounts of rat IgE.

Transfer experiments Statistical analysis

Comparisons between the different groups of rats were per-Spleen cells obtained from 2- to 4-month-old BN rats neo-
natally injected with HgCl2 or H2O were i.v. transferred into formed using unpaired Student’s t-test or Fisher’s test as post-

hoc procedure after ANOVA.137Cs γ-irradiated (200 rad) BN rats of 8–12 weeks of age.
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Fig. 1. BN rats neonatally injected with HgCl2 are resistant to mercury disease under HgCl2 exposure at 8–12 weeks of age. BN rats, when
neonates, were injected with H2O or HgCl2 and then, when 8–12 weeks old (adults), were exposed to H2O or HgCl2 (see Methods). Serum
IgE concentration (A), circulating anti-DNA (B) and anti-laminin (C) antibody titers were measured using specific ELISA, and proteinuria (D)
was measured using the biuret method. Data represent peak values obtained during the second set of injections, i.e. in adult rats, and are
expressed as the mean � SD from 11–16 rats. Statistical analysis for Hg-Hg rats versus H2O-Hg rats: **P�0.01 and ***P�0.001.

Results tion of antibodies to DNA (Fig. 1B) and to laminin (Fig. 1C).
As previously described, these manifestations peaked on day

Neonatal injections of HgCl2 make BN rats tolerant to HgCl2- 15, then declined and were no longer observed in the third
induced autoimmunity month of HgCl2 administration (not shown). Moreover, on day
Neonatally HgCl2-injected BN rats sacrificed at 2 weeks of 15 all these H2O-Hg rats displayed typical linear IgG deposits
age, i.e. after six injections of HgCl2, exhibited similar very along the glomerular capillary wall (Fig. 2a), whereas at the
low levels of circulating IgE and antibodies to laminin as time of sacrifice, by the end of the second month of HgCl2
neonatally H2O-injected BN rats sacrificed at 2 weeks of age. administration, glomerular IgG deposits were distributed in a
Moreover, in both groups renal glomeruli were free of IgG granular pattern along the capillary walls (Fig. 2b) and in the
deposits (Table I). arteriolar walls. Finally, all of the H2O-Hg rats developed

Neonatally H2O-injected BN rats exposed to HgCl2 at 8–12 proteinuria (Fig. 1D).
weeks of age (H2O-Hg rats) exhibited the typical HgCl2- In sharp contrast, neonatally HgGl2-injected BN rats
induced manifestations including a dramatic increase in exposed to HgCl2 at 8–12 weeks of age (Hg-Hg rats) had

similar circulating anti-DNA (Fig. 1B) and anti-laminin (Fig. 1C)serum IgE concentration (Fig. 1A) associated with the produc-
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Fig. 2. Immunofluorescence studies. BN rats, when neonates, were injected with H2O or HgCl2 and then, when 8–12 weeks old (adults), were
exposed to H2O or HgCl2 (see Methods). Kidney cryostat sections were stained with FITC-labeled sheep anti-rat IgG antibodies. In H2O-Hg
rats (n � 16), on day 15 of HgCl2 exposure (a; original magnification �250), IgG deposits are observed along the glomerular capillary walls
in a linear pattern, and on day 60 of HgCl2 exposure (b; original magnification �250), in a granular pattern along the glomerular capillary
walls and in the arteriolar walls (arrow). In contrast, in Hg-Hg rats (n � 11), only on day 60 of HgCl2 exposure (c; original magnification �160)
very light granular IgG deposits are disseminated within the mesangium and (d; original magnification �250) granular IgG deposits are seen
mainly in arteriolar walls. No staining is ever seen either in H2O–H2O rats (n � 14) (2; original magnification �160) or in Hg–H2O rats (n � 12)
(f; original magnification �160).

antibody titers as Hg-H2O or H2O-H2O control rats on day 15 sacrifice (8 weeks after starting the second set of HgCl2
injections). No renal staining was ever observed either in(Fig. 1B and C) or at any time thereafter (not shown). In

Hg-Hg rats serum IgE concentration significantly increased H2O-H2O or Hg-H2O rats (Fig. 2e and f).
(P�0.05) during the second week of HgCl2 exposure as

Neonatally HgCl2-induced tolerance is transient and depend-compared to H2O-H2O rats and then plateaued (48 � 24
ent upon the presence of HgCl2versus 11 � 4 µg/ml), but this increase was much lower

(P�0.001) as compared to H2O-Hg rats (48 � 24 versus BN rats neonatally injected with HgCl2 received a second set
of HgCl2 injections at 2, 4, 6 or 9 months of age (Hg-Hg rats).5420 � 3050 µg/ml). Moreover, none of the Hg-Hg rats

developed proteinuria (Fig. 1D); they only displayed scarce As shown in Fig. 3, as compared to control BN rats that
received only one set of HgCl2 injections at 2 months ofIgG deposits in the mesangial areas (Fig. 2c) and granular

IgG deposits in the arteriolar walls (Fig. 2d) at the time of age, in Hg-Hg rats, serum IgE concentration (Fig. 3A) and
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Fig. 3. Neonatally induced tolerance to mercury disease is transient and depends upon the presence of HgCl2. BN rats received a first set of
HgCl2 injections when neonates and a second set either at 2, 4, 6 or 9 months of age (Hg-Hg rats, n � 3–9) or every 2 months starting at 2
months of age (Hg-nHg rats, n � 5). Serum IgE concentration (A) circulating anti-DNA (B) and anti-laminin (C) antibody titers were determined
by specific ELISA. Data represent peak values obtained during the last set of HgCl2 injections as compared to data obtained from rats
exposed once to HgCl2 at 2 months of age (control rats, n � 3). Statistical analysis for Hg-Hg rats versus control rats: *P�0.05, **P�0.01 and
***P�0.001. Statistical analysis for Hg-nHg rats versus Hg-Hg rats exposed again to HgCl2 at 2 months of age: non significant.

circulating anti-DNA (Fig. 3B) antibody titers were lower but BN rats neonatally injected with HgCl2 are still susceptible to
gold salt-induced immune manifestationsgradually increased with time. Moreover, in Hg-Hg rats,

circulating anti-laminin antibody titers were significantly lower In susceptible BN rats, HgCl2 and gold salts induce similar
in rats of 2 months of age, but no significant difference was immune manifestations characterized by polyclonal B cell
observed in rats of 4, 6 or 9 months of age as compared to activation depending upon autoreactive Th2 cells specific for
control rats (Fig. 3C). These data indicate that the tolerant MHC class II molecules (18,40,,42). To address the specificity
state to the mercury disease is transient. However, in rats of the heavy metal-induced effects, gold salts were adminis-
neonatally injected with HgCl2 and then receiving a second tered in BN rats neonatally exposed to HgCl2. As shown in
set of HgCl2 injections every 2 months (Hg-nHg rats), the Fig. 4, BN rats neonatally injected with H2O and exposed at
tolerant state to the mercury disease was sustained (Fig. 8–12 weeks of age to ATPS (34) (H2O-ATPS rats) behaved

like unmanipulated BN rats and exhibited an increase in3A–C).
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Fig. 4. The tolerance is drug specific. BN rats, when neonates, were injected with H2O or HgCl2 and then, when 8–12 weeks old (adult), were
exposed to H2O or ATPS (see Methods). Serum IgE concentration (A), circulating anti-DNA (B) and anti-laminin (C) antibody were measured
using specific ELISA, and proteinuria (D) was measured using the biuret method. Data represent peak values obtained during the second set
of injections, i.e. in adult rats, either on day 14 or 21 of ATPS exposure, and are expressed as the mean � SD from 5–14 rats. Statistical
analysis for HgCl2-ATPS rats versus H2O-ATPS rats: *P�0.05 and **P�0.01.

serum IgE level (Fig. 4A), and in circulating antibodies to with granular IgG deposits in arteriolar walls (Fig. 5b); more-
over, Hg-ATPS rats developed a proteinuria significantlyDNA (Fig. 4B) and to laminin (Fig. 4C). They also demonstrated

glomerular linear IgG deposits (Fig. 5a) associated with (P�0.05) higher than H2O-ATPS rats (Fig. 4D).
proteinuria (Fig. 4D). Interestingly, BN rats neonatally injected

Tolerance to mercury-induced autoimmunity can be adoptivelywith HgCl2 and administered with ATPS at 8–12 weeks of
transferredage (Hg-ATPS rats) demonstrated ATPS-induced immune

manifestations characterized by a closely similar increase in Lightly irradiated BN rats, that have received spleen cells
originated from naive BN rats and then have been exposedserum IgE concentration (Fig. 4A) and the same titer of anti-

laminin antibodies (Fig. 4C) as those of H2O-ATPS rats. The to HgCl2 (control rats), exhibited an increase in serum IgE
concentration that peaked at 3180 � 2600 µg/ml (Fig. 6A),titers of circulating anti-DNA antibodies were even significantly

(P�0.01) higher in Hg-ATPS than in H2O-ATPS rats (Fig. 4B). and developed anti-laminin and anti-DNA antibodies whose
concentration peaked at 59.3 � 32.8 and 36.5 � 17.7 AUIn the Hg-ATPS rats, glomerular IgG deposits were distributed

in the same linear pattern as in H2O-ATPS rats and associated respectively (Fig. 6C and B).
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deposits were distributed in a typical granular pattern along
the capillary walls and in the arteriolar walls (not shown).

Discussion

Susceptible BN rats exposed to HgCl2 or ATPS develop a
similar Th2-mediated, systemic autoimmune disease, due to
the emergence of autoreactive Th2 cells that recognize MHC
class II molecules. In the present study we demonstrate that:
(i) neonatal injections of HgCl2 do not induce the mercury
disease in 2-week-old BN neonates and induce immunological
tolerance since mercury-induced immunopathological mani-
festations are abrogated, or profoundly reduced, when these
rats are challenged with HgCl2 at 8 weeks of age; (ii)
this tolerance is mercury specific because gold-induced
immunopathological manifestations are still observed in
HgCl2-tolerant rats; (iii) this tolerance is transient but can be
sustained providing regular exposure to HgCl2; and (iv) this
tolerance is dominant since it is adoptively transferable into
syngeneic animals by spleen cells from tolerant rats.

To the best of our knowledge, induction of tolerance to a
Th2-mediated autoimmune model, following neonatal injection
of a chemical, has not been previously reported. In mice as
well as in rats, we and others demonstrated that injection of
F1 spleen cells into neonates of one parental strain results in
transplantation tolerance due to the tolerance of Th1 cells. In
contrast, neonate Th2 cells that recognize allogeneic MHC
class II molecules are present and responsible for B cell
polyclonal activation and systemic autoimmunity (23,24,46–
48). These results and those from other experimental systems
indicate that tolerance is much more difficult to achieve in

Fig. 5. Immunofluorescence studies. BN rats, when neonates, were Th2 than in Th1 cells (19,22). In that respect, it is noteworthyinjected with H2O or HgCl2 and then, when 8–12 weeks old (adults),
that HgCl2 exposure through oral or respiratory routes notwere exposed to H2O or ATPS (see Methods). Kidney cryostat
only does not induce tolerance, in contrast to what has beensections were stained with FITC-labeled sheep anti-rat IgG antibodies.

In H2O-ATPS rats (n � 8) (a; original magnification � 250) linear observed in several Th1-mediated autoimmune diseases (13),
staining along the glomerular capillary walls is observed; in HgCl2- but leads to systemic autoimmunity (49). However, it has
ATPS rats (n � 5) (b; original magnification �250). IgG deposits are

been shown that individuals allergic to bee venom can beobserved in a linear pattern along the glomerular capillary walls and
desensitized following exposure to tolerogenic amounts ofin a granular pattern in the arteriolar walls (arrow). No staining is ever

seen either in H2O-H2O rats (n � 14) (c; original magnification �160) the relevant antigen phospholipase A2 (50) and the tolerance
or in Hg-H2O rats (n � 12) (d; original magnification �160). thus obtained is mediated by IL-10 producing cells that are

reminiscent of Tr1 cells (51).
The fine specificity of T cells involved in the HgCl2- and

ATPS-induced models of systemic autoimmunity is stillLightly irradiated BN rats that had received spleen cells
originating from BN rats neonatally exposed to HgCl2 and unsolved. Our previous data, in both models, indicate that

T cells are generated that recognize self-MHC class II molec-then been exposed to HgCl2 (transfer rats) exhibited, at the
peak of production, a significant lower increase in serum IgE ules or, more likely, a ubiquitous peptide presented in the

context of MHC class II molecules (52). Those T cells have aconcentration as compared to control rats (P�0.001) (Fig.
6A). Similarly, the peak of production of anti-laminin antibodies Th2 phenotype in BN rats, and induce polyclonal B cell

activation both in vivo and in vitro (40,52). In mice exposedwas significantly (P�0.02) lowered as compared to control
rats (Fig. 6C). Circulating anti-DNA antibody titers were also to mercury or gold salts, other authors have shown metal-

specific T cells but did not evidence their pathogenic roledecreased as compared to control rats, although not
significantly (Fig. 6B). In transfer rats, maximal circulating (53). The fact that neonatal injections of HgCl2 induce, in

adults, tolerance to HgCl2 but not to ATPS, advocates theanti-autoantibody titers were never significantly different as
compared to BN rats neonatally exposed to HgCl2 and existence of such metal-specific T cells. This view is

strengthened by our observation that neonatal injections ofexposed again to HgCl2 after 2 months of age (Hg-Hg rats)
(Fig. 6B and C). At the time of sacrifice, i.e. after 8 weeks of ATPS induce, in adults, tolerance to ATPS but not to HgCl2

(not shown). Higher anti-laminin antibody titers and proteinuriaHgCl2 exposure, in transfer rats, kidney IgG deposits dis-
played the same pattern in the mesangial areas as in Hg-Hg levels in Hg-ATPS rats than in H2O-ATPS rats than in H2O-

ATPS rats may be due to a bystander activation of therats (not shown); whereas, in control rats, glomerular IgG
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Fig. 6. Tolerance is adoptively transferred by spleen cells. Naive recipient BN rats were 137Cs γ-irradiated (200 rad) and i.v. injected with 100
�106 spleen cells originating from naive BN rats or from BN rats neonatally exposed to HgCl2 (Hg-tolerant rats); transfer of spleen cells was
done the day of irradiation; 24 h later, BN recipients and mercury-tolerant littermates (Hg-Hg rats) received injections of 0.5 mg/kg HgCl2 as
described in Methods. Serum IgE concentration (A), circulating anti-DNA (B) and anti-laminin (C) antibody titers were determined by specific
ELISA. Data represent peak values and are expressed as the mean � SD from two to six rats. Statistical analysis for recipients of cells from
mercury-tolerant rat versus recipients of cells from naive rats: *P�0.05 and **P�0.01.

previously suppressed autoreactive T cells specific of the administered in neonate or in adult BN rats, T cells of the
same specificity are generated but they may differ by theirmercury-modified (MHC class II–peptide) complex following

the activation of autoreactive T cells primed by the ATPS- pattern of cytokine production. Those cells, that need to be
regularly exposed to HgCl2 in order to maintain their telerog-modified (MHC class II–peptide) complex. Whether HgCl2 or

ATPS is involved in Th2-mediated autoimmunity, autoreactive enic potential, are likely to be regulatory cells as demonstrated
in other models of tolerance and may produce inhibitoryT cells that are induced may recognize, in the context of MHC

class II molecules, either different ubiquitous peptides or self- cytokines such as IL-10 or transforming growth factor-β
(55–57). This hypothesis is emphasized by the ability ofpeptides specifically altered by the heavy metal (40,54).

At this point, one may speculate that whether HgCl2 is spleen cells from tolerant rats to transfer tolerance in naive
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