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Identifying a core set of features is one of the most important steps in the development of an automated
seizure detector. In most of the published studies describing features and seizure classifiers, the features
were hand-engineered, which may not be optimal. The main goal of the present paper is using deep
convolutional neural networks (CNNs) and random forest to automatically optimize feature selection
and classification. The input of the proposed classifier is raw multi-channel EEG and the output is the
class label: seizure/nonseizure. By training this network, the required features are optimized, while fitting
a nonlinear classifier on the features. After training the network with EEG recordings of 26 neonates,
five end layers performing the classification were replaced with a random forest classifier in order to
improve the performance. This resulted in a false alarm rate of 0.9 per hour and seizure detection rate
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of 77% using a test set of EEG recordings of 22 neonates that also included dubious seizures. The newly
proposed CNN classifier outperformed three data-driven feature-based approaches and performed similar
to a previously developed heuristic method.

Keywords: Deep neural networks; convolutional neural network; random forest; neonatal seizure
detection.

1. Introduction

Neonatal seizures usually indicate serious neuro-

logical dysfunction, and could potentially worsen

underlying brain injury.1,2 The majority of neona-

tal seizures are acute symptomatic events, unlike the

unprovoked epileptic seizures observed in older chil-

dren and adults.2,3 These seizures may have nonex-

istent or subtle clinical manifestations, which may

resemble normal behavior, such as lip smacking,

sucking, chewing, and blinking. This makes neona-

tal seizure detection very difficult and inaccurate if

it solely relies upon clinical observation.4–6 It has

been shown that the most accurate method for their

detection is visual interpretation of continuous multi-

channel EEG along with video by an expert clini-

cal neurophysiologist.1 However, such interpretation

is extremely labor-intensive, time-consuming, and

importantly, needs special expertise which is not

available around the clock in many neonatal intensive

care units (NICUs). A reliable and accurate auto-

mated neonatal seizure detector using multi-channel

continuous EEG can be a very helpful supportive

tool, particularly for the NICUs.

In the literature, there are several model-based

methods for the automatic detection of neonatal

seizures, usually developed based on heuristic if–

then rules and some thresholds and parameters.

Liu et al. computed the periodicity score using

autocorrelation techniques and used three if–then

rules and five thresholds to detect seizures.7 Got-

man et al. proposed a rhythmic discharge detec-

tor using three parallel methods in order to detect

rhythmic discharges, multiple spikes, and very slow

rhythmic seizures. This algorithm used 10 different

thresholds in total.8 Celka and Colditz used a sin-

gular spectrum analysis and compared the “opti-

mum required model order” with a threshold to

detect seizures.9 Navakatikyan et al. applied a wave-

sequence analysis and used about nine thresholds

to detect seizures.10 Furthermore, a heuristic algo-

rithm mimicking a human EEG reader was devel-

oped in our group, NeoGuard,11,12 and was clinically

validated.13 In this method, spike-train-type and

oscillatory-type seizures are detected by two parallel
algorithms. The common feature of the aforemen-

tioned methods is that the thresholds and param-

eters were found empirically, usually by trial and

error, and therefore they might not be optimized.

Other research groups focused on the develop-

ment of data-driven methods for this task. Among

them, the following algorithms have been considered:
Hassanpour et al. used a singular value decomposi-

tion and “successive spike interval analysis” in order

to extract, respectively, the low- and high-frequency

features. Then, the features were fed into two sepa-

rate artificial feed-forward neural networks, each of

which has two hidden layers.14 Greene et al. used 21

features, including frequency domain-, time domain-,
and entropy-based features, extracted from 2 s

epochs. These features then were used into a classi-

fier based on linear discriminant analysis.15 Thomas

et al. applied a Gaussian mixture model (GMM)

on 55 extracted features from 8 s epochs.16 Temko

and co-workers employed the same set of features

with a support vector machines (SVMs) classifier,
using a radial basis function (RBF) and a “Gaussian

dynamic time warping” kernel.17,18 A dictionary was

created by Nagaraj et al. using an atomic decompo-

sition technique applied on the training data. The

complexity of the atoms was then measured and

aggregated to define seizures.19 Furthermore, Zwa-

nenburg et al. extracted five features and used an

SVM classifier to detect newborn lamb seizures.20

In addition, in some proposed methods, hybrid

models combining data-driven methods, heuristic

rules, and an empirically found set of parame-

ters/thresholds have been used. Aarabi et al. used

some if–then rules with predefined thresholds to

remove artifacts, and then applied a multi-layer per-

ceptron (MLP) with two hidden layers to detect
seizures.21 Furthermore, an MLP and a clustering

method were used by Mitra et al. to detect and

cluster seizures. Then, three rules with some pre-

defined thresholds remove the artifacts and decrease

the number of false detections.22 Lastly, Ansari et al.

developed a multi-stage classifier composed of a
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heuristic method to detect potential seizures and a

data-driven post-processor to remove artifacts. In

the post-processor, different sets of features were

introduced and extracted and an SVM was then

used to classify the detected potential seizures.23 In

all the previously-mentioned data-driven approaches,

the parameters of the classifiers were optimized by

machine learning techniques. However, their perfor-

mance was determined by the quality of the chosen

features and finding appropriate features was a big

challenge, which was typically performed by trial and

error. This problem can be solved by using deep neu-

ral networks (DNNs).

In general, DNNs are referred to as artificial

neural networks (ANNs) with several hidden lay-

ers.24 Unlike the shallow (not deep) artificial neu-

ral networks used for seizure detection,25–29 the deep

networks do not need any hand-designed feature

extraction unit. Different types of DNNs exist, e.g.

convolutional neural network (CNN),30 deep belief

network,31 stacked denoising auto-encoder,32 long

short-term memory (LSTM),33 tensor deep stack-

ing network,34 etc. Among dozens of different DNNs,

the convolutional neural network, CNN or ConvNet,

has generated good results in image and speech

processing applications.30,35–39 Recently, these net-

works have also been found useful in EEG analysis:

Cecotti and Graeser used a CNN embedded with

a Fourier transform to classify steady-state visual

evoked potential activities.40 Furthermore, they also

developed some CNN methods for detecting P300

responses in a brain–computer interface.41 Mirowski

et al. applied a previously developed CNN for doc-

ument recognition, called LeNet, on seizure predic-

tion data. They showed a significantly better pre-

diction rate for the CNN method compared with

an SVM-based and logistic regression approaches.42

Acharya et al. proposed a new CNN method for

automated seizure detection for adult patients. They

designed a 13-layer network to process a single-

channel EEG and achieved 95% sensitivity and 90%

specificity.43

Recently, O’Shea et al. proposed a single-channel

CNN for neonatal seizure detection.44 In this

method, the network uses 8 s of a single-channel EEG

signal as input to the CNN. Then, a post-processor

is applied on the outputs of the CNN. However, we

consider that 8 s are not enough for extracting evolu-

tionary features of EEG, which have been shown to

be important EEG characteristics for discrimination

of brief-lasting seizures (<30 s) from short

artifacts.23

This paper introduces a seizure detection algo-

rithm using CNN, specifically for neonatal seizures,

which takes a segment of raw multi-EEG data

and then labels it as seizure or nonseizure. Unlike

most previously proposed methods in this field, this

method does not need preprocessing of the EEG

data, hand-engineered feature extraction procedures,

or complex post-processing to aggregate epochs or

channels. It automatically extracts the best-required

features and classifies each segment of raw multi-

channel EEG based on those features. Once the CNN

is trained, it can be merged with other classifiers,

such as LSTM,45,46 random forest (RF),47 SVM,48,49

etc., to improve its performance.

In this paper, the proposed CNN is merged with

an RF to detect neonatal seizures from 90 s multi-

channel EEG segments. This method is compared

with our previously developed heuristic approach,

as well as with three feature-based data-driven algo-

rithms (Algorithms 1–3).

The main objective of this paper is to intro-

duce a CNN-based algorithm and compare it with

hand-designed, feature-based, and heuristic methods

with no complex pre/post-processing steps. Dozens

of pre/post-processing algorithms exist for improving

the performance of neonatal seizure detectors pro-

posed in the literature. For instance, De Vos et al.

used blind source separation techniques for remov-

ing artifacts as a preprocessor.12 Temko et al. applied

adaptive background modeling to adaptively change

the latent variable with respect to the background

activity as a post-processor.50 A data-driven post-

processor was proposed by Ansari et al. to find evo-

lutionary patterns of seizures to distinguish between

the real seizures and polygraphic signals-related arti-

facts (e.g. ECG artifacts).23 They also used an adap-

tive learning technique to apply the experts’ feedback

to tune the latent variable.51 These algorithms can

also be applied on the outputs of the methods con-

sidered in this paper in order to improve their per-

formance. However, this is outside the scope of this

paper.

The paper is organized as follows: the database

and the used methods including a heuristic, three

feature-based, and the proposed CNN methods are

explained in Sec. 2. The results of the methods are
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reported and compared in Sec. 3. Discussion is given

in Sec. 4 and conclusions are drawn in Sec. 5.

2. Materials and Methods

2.1. Database

EEG recordings from 48 newborn babies were used to

train and test the algorithms. These recordings were

obtained at the NICUs of Sophia Children’s Hospital

(part of the Erasmus University Medical Center, Rot-

terdam, the Netherlands) between 2003 and 2012. All

the subjects were termed neonates (with gestational

age ≥ 36) and admitted to the NICUs with pre-

sumed postasphyxial hypoxic ischemic encephalopa-

thy (HIE), all underwent continuous EEG monitor-

ing. Inclusion criteria were either a 5min Apgar score

below six or an umbilical artery pH < 7.10, and clin-

ical encephalopathy according to Sarnat score.3,52–54

Five hours of recordings, on average, were used for

each neonate, in which at least one seizure was

observed. The seizure periods were scored by an

expert clinical neurophysiologist and annotated as

seizure when a clear change in the background EEG

activity lasting for at least 10 s was observed with

evolution in amplitude and/or frequency.13 For each

annotated seizure, the onset and offset were indi-

cated by the expert. The dubious seizures were not

removed from the database and no preselection has

been performed based on the presence of artifacts

or quality of signal.13,55 Newborns with brain or

heart malformation were excluded for this study. All

recordings were fully anonymized. The Erasmus MC

Medical Ethics Committee approved a study (2003–

2007) to assess the utility of continuous EEG mon-

itoring in neonates with postasphyxial HIE. Use of

anonymized EEG data from this study, for analysis

and research, was subsequently approved.

From the 48 EEG recordings, 39 include “Fp1–

2,” “F7–8,” “T3–4,” “T5–6,” “O1–2,” “F3–4,” “C3–

4,” “P3–4,” and “Cz” electrodes (17 electrodes)

[Fig. 1(a)]. In seven recordings, “F3–4” and “P3–

4” were not available (13 available electrodes)

[Fig. 1(b)]. In the two remaining recordings, “F7–8,”

“T5–6,” “F3–4,” and “P3–4” were not recorded (nine

available electrodes) [Fig. 1(c)]. In order to obtain

bipolar channels, a full and two restricted montage

maps were used [Fig. 1(a)–1(c)].56 As a result, 20, 12,

and 12 bipolar channels were derived, respectively,

using the aforementioned 17, 13, and 9 electrodes. In

(a)

(b)

(c)

Fig. 1. Neonatal EEG montages. (a) Full 10–20 sys-
tem of electrode placement using 17 electrodes, (b) a
restricted 10–20 system using 13 electrodes, and (c) a
restricted 10–20 system using nine electrodes.

addition to EEG signals, all recordings include poly-

graphic signals, such as electrocardiogram (ECG)

and electro-oculogram (EOG), which were not used

in this study. The initial sampling frequency for the

measurements was 256Hz.
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2.2. Segmenting

In order to train the different classifiers, 4344 seg-

ments (50% seizure and 50% nonseizure) have been

selected manually from 26 neonates. Note that some

segments can correspond to different parts of the

same seizure or even can overlap with each other.

Each of these segments includes 90 s of EEG data

from all available bipolar channels. In order to have

a sufficient number of training data, the data was

segmented using consecutively overlapping segments

with overlaps of 2, 4, and 6 s to the left and the

right, obtaining a total of more than 30,000 seg-

ments to be used for training. The training data

were split into training (75%) and validation (25%)

sets to stop the backpropagation algorithm. For the

test dataset, the whole recordings of the 22 remain-

ing neonates were split into 90 s segments with 60 s

overlap. In this method, a window length of 90 s was

chosen, since this length is considered long enough

to extract the dynamics and evolutionary character-

istics of brief-lasting seizures (< 1min), which are

reported as the most difficult seizures for automatic

detection,18,19,23,51,57 and is not too wide to avoid

a too long delay between the onset of seizures and

the alarm (the maximum delay equals the window

length, 90 s). None of the testing neonates or seg-

ments has been used in the training process. All

data-driven methods, which will be explained in this

section, used these training and test datasets. In con-

trast, the heuristic algorithm did not need training

data. However, part of this training dataset was used

by Deburchgraeve et al. to tune the parameters and

thresholds.11 To guarantee full independence with

the test set, the EEG data from neonates previ-

ously used for developing the heuristic method were

excluded in any test performed with the classifiers

considered in this paper.

2.3. Heuristic method

In this paper, we used a previously developed

heuristic model that mimics a human EEG reader

to compare with the proposed CNN method. This

algorithm was developed in our group by Deburch-

graeve et al.11 and its schematic overview is dis-

played in Fig. 2. The comprehensive description of

its last version, which is used here, is available in

Appendix A of the original paper.12 Briefly, this

algorithm uses two separate procedures for detecting

Fig. 2. Schematic overview of the heuristic method.
The upper and lower lines show the spike-train-type and
oscillatory-type seizure detectors, respectively.

seizures: (I) a spike-train seizure detector and (II)

an oscillatory seizure detector. In the spike-train

detection, first, a nonlinear energy operator (NLEO),

using the Teager–Kaiser operator, is applied on one

channel of EEG data and the output is normalized

and smoothed with a moving average (MA) filter

with a window size of 120ms. Then, an adaptive

threshold is applied and the potential spikes which

have a smoothed nonlinear energy greater than a

specified threshold are selected [see (a) in Fig. 2].

Next, the selected segments with a duration of more

than 60ms and isolated from the background activ-

ity are detected as epileptic spikes [see (b) in Fig. 2].

Finally, when at least six sequential spikes have the

overall cross-correlation higher than 0.8, they are

considered as a spike-train-type seizure [see (c) in

Fig. 2]. In the second detector, the δ (0.5–4Hz) and

θ (4–8Hz) frequency bands are extracted from one

channel of EEG data using a discrete wavelet trans-

form [see (d) in Fig. 2]. Then, the potential epileptic

activities are defined when 3 s of filtered signal has

significantly higher energy compared to its previous

30 s [see (e) in Fig. 2]. Next, autocorrelation anal-

ysis and two thresholds are applied on the poten-

tial activities to detect subsequently the oscillatory

seizures [see (f) in Fig. 2]. These two procedures are

applied on all channels of EEG individually. If there

is a seizure in at least one channel, that segment is

marked as seizure (“OR” operator).

2.4. Feature-based approaches

In order to compare the classic feature-based

approaches to the proposed CNN-based method,

which needs no predefined features, three feature-

based algorithms are proposed (Algorithms 1–3). All

1850011-5

In
t.

 J
. 
N

eu
r.

 S
y
st

. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

4
5
.5

.1
1
8
.6

3
 o

n
 0

6
/2

0
/1

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



A. H. Ansari et al.

Table 1. Extracted features used in Algorithms 1–3.

Type Feature name (number) Short description

Frequency Domain Total power (1) The total power of estimated power spectral density (PSD)
in the range of 1–20 Hz

Peak frequency (1) The peak frequency of the PSD
Spectral edge frequencies (3) The frequencies below which 80%, 90%, and 95% of the

total spectral powers are kept
Spectral power (11) The spectral power of 11 specific bands including (0–2 Hz,

1–3 Hz, . . . , 10–12 Hz)
Normalized power (11) The normalized spectral power of the same 11 bands
Wavelet energy (1) The energy of the wavelet coefficients in the 5th level of

decomposition using Daubechies-4 (corresponding to
1–2 Hz)

Time Domain Line (curve) length (1) The sum of the absolute values of the differences in
amplitudes of consecutive samples

Root-mean-squared amplitude (1) The root-mean-squared value of the epoch
Hjorth parameters (3) The Hjorth activity, mobility, and complexity metrics
Zero crossing (3) The number of zero crossings of the EEG, as well as its

first and second derivatives
Variances (2) The variances of the first and second derivatives of the

epoch
Skewness and kurtosis (2) The skewness and kurtosis of the epoch
Nonlinear energy (1) The averaged nonlinear energy using Teager–Kaiser energy

operator
Number of maxima and minima (1) The total number of local minima and maxima in the

epoch
Autoregressive modeling error (9) The error of autoregressive modeling with order 1–9

Info. Theory Spectral entropy (1) The normalized spectral entropy using PSD
Shannon entropy (1) The Shannon entropy using histogram of the data

distribution
SVD entropy (1) The entropy of normalized singular values of the EEG

epoch
Fisher information (1) The Fisher information of the EEG epoch

the algorithms used the same feature set including 28

features from the frequency domain, 23 from the time

domain, and four from information theory (in total

55 features), which are listed in Table 1. These fea-

tures have been used in different methods for neona-

tal seizure detection.8,15–18,21,50,57–59 More informa-

tion about the computation of these features can be

found in the reference literature.8,15,21,59 The clas-

sifier used in these algorithms is a bagged random

forest. However, the splitting of EEG or the aggre-

gating of the channels is different depending on the

algorithms.

Algorithm 1. Fifty-five features from each channel

(each 90 s) are calculated and concatenated to make

a vector with 1100 features in total (= 55 features

×20 channels). Then, these features are fed into the

classifier. The probabilistic output of the classifier is

compared with a threshold to define the label. Since

the number of channels should be constant to result

in a fixed input size, a zero vector is used for the

unavailable bipolar channels.

Algorithm 2. In this algorithm, the features are

extracted and classified for each channel separately.

Therefore, the input of the classifier is 55 features

extracted from each individual channel. Then, the

probabilistic output of the classifier for each channel

is compared with a threshold. If at least the output of

one channel is greater than the threshold, the whole

segment is considered as seizure (“OR” operator on

channels).

Algorithm 3. In this algorithm, first, the EEG

data of each channel was split into 8 s epochs with
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Neonatal Seizure Detection Using Deep Convolutional Neural Networks

50% overlap. Second, 55 features of the epochs are

extracted and the classifier is applied. Third, the

probabilistic outputs of all epochs in each channel

are smoothed with a moving average filter (N = 15)

and compared with a threshold. If at least one epoch

of a channel contains a seizure, the whole segment

is considered as seizure (“OR” operator on epochs

and channels). The general idea of this method was

derived from the method proposed by Temko et al.18

However, there are two differences between them: (1)

instead of using an SVM classifier, an RF is used

in order to have a fair comparison with the pro-

posed method which uses an RF. For our dataset,

the RF method results in a higher performance than

the SVM classifier as is reported in Sec. 3. (2) The

collar method used by Temko et al. for correcting the

onset and offset of detections is not used here. As

mentioned before, the previously proposed pre/post-

processing methods (e.g. collar) can be similarly

applied on the CNN or feature-based approaches to

improve the performance.

In Algorithms 1–3, the mentioned threshold is

varied from 0 to 1 in order to construct the receiver

operating characteristic (ROC) curve. Since in Algo-

rithms 2 and 3 the classifier is respectively applied

on channels and epochs of a segment separately, in

order to improve the training, the exact moment and

the channels representing seizures were premarked in

each segment of the training dataset by the method

developer.

2.5. Proposed CNN–RF method

We propose the use of a CNN for the automatic

detection of epileptic seizures. As mentioned before,

the main advantage of the proposed method is that

there is no need to select any features manually.

In other words, the classifier takes the raw multi-

channel EEG data and automatically optimizes the

features and classifier at the same time. In order

to improve the classification performance, when the

CNN was trained, the classifying end layers were

removed and replaced by an RF. In this method,

an RF classifier was selected since it performs bet-

ter than other classifiers. In order to test this, a

bootstrap test was applied on the training data.

First, the training data was split into 75% train-

ing and 25% validating subsets. Then, four classi-

fiers including LDA, two SVMs (with linear and RBF

Fig. 3. Schematic overview of the proposed CNN–RF
method.

kernels), and an RF were trained. A 10-fold cross-

validation and grid search was used to optimize the

hyper-parameters of the SVM–RBF and RF meth-

ods. Next, the area under the curve (AUC) of each

classifier on the validation set was calculated. The

splitting has been repeated 100 times. As presented

in Sec. 3, the RF has a significantly better perfor-

mance than others. As a result, in the final model, the

CNN is considered as an automatic feature extractor

and the RF is the classifier (Fig. 3). The following

sub-subsections describe this approach in detail.

2.5.1. Overview of CNN

CNNs are classified as a special type of feed-forward

artificial neural networks. In general, a CNN con-

sists of multiple stacked layers of three different

types: convolutional layer (Conv), nonlinear layer,

and pooling layer. Note that the input of each layer

is a three-dimensional volume.

Conv layer. This layer, which is the main block

of CNN, is composed of a bank of finite impulse

response (FIR) filters (also called kernels) that oper-

ate on the input as follows:

O(i, j, k) =
P

∑

p=1

N
∑

n=1

M
∑

m=1

fk(m, n, p)I(i − m, j − n, p),

(1)

where I(i, j, p) is the input of the Conv layer, where

(i, j, p) represents the dimensionality of the input

data and fk(m, n, p) are the coefficients of the kth

filter which consists of M ×N ×P coefficients, where

M and N represent the size of the filters and P rep-

resents the number of filters in the previous layer.

O(i, j, k) is the output of Conv layer, resulted from

the convolution operator of the filter fk and the input

I through the first and second modes. The filter coef-

ficients, fk, are the only unknown parameters of the

CNN which should be found in the training process
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A. H. Ansari et al.

Table 2. Layers of the designed network before pruning.

Layer info Output size

Input: (20, 2700, 1)

Feature Extraction 1 Conv(1, 5)× 5 (20, 2696, 5)
2 MPool(1, 3), s : 2 (20, 1347, 5)
3 ReLU (20, 1347, 5)
4 Conv(1, 5)× 8 (20, 1343, 8)
5 MPool(1, 3), s : 2 (20, 671, 8)
6 ReLU (20, 671, 8)
7 Conv(1, 5)× 10 (20, 667, 10)
8 MPool(1, 3), s : 2 (20, 333, 10)
9 ReLU (20, 333, 10)

10 Conv(1, 5)× 15 (20, 329, 15)
11 MPool(1, 3), s : 2 (20, 164, 15)
12 ReLU (20, 164, 15)
13 Conv(1, 20) × 20 (20, 145, 20)
14 MPool(1, 10), s : 5 (20, 28, 20)
15 ReLU (20, 28, 20)
16 MPool(1, 5), s : 3 (20, 8, 20)
17 APool(1, 8), s : 1 (20, 1, 20)
18 MPool(20, 1), s : 1 (1, 1, 20)

Classifier 19 Conv(1, 1)× 5 (1, 1, 5)
20 Sigmoid (1, 1, 5)
21 Conv(1, 1)× 2 (1, 1, 2)
22 Sigmoid (1, 1, 2)
23 Loss (1, 1, 1)

Total number of parameters: 7600

Notes: Conv: Convolutional layer, the information is given in the

following format (dimension in channel, number of coefficients

in time) ×number of filters.

MPool: Pooling by maximum operator, the information is given

in the following format (dimensions in channel, number of coef-

ficients in time), s: stride.

APool: Pooling by average operator.

ReLU: Rectified linear unit.

Loss: Loss function.

by a backpropagation method. However, the size of

filters (M, N), known as receptive field, as well as

the number of filters of each Conv layer should be

predefined in the design process (hyper-parameters).

The output size of the Conv layers in the first and

second modes resulting from the convolution opera-

tor equals the size of the input subtracted by the

length of the filter plus one. The output size of

the third mode is equal to the number of filters in

that layer. For instance, in the proposed method,

see Table 2, the first Conv layer is composed of

five filters each one of them of size 1 × 5. The size

of the output of this layer in the second mode is

2696(= 2700 − 5 + 1).

Comparing the FIR filters of the Conv layer with

common neurons in ANN shows that each filter is like

a layer of simple linear neurons with two important

characteristics: (1) the weights of all neurons located

in the layer are shared between the neurons and (2)

neurons only connect to a limited number of inputs

with overlap. Applying these two characteristics on

a layer of simple neurons converts the layer to the

mentioned convolutional FIR filter.

Pooling layer. The main aim of pooling layers is

reducing the number of outputs of the Conv layers by

a nonlinear subsampling function in local regions. In

practice, taking the maximum and averaging are the
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Neonatal Seizure Detection Using Deep Convolutional Neural Networks

two most common operations being used in pooling

layers. The stride of pooling should be predefined as

a hyper-parameter. The output volume size of this

layer in each mode equals
⌊

Sinput − Sfilter

stride

⌋

+ 1, (2)

where Sx represents the size of x and ⌊ ⌋ is the floor

function. For instance, in the proposed method, see

Table 2, the pooling in the eighth layer is a 1 × 3

max pooling with stride 2 which decreases the size of

the second mode from 667 to 333. Note that pooling

layers have no trainable parameters.

Nonlinear layer. This is a nonlinear unit that

increases the nonlinearity and power of the network.

The most commonly used function in CNNs is recti-

fied linear unit (ReLU) which is defined as follows:

O(x) = max(0, x), (3)

where x is the input value and O(x) is the output.

In other words, this function is a half-wave recti-

fier which replaces the negative values of the Conv

layer output with zero. It has no effect on the size

of data. In addition, in the very last layers of CNN,

which are performing the classification task, where

the first and second modes are completely aggregated

by pooling, the Sigmoid unit is also suitable which is

computed by

O(x) =
1

1 + e−x
. (4)

For instance, in the proposed method, the ReLU

and Sigmoid units were used in the 12th and 22nd

layers, respectively.

2.5.2. Structure of the proposed CNN

The input of the proposed CNN is first filtered

between 0.5Hz and 15Hz. In order to decrease the

complexity of the CNN network, the EEG is down-

sampled to 30Hz. As a result, each segment of EEG,

which is 20 channels by 90 s, is converted to an image

with a size of 20 × 2700 where the first and sec-

ond modes correspond to channel and time. For the

neonates having a fewer number of channels, zero

vectors are used to make a homogeneous input image

with the same size. These images are the inputs of

the proposed CNN.

The structure of CNN is formed by 23 layers,

which are listed in Table 2. In this table, the dimen-

sions of the filters as well as the number of Conv

filters, stride of pooling layers, and the output size

of each layer are shown. The first 15 layers are com-

posed of five blocks of (Conv + max pool + ReLU)

in order to extract the features related to seizure

patterns. The beginning blocks extract local abstrac-

tions, like the slope of lines, whereas the deeper

blocks extract more global ones, such as the spike

and oscillation patterns. In layers 16 and 17, a max-

imum and an averaging pooling layer aggregate all

time samples. It means that each output of the 17th

layer represents the abstraction of the whole 90 s

of the corresponding channel. Due to the fact that

in our database, the recording of different neonates

included a different number of electrodes and subse-

quently different bipolar channels all Conv and pool-

ing layers in these first 17 layers are 1×N operators.

It means that they filter and aggregate only the time

information, and have no effect on channel (spatial)

information. In other words, in these layers, the pro-

cess is performed on each channel separately. Next, in

layer 18, a max pooling is performed on all 20 chan-

nels in order to aggregate the features of different

channels. The used maximum operator, which can

be considered as an “OR” operator in fuzzy logic,

for the channel aggregation is supported by the fact

that in a clinical neurophysiologists’ point of view, if

one channel of EEG represents a seizure pattern, the

whole segment is marked as seizure. As a result, the

outputs of the 18th layer are 20 numbers (features)

representing the characteristics of all channels and

the whole 90 s. Then, the remaining five fully con-

nected layers including two hidden Conv layers, two

Sigmoid nonlinear units, and finally a loss function

for computing the classification error are perform-

ing the classification task. This structure as well as

the hyper-parameters were chosen by trial and error.

When the network is trained, these end five layers are

removed and replaced with an RF. Figure 4 schemat-

ically shows the designed layers, features, and the

fully connected classifier.

The CNN implementation was performed by the

MATLAB toolbox MatConvNet.60 For training the

CNN, the weights of the Conv layers were initi-

ated with normally distributed random numbers

generated by N(0, σ2), where the standard devia-

tion, σ, equals 0.2 and 0.1 for layers 1–18 and 19–

23, respectively. All bias weights of the Conv lay-

ers were initiated by zero. The learning rates were

varying from 0.3 to 0.003 with respect to the layer
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A. H. Ansari et al.

Fig. 4. Schematic structure of the proposed CNN method.

and epoch numbers. The learning batch size was 20

segments.

2.5.3. Pruning and tuning

As explained previously, an ReLU replaces nega-

tive outputs of a Conv layer with zero. Thus, if the

output of an ReLU is always zero, for all seizure

and nonseizure segments of the training dataset, it

means that the corresponding filter of the Conv layer

located before that ReLU is always producing nega-

tive outputs and, therefore, has no influence on the

final output of the network. In order to rank the effec-

tiveness of the filters and prune them with respect

to the aforementioned fact in the presence of out-

liers, the 99% percentile, p99, of the outputs of each

filter is calculated through the training dataset. If

the p99 is negative, that filter, as well as all corre-

sponding parameters of the Conv layer of the next

layer, is removed. For positive but small values of p99,

the procedure is continued till the validation error

increases. The layers and parameters of the pruned

CNN are listed in Appendix A (see Table A.1). The

total number of parameters of the CNN reduced by

58% after pruning, which increases the generaliza-

tion power of the network as well as the training and

recall speed. When the selected filters and param-

eters are removed, the network was retuned by the

training data for a few extra epochs.

2.5.4. Using random forest

When the CNN is trained, the last five classifying

layers were replaced with an RF classifier. Therefore,

the first 18 layers of the CNN act as an automatic

feature extractor. The RF is composed of 100 bagged

decision trees. In order to train each decision tree,

first,
√

N features, where N is the total number of

features extracted by the CNN, are randomly chosen.

Second, a new set of Q data points is created from the

Q available training segments using random selection

with replacement; this procedure is normally called

bagging. Then, a decision tree was trained using the

Q segments and
√

N features based on “classifica-

tion and regression tree” analysis, namely CART.61

Briefly, first, all possible binary splits of each feature

are performed and the Gini’s diversity index (GDI)

of the tree after each split is calculated. Second, the

split that has maximized the GDI is selected and the

two consequence child leaves are formed. The proce-

dure recursively repeats for each leaf until one of the

following stopping conditions is reached: (1) when

the tree depth equals a predefined maximum depth

(MaxDepth), (2) when the number of segments in a

leaf is smaller than a predefined threshold (MinLeaf),

or (3) when a node purely includes segments of one

class. In recall (test) mode, the outputs of the RF

are the seizure (ps) and nonseizure (pn) probabilities

averaged from all outputs of decision trees.

In the proposed method, MaxDepth and MinLeaf

were respectively equal to (Q−1) and 1, which means

that if the third stopping condition is not reached,

the tree can be as deep as possible, having one leaf for

each bootstrapped training segment. As mentioned,

100 of these decision trees are trained over boot-

strapped training segments with randomly selected

features. For each test segment, the obtained seizure

probability (ps) is compared with a threshold to score

the segment as seizure or nonseizure. This threshold

is varied from 0 to 1 in order to construct the ROC

curve.

1850011-10

In
t.

 J
. 
N

eu
r.

 S
y
st

. 
D

o
w

n
lo

ad
ed

 f
ro

m
 w

w
w

.w
o
rl

d
sc

ie
n
ti

fi
c.

co
m

b
y
 1

4
5
.5

.1
1
8
.6

3
 o

n
 0

6
/2

0
/1

8
. 
F

o
r 

p
er

so
n
al

 u
se

 o
n
ly

.



Neonatal Seizure Detection Using Deep Convolutional Neural Networks

3. Results

Figure 5 shows the box-plots of all extracted fea-

tures by the (a) CNN and (b) Algorithm 3. In

this figure, the features of Algorithm 3 are plotted

because of its higher performance compared to Algo-

rithms 1 and 2 (displayed in Fig. 7). For selecting the

best 20 features of Algorithm 3, the LASSO method

with 10-fold cross-validation was applied. The CNN

features which were removed by the pruning pro-

cess are marked with an asterisk (∗). For each fea-

ture, the first and second boxes are corresponding

to the nonseizure and seizure segments, respectively.

In each plot, the filled black boxes show the first

and third quartiles (Q1,3) and the thin lines dis-

play the Whisker range from Q1 − 1.5 × IQR to

Q3 + 1.5 × IQR, where IQR is Q3 − Q1. The small

circles in the plots show the outliers and big circles

with a dot in the center show the median values. All

features are plotted after being normalized between 0

and 1.

As mentioned, a bootstrap test was applied to

compare different classifiers including LDA, SVM

(a) (b)

Fig. 6. The AUCs of different classifiers when the fea-
tures are extracted by the (a) CNN and (b) Algorithm 3.

(linear and RBF kernels), and RF. Next, the AUC

of each classifier was calculated when the features

extracted by the CNN and Algorithm 3 are used

(a)

(b)

Fig. 5. Summary of the extracted features from the test dataset: (a) automatically extracted by the CNN. The features
starting with star (*) are corresponding to the features removed after the pruning process. Panel (b) shows the selected
features extracted in Algorithm 3 by a LASSO feature selection technique. All features are plotted after being normalized
between 0 and 1.
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(a)

(b)

Fig. 7. The ROC curves of the heuristic, feature-based,
and proposed CNN–RF methods for the test data. (a) for
all neonates in the test dataset and (b) after excluding
seven neonates which did not have appropriate training
patterns in the training dataset.

(Fig. 6). The Mann–Whitney–Wilcoxon statistical

test applied on the results from RF versus SVM–

RBF (∗ and ∗∗ in the figure) shows that the RF clas-

sifier has a significantly higher performance.

Figure 7 shows the ROC curves on the test

dataset for the heuristic, feature-based algorithms

(Algorithm 1–3), and the proposed CNN after prun-

ing and connecting to the RF. The upper curve,

Fig. 7(a), is the result of applying the proposed

classifier to all test neonates (22 neonates), while

the lower one, Fig. 7(b), shows the ROC when

seven neonates, who expressed a completely differ-

ent seizure pattern having no training patterns in

the training dataset, were excluded from the training

Table 3. Comparison of the performance metrics for the
CNN and heuristic methods.

Total After exclusion
database of seven neonates

Metric Heuristic CNN Heuristic CNN

AUC (%) 88a 83 89a 88
Sensitivity (%) 77 77 82 82
Specificity (%) 90 78 88 84
GDR (%) 77 77 78 78

FAR (h−1) 0.63 0.90 0.77 0.73

Note: aUsing piecewise cubic Hermite interpolation.

set. Results from the complete CNN, without prun-

ing, are similar to the displayed CNN. The AUC of

the CNN–RF method is also 8% higher than the

pure CNN with the fully connected network (83%

versus 75%).

Furthermore, in Table 3, the epoch-based AUC,

sensitivity, and specificity, as well as event-based

good detection rate (GDR) and false alarm rate per

hour (FAR), are reported.62,63 Since the output of

the heuristic algorithm is not continuous, Hermite

spline interpolation was used to calculate the AUC.64

For other metrics, in order to make the compari-

son simpler, the threshold of the CNN–RF was cho-

sen where the sensitivities of CNN–RF and heuris-

tic methods are equal (the horizontal dashed lines

in Fig. 7). As is clear from the table, after exclud-

ing the seven neonates, the specificity of CNN–RF is

5% less while the averaged false alarm rate per hour

is 0.04 better than those of the heuristic methods.

The results for individual neonates are displayed in

Table B.1 (Appendix B) in detail.

Figures 8 and 9 show two qualitative examples of

a seizure and a nonseizure segment, respectively. In

these figures, the outputs of the seventh and eighth

Conv layers, as well as the outputs of the 17th and

18th pooling layers, are shown. The red-highlighted

images are corresponding to the filters that were

removed by the pruning process. Each image of lay-

ers 7, 13, and 17 displays an output, which has 20

channels (y-axis), whereas the output of the layer 18,

after pooling the channels, has only one value for all

channels. Furthermore, as explained, the resolution

of time (samples in x-axis in these figures) decreases

after each pooling layer so that layers 17 and 18 have

only one value in time. Therefore, the output of layer

18 includes 20 values (20 before pruning, and 13 after
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Neonatal Seizure Detection Using Deep Convolutional Neural Networks

(a)

(b)

Fig. 8. (Color online) Qualitative example of a seizure segment and outputs for some layers. (a) A seizure segment with
20 bipolar channels. The x-axis is time in seconds. (b) The output of Conv layers 7 and 13, as well as pooling layers 17
and 18, and the final output of the CNN after the classification layers. The red-highlighted boxes correspond to the filters
removed by the pruning process.

(a)

(b)

Fig. 9. (Color online) Qualitative example of a nonseizure segment and outputs for some layers. (a) A nonseizure segment
with 20 bipolar channels. The x-axis is time in seconds. (b) The output of Conv layers 7 and 13, as well as pooling layers
17 and 18, and the final output of the CNN after the classification layers. The red-highlighted boxes correspond to the
filters removed by the pruning process.
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Fig. 10. The execution time is shorter for the CNN–RF
when compared to the heuristic and feature-based meth-
ods. The time is measured in seconds for each segment
(90 s, 20 channels).

pruning) each of which is a 1 × 1 (channel × time)

number. These values are considered as the automat-

ically extracted features. As is clear in the seizure

example, Fig. 8, the seizure occurred in the right-

hand (almost bottom) side of the segment. The out-

puts of the layer 7 show some variations in this area,

which is different from the left-hand side of the seg-

ment. These differences are more pronounced in the

outputs of the layer 13 where almost all filters were

activated for the seizure area. For the layer 17, when

the time information is completely compressed, the

channels with maximum activation of some of the fil-

ters are clearly distinguishable. In contrast, for the

nonseizure segment displayed in Fig. 9, there is no

clear activation in the layers 7 and 13, and conse-

quently no distinct channels in layer 17.

Figure 10 shows the recall (test phase) compu-

tational times calculated for the heuristic, feature-

based (Algorithms 1–3), and proposed CNN–RF

methods. The time is shown in seconds per each seg-

ment in a logarithmic scale. In order to have a correct

comparison and overcome variable CPU loading, the

methods ran chronologically for each segment and

the elapsed times for each method and each segment

were stored. Then, the median, Q1 and Q3 of the

whole segments were calculated and shown in a box-

plot. The time was measured from the moment of

loading data to when the label was defined including

preprocessing, feature extraction, and classification

times. The algorithms ran in MatlabTM platform,

version 9.1.0 (2016b) (The MathWorks, Natick, MA,

USA), and on a server computer, Intel(R) Xeon(R)

CPU 2.20GHz, with GNU/Linux operating system

(Red Hat 4.8).

4. Discussion

In neonatal seizure detection using machine learn-

ing approaches, choosing a proper type of classifier

plays an important role to have a good performance.

Moreover, finding appropriate features that are dis-

criminative and informative is another challenge and

has a big influence on the performance. In neona-

tal seizure detection, like other classification prob-

lems, some researchers have discovered and proposed

new features to enhance the performance, while oth-

ers improved the classification strategies. By using a

deep convolutional neural network, both the features

as well as the classifier are optimized simultaneously.

In this paper, a CNN with 18 layers was designed in

order to automatically extract the required features

from raw multi-channel EEG segment and a random

forest was used to classify them. It is important to

note that the final layers of the CNN method were

also able to classify the segment based on the fea-

tures extracted in the previous layers. However, they

were replaced with a random forest, after training

the network, in order to have a higher performance

and a smoother ROC curve.

In the classic feature-based seizure detectors, like

Algorithms 1–3, the features are hand-engineered

and usually found by trial and error. It is possible

that some information that is important for classi-

fication is fully or partly missed in the selected fea-

tures. However, in the proposed method, since the

feature extraction is optimized based on the training

data, the maximum information, related to the clas-

sification, is potentially able to be extracted which

improves the performance of the classification (com-

pare CNN–RF and Algorithm 1–3 in Fig. 7). As

shown in Fig. 5, the features extracted by the CNN

are more discriminative than those extracted by

Algorithm 3. This resulted from the optimization of

feature learning process in the CNN, which is consid-

ered as the main advantage of the proposed method.

On average, the proposed CNN-based method

performs better than the tested methods relying

on features. However, as plotted in Fig. 7(a),

the proposed method has lower performance than
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the heuristic method due to the limited number

of training neonatal EEG data sets. If a larger

scored database was available for training, this could

improve the performance of the method in a patient-

independent framework. When lacking training data,

it seems likely that heuristic methods, which are

not directly trained based on the training data, will

perform better. This is because of the fact that

for developing the heuristic method mimicking an

expert human EEG scorer, the knowledge of the neu-

rophysiologist which has been collected over years

from hundreds of neonates was used. It seems likely

that to have a fair comparison between the heuris-

tic method and data-driven techniques, adequate

training data should be provided for the data-driven

methods. If such a large training database is collected

in future years, better methods could be developed.

These methods have some important advantages, like

retrainability, more accuracy, and more flexibility. In

the test dataset, seven neonates with moderate to

severe hypoxic brain injury were seen to have very

unique seizure patterns. Similar patterns were not

available in the training dataset. It is unlikely that a

data-driven classifier will detect a pattern that was

not presented in the training data. As it is shown

in Table 3 and Fig. 7(b), if these seven neonates

are excluded from the test dataset the performance

of the proposed method is similar to the heuristic

method and better than other data-driven methods.

It is evident that by using a larger training dataset

in the future, the performance of the trainable clas-

sifiers will be improved, while the heuristic “untrain-

able” methods will be unchanged. When the latent

variable of the CNN method was fixed to provide the

performance reported in Table 3, only 7% and 10%

of seizure segments were detected by the CNN–RF

method and by the heuristic method, respectively.

This shows that even with the current lack of train-

ing data, the proposed CNN–RF method is a com-

plementary method, which can detect 7% of seizures

that were missed by the heuristic approach.

Since neonatal seizures are usually very focal or

regional, which means that only one or a few channels

display seizure patterns, retrospectively developed

algorithms were designed as a single-channel detector

so that they are applied on each EEG channel sepa-

rately. If a seizure is detected in at least one channel,

the segment is classified as seizure (“OR”). This idea

is also applied in the proposed CNN method. As was

explained, all filters in the Conv layers, as well as

pooling layers, developed for extracting features, are

1 × N operators. It means that they only affect the

time mode and have no operation on the channel

mode. However, it is likely that there is some spa-

tial information, at least among adjacent electrodes,

which show how seizures spread through channels in

regional seizures, involving contiguous brain regions.

Furthermore, each electrode is usually used more

than once in different montage maps. For instance,

in the full montage map, C4 is used four times in F4–

C4, C4–P4, T4–C4, and C4–Cz. Hence, if a seizure

occurs in a brain area close to the electrode C4, these

four bipolar channels should display it. This spatial

connection of channels can be very useful even for

very focal seizures, and it can be a distinctive char-

acteristic for distinguishing seizures from some arti-

facts. The CNN structure is easily able to extract

this information by increasing the dimension of fil-

ters in the channel mode, as it is working in diverse

image processing applications. However, since some

electrodes were not recorded or available in our train-

ing database for some neonates and different bipolar

montage maps were subsequently constructed, this

information was not extractable. In case of datasets

with homogeneous recordings, the filters can become

two-dimensional and it is expected that the perfor-

mance will be significantly improved. This is also true

for Algorithm 1, which concatenates the features of

different channels.

As previously explained, in Algorithm 2, the

method is applied on each channel individually and

an OR operator is then used to aggregate the chan-

nels. Since most neonatal seizures are regional/focal,

the channel(s) representing seizure patterns should

be predefined by the developer or an expert EEG

reader for each training segment in order to train

the method with correct training data. This is a

very labor-intensive task especially in big datasets.

This problem is exacerbated for Algorithm 3 where

not only the true channels should be predefined, but

also the proper epochs of those channels should be

marked. Nevertheless, one of the main characteristics

of the CNN is a shift-invariant property which means

shifting the target pattern (like seizure pattern in

this problem) through the first or second modes

(time or channels here) has no effect on the out-

put. This characteristic results from the parameter

sharing of the neurons in the convolutional layers, as
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well as from the maximum operation in the pooling

layers. Therefore, for the proposed CNN method, it is

not important in which channel or at what time the

seizure activity is manifested. The CNN can auto-

matically find the related region, so-called region-of-

interest. To illustrate this, in the example of Fig. 8,

where the seizure emerges in the almost bottom-right

of the segment, the output of layer 13 shows that

the CNN neurons were successfully activated in the

seizure area, compared to Fig. 9 for the nonseizure

segment.

Furthermore, in neonates, most seizures are

rhythmic, with evolution of amplitude. For these

seizures, the exact moment of onset or offset of

seizures is sometimes not very clear due to the

fact that the seizure patterns (oscillatory or spike-

train) start with a very low amplitude and gradually

increase over time (and vice versa for the offset). It is

evident that even expert EEG readers may not agree

with each other about the exact time and duration of

seizures in this case.55 Furthermore, in focal/regional

seizures, the channels that are not close to the center

of the seizure might show some low-amplitude seizure

patterns, increasing the uncertainty for the classifier.

Due to its shift-invariant property, the CNN method

can overcome this inherent fuzzy onset and offset of

seizures, as well as representing channels, so that it

does not need to know when and where exactly the

location of the seizure is within the segment.

In addition, retrospective studies of neonatal

seizure detection have reported varying levels of

agreement between expert EEG readers, with kappa

coefficients ranging between 0.4 and 0.93.13,55,65–68

It shows that different experts, and consequently dif-

ferent centers, use empirically different definitions of

seizure and the gold standard is not yet clear-cut.

One advantage of data-driven methods, like the pro-

posed one, compared to fixed heuristic ones, which

may work very well in one center, is that the net-

work can be retrained or retuned in different cen-

ters in order to tailor to their needs. Moreover, an

advantage of artificial neural networks, like the pro-

posed CNN, is that different training segments can

have different weights in the backpropagation train-

ing. Therefore, the segments upon which the experts

have higher agreement can have more influence in the

cost function during training than segments with a

larger uncertainty. This weighted training technique

can increase the overall satisfaction of the experts

from the final outputs when the method is being used

in different centers. Although the labels of only one

expert reader were used in the present work, a multi-

score analysis can be performed in the future.

Finally, one of the most important advantages of

the proposed CNN–RF method is that it is made by

simple FIR filters, maximum, and averaging oper-

ators. Consequently, the recall time is much faster

than other tested heuristic and feature-based meth-

ods, see Fig. 10. This method is about 115, 89, and

17 times faster than the heuristic, Algorithm 3, and

Algorithms 1 and 2, respectively, in recall. The com-

putational time is very important for the real-time

implementation. Although each of them can individ-

ually work in real-time and needs less than 90 s to

process a 90 s segment, the real-time ratio (= average

computational time needed for a segment/90 s) can

be important when the final product acquires, fil-

ters, down-samples, stores, monitors the EEG, sends

the data to a cloud system, and performs many

other possible tasks and processes. Faster process-

ing often results from less operational calculations,

which means lower energy requirements, and it is

very important in portable/wearable devices with

limited source of energy.

However, the proposed approach has some dis-

advantages: first, this method, and in general all

deep networks, is very time-consuming in the train-

ing process. Thus, optimizing the hyper-parameters

or improving the design of the network is much

harder than in a simple feature-based data-driven

technique. Second, the suggested network, like other

DNNs, needs a large amount of data to be trained.

If sufficient training data are not available, it is very

likely to over-fit due to the high number of layers and

parameters. Third, compared to heuristic methods,

the process is not transparent and it is not imme-

diately evident why a certain segment is classified

as seizure or nonseizure. Finally, compared to regu-

lar feature-based methods, the extracted features are

just some numbers resulting from filtering, pooling,

and rectifying of the EEG, which make it difficult to

provide a tangible interpretation.

Several limitations of this study need to be

acknowledged. First, the designed network and its

structural parameters, including the number of lay-

ers, the length of filters, the strides, etc., have been

chosen by trial and error and consequently they are

not guaranteed to be optimal. Second, the scored
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seizures used for training and testing were labeled by

only one expert clinical neurophysiologist. Third, the

data used in this paper were recorded in one center

only. In order to have a more generalizable compar-

ison, the methods should be tested on an extensive

and multi-rated, multi-center database.

5. Conclusion

A novel neonatal seizure detector using convolu-

tional neural networks and random forest was intro-

duced in this paper. The main advantage of the

proposed method is that it does not require hand-

engineered feature extraction process, but it auto-

matically extracts the required features and opti-

mizes them based on the training data. We show

that this proposed method outperforms the tested

feature-based approaches. Compared to the previ-

ously developed heuristic detector, the proposed

method is not yet superior because of the limited

number of training neonates. However, it seems pos-

sible that by having more training data in future, it

can reach the performance of the heuristic method

as well. At last, it was also shown that the pro-

posed method is remarkably faster than other tested

algorithms, which is very important for real-time

applications. However, further studies need to be

carried out in order to validate this algorithm in

a multi-center and multi-scored database. Further-

more, it seems that using sequence learners like hid-

den Markov models or LSTM instead of the used RF

classifier can enhance the performance.
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Table B.1. The results of the CNN for each neonate.

True detection/ False Rec.
AUC (%) Total seizure alarm len. (h)

1 93.8 14/14 7 4.0
2 92.6 8/9 2 4.0
3 88.3 5/6 0 4.0
4 88.1 2/2 5 2.0
5 84.8 2/2 0 2.0
6 83.6 8/9 8 4.0
7 83.4 39/43 4 4.0
8 83.0 16/18 6 4.0
9 82.8 30/30 6 4.1

10 82.2 4/6 0 4.0
11 82.0 4/5 12 4.0
12 77.7 5/22 2 4.0
13 77.6 12/14 0 2.0
14 76.6 27/29 7 4.0
15 76.4 8/18 0 2.0
16 74.0 13/15 0 2.1
17 72.5 2/14 0 4.0
18 72.0 3/13 0 4.0
19 71.4 11/23 0 2.1
20 65.9 28/28 3 4.0
21 62.9 2/9 1 2.0
22 60.9 43/44 4 4.0

Note: Rec. len. is the recording length in hours.

Appendix A. Pruned Network

Table A.1 lists the layers and parameters of the

pruned CNN. The bold-faced values, in this table,

show the different number of filters and the output

size compared to Table 2.

Appendix B. Performance in Detail

Table B.1 shows the performance of the proposed

CNN-based method for the tested neonates individ-

ually. In this table the AUC, the number of truly

detected seizures, the total number of seizures, the

number of false alarms, and the length of recordings

are listed for each neonate.
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