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              Radiation therapy is a widely used method of killing proliferating 

tumor cells to achieve locoregional control of cancer. Unfortunately, 

initial tumor response is often followed by relapse. For decades, 

most radiobiological studies have been focused on the radiosensi-

tivity of cancer cells. However, it is becoming increasingly clear 

that multiple changes in tumor stroma  —  including but not limited 

to hypoxia  —  may also determine treatment outcome. Moreover, 

although radiotherapy is a localized treatment, tumor regrowth 

may be substantially affected by systemic factors. 

 In particular, ionizing radiation intensifi es the recruitment of 

“distal” stroma, in the form of infl ammatory bone marrow  –  derived 

cells (BMDCs), to the tumor and its surroundings. As shown 

recently, these BMDCs of myeloid lineage may facilitate tumor 

relapse post-radiation ( 1  –  4 ). After a large single dose of local irra-

diation in preclinical tumor models in mice, two waves of myeloid 

BMDCs arrive at the treatment site. The fi rst occurs 3 – 5 days 

post-radiation ( 1 , 4 ) and is followed by a delayed infl ux of myeloid 

BMDCs after about 2 weeks ( 3 ). The initial wave is likely mediated 

by increased expression of “stress-response” molecules in tumors 

in direct response to radiation (vascular endothelial growth factor, 

stromal cell  –  derived factor 1 alpha, endothelial adhesion mole-

cules) ,  and the second is associated with tissue damage leading 

to hypoxia and activation of hypoxia-responsive genes (hypoxia 

inducible factor 1 alpha, stromal cell  –  derived factor 1 alpha, and 

vascular endothelial growth factor) ( 3  –  7 ). The tumor-protective 

effect of the recruited myeloid BMDCs has been attributed to 

their ability to support tumor vasculature after irradiation in a 

paracrine manner  —  analogous to that described for radiation-na i ve 

tumors ( 8  –  10 ). However, the contributions of specifi c provascular 

myeloid BMDC populations, including M2-type macrophages, 

Tie2  �   monocytes and Gr-1  �   monocytes ,  or neutrophils, and the 

signals that mediate their recruitment and local function are not 

well characterized. 

 Moreover, the status of tumor vasculature at certain post-

radiation stages remains largely unclear. In general, the tolerance 

of tumor vessels to irradiation may play a dual role in radiotherapy. 

A stable vasculature is required to maintain the blood perfusion 

necessary for cancer cell (re)oxygenation, and therefore radiosen-

sitization, throughout the course of treatment, which is usually 

fractionated in the clinic. However, functional vessels and viable 

endothelial cells (ECs) are undesirable after any type of tumor 

irradiation because they might support the survival and growth of 

remaining cancer cell clonogens and thus promote the relapse. 

Despite the intense research on tumor oxygenation during irradi-

ation, little is known about the dynamics of vascular changes and 

the mechanisms of neovascularization after radiation. 

 This commentary focuses on revascularization of tumors after 

non-curative radiotherapy, which is arguably the least understood 

contributor to tumor regrowth post-radiation. In particular, 

we address the unanswered question regarding the source of 

neovessels in relapsing tumors. Many tumor-associated ECs are 

undoubtedly killed or at least deprived of proliferative capacity by 

high-dose irradiation. But are those ECs that survive still capable 

of reestablishing a tumor vasculature during post-radiation recur-

rence? Or do other players (eg, recruited BMDCs) become more 

important? To our knowledge, there is no consensus in the litera-

ture on this point. 

 Some researchers proposed that local tumor irradiation at a 

single dose of 15 – 20 Gy or higher can “sterilize” suffi cient ECs 

inside and around the tumor to abrogate the growth and sprouting 

of irradiated vessels (angiogenesis), thereby forcing the tumor to 

rely on vasculogenesis by infi ltrating cells ( 3 , 11 , 12 ). Indeed, 

because bone marrow  –  resident cells or circulating BMDCs receive 

very little exposure to radiation during tumor treatment, it is 

reasonable to expect that the recruitment and further incorporation 

of these cells in tumor vessels would be much more substantial 
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post-radiation vs radiation-na i ve tumors. If supported by compel-

ling data, this attractive hypothesis would also reconcile an unre-

solved yet controversial issue in the literature about whether gross 

tumor response to radiation is associated with vascular damage 

( 13  –  18 ). Therefore, the infl ux of bone marrow  –  derived vascular 

precursors to tumors during the regrowth stage post-radiation, 

when additional cells are necessary for building new vessels, has 

recently been investigated ( 3 , 4 ). However, neither study could 

detect any substantial incorporation of BMDCs within the vessels 

of tumors regrowing post-radiation ( 3 , 4 ). Thus, BMDC-based 

vasculogenesis is not a major contributor to new vessel formation 

in irradiated tumors ( 19 ). An obvious alternative mechanism is 

post-radiation angiogenesis, provided local ECs survive and 

remain functional ( 14 , 17 ). 

 Is there any proof in the literature to support this mechanism? 

To address this question, we summarize below and in  Table 1  , 

 the previous preclinical observations, and propose a model recon-

structing the dynamics of events in tumor-associated ECs and 

vasculature in general after a single high dose  (approximately 

 20 Gy) of local gamma- or  x -ray irradiation. Such non-curative 

treatments have been widely used in animal studies and allow a 

better separation and understanding of post-radiation effects than 

fractionated irradiation regimens. This analysis is particularly 

timely because therapies using a single dose or a few large fractions 

of radiation are being increasingly tested in the clinic (eg, stereo-

tactic body/ablative radiotherapy or radiosurgery) ( 15 , 42  –  44 ). 

Although no specifi c data exist, it has been postulated that such 

irradiation induces more damage to tumor vasculature than con-

ventional fractionated radiotherapy, which provides a crucial 

therapeutic benefi t ( 15 ). The available data are fairly incomplete 

and inconsistent. Most studies have focused on early vascular 

effects, and the late post-radiation stages have been less explored. 

Moreover, the older studies lacked a specifi c marker for EC stain-

ing, and the more recent reports rarely evaluated  EC s and vessel 

structure and function simultaneously. Clearly, there is no experi-

mental consensus on the question of revascularization after radia-

tion, and a logical conceptual framework would help direct future 

work in this area.     

 We propose such a framework, in which the tumor vascular 

response to irradiation occurs in four stages, which approximately 

 corresponds  to the phases of tumor size changes ( Figure 1 ).     

  Stage  I : Initial  Tumor     Response  

 One    group of researchers proposed that massive tumor EC apo-

ptosis (within a few hours after irradiation) is the major determi-

nant of therapeutic outcome ( 16 , 31 ), but this effect has not been 

independently reproduced. In contrast, multiple other reports 

summarized in  Table 1  have shown absent or modest changes in 

vessel structure and function during the first few days after irradi-

ation. In addition, EC proliferation, which is associated with an-

giogenesis in growing tumors, is likely arrested by radiation in a 

p53-dependent manner ( 45 ). As shown both in preclinical experi-

ments ( 34 ) and in samples from rectal carcinoma patients [after  five 

 daily fractions of 5 Gy each] ( 46 ), this growth arrest may be pref-

erential in endothelial vs tumor cells and potentially enhances 

the DNA repair and survival of the irradiated ECs. Therefore, the   T
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modest post-radiation decrease of vascular density may be simply 

explained by the lack of new vessel formation in a tumor mass that 

continues to increase in volume for a few days post-radiation ( 36 ), 

rather than by pruning of existing vessels. However, the impact of 

vessel “stasis” vs pruning post-radiation remains unknown. 

Nevertheless, as the majority of tumor vessels remain perfused 

with blood, they provide a conduit for the rapid recruitment of 

myeloid BMDCs post-radiation ( 1 , 4 ). These cells become an extra 

source of pro-survival factors for ECs, which could become more 

critical as the irradiated tumor cells gradually disappear.  

  Stage  II : Tumor  Regression   Phase  

 The next stage of vascular changes post-radiation,  before  overt 

tumor recurrence, is less understood ( Table 1 ). During this phase, 

tumor size either decreases ( Figure 1 ) or remains stable, depending 

on tumor radiosensitivity. The death and rapid elimination of 

cancer cells may even result in an increased ratio of vessels to 

cancer cells in regressing tumors ( 23  –  26 ). Once again, the mod-

erate drop of vessel/EC density in tumors not shrunk after radia-

tion treatment ( 36 , 38 ) may actually indicate a minor change in 

absolute numbers of ECs per tumor. However, it remains unknown 

what fractions of irradiated tumor-associated ECs have been killed 

and lysed, and how many of the surviving ECs become perma-

nently cell cycle  –  arrested (likely because of cell senescence) or 

retain proliferation potential at this stage. In addition, the mere 

presence of residual ECs does not guarantee integrity of the vascu-

lature or sufficient blood perfusion. The progressive decrease of 

perfusion may lead to hypoxia and ,  in turn, to a second wave of 

myeloid BMDC recruitment ( 3 ).  

  Stage  III : Early  Tumor   Recurrence  

 As shown in  Table 1 , there is virtually no evidence concerning 

the status of the  EC s and tumor vasculature at this stage post-

radiation. However, there are two sources of indirect information. 

First, the existing data on residual ECs and vessels during stage II 

post-radiation, and second, the intriguing observations that the 

regrowth of certain radiosensitive tumors may be accelerated post-

radiation ( 47 , 48 ). It is therefore conceivable that ECs and vessel 

fragments that survived stages I and II may be sufficient to quickly 

reestablish a functional vasculature to support rapid tumor 

regrowth. It remains unclear if EC proliferation is necessary at this 

stage. Together with residual tumor and host-derived cells, the 

   
  Figure 1  .    Proposed model of tumor growth and corresponding changes 
in endothelial cell/vessel status after single-dose local irradiation (R). 
After irradiation ( approximately    20 Gy), tumors normally continue to 
enlarge for a few days, then shrink (depicted) or become stable in size 
(not shown), and then they start to regrow. The time scale varies for 

different tumors ,  but the whole span is typically a few weeks. We have 
divided the post-radiation events into four different stages ( I  –  IV ), including 
two waves of the vessel-rescuing recruitment of myelomonocytes. 
Note that angiogenesis is required in stage  IV  only. EC = endothelial 
cell.        
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myeloid BMDCs recruited previously likely play a supporting role, 

by supplying growth factors necessary for the reformation and 

maintenance of functional vasculature.  

  Stage  IV : Late  Tumor   Recurrence  

 After a recurring tumor reaches a size close to that at the onset of 

irradiation, its growth rate typically decreases. This well-known 

phenomenon is referred to as the “tumor   bed effect” and is attrib-

uted to defects in neovascularization ( 49 ). However, no single 

vascular parameter from previous reports in various tumors seems 

to unequivocally indicate this deficiency ( Table 1 ). At the same 

time, it is clear that new vessel formation at this stage becomes 

necessary for further tumor growth. Because BMDCs have not 

been detected in the vessels of relapsed tumors ( 3 , 4 ), we propose 

that the dominant mechanism at this stage is angiogenesis (ie, 

proliferation and sprouting of ECs that have survived irradia-

tion). Although EC proliferation may even increase during this 

phase ( 39 ), it is conceivable that angiogenesis may be less effi-

cient than that in radiation-na i ve tumors because of the post-

mitotic death of some of the irradiated ECs ( 14 ). Another local 

source of angiogenesis at this stage could be ECs recruited from 

preexisting vessels from nonirradiated adjacent tissue ( 47 ,  50 ), 

but the impact of this mechanism has not been thoroughly inves-

tigated. Irrespective of the source of ECs for angiogenesis, certain 

myeloid BMDCs (eg, Tie2  �   monocytes) may support vessel forma-

tion in a paracrine manner in this phase ( 3 , 4 ).  

  Perspectives 

 This theoretical model of vascular dynamics in irradiated tumors 

could and should be validated using modern technologies. 

Moreover, additional aspects also merit further investigation. For 

example, other stromal cells might influence tumor neovascular-

ization post-radiation (eg, pericytes, tumor-associated fibroblasts, 

or lymphocytes), but their function in irradiated tumors remains 

poorly understood. In addition, tumor vasculature is fairly hetero-

geneous, with distinct patterns and growth rates between periph-

eral and central areas ( 51  –  54 ). Therefore, one could expect a 

substantial zonal variability of tumor vascular responses to radia-

tion. For example, if EC proliferation occurs preferentially at the 

periphery of tumors, the vessels in these areas might be more 

vulnerable to radiation. However, the post-radiation recurrence of 

tumors often occurs at a tumor edge ( 55 , 56 ). Acute hypoxia related 

to intermittent perfusion ( 57 ) or the increased pericyte coverage 

of these vessels ( 58 ) may help explain this paradox. Also, particle 

irradiations, which have now entered a broader clinical use, might 

have peculiar effects on tumor vessels ( 59 , 60 ). Finally, almost all 

experiments on vascular response to radiation published to date 

have been performed using tumors implanted ectopically (subcuta-

neously or intramuscularly) in rodents. However, increasing evi-

dence suggests that a valid organ-specific tumor microenvironment 

is essential for appropriately modeling tumor growth and angio-

genesis in mice ( 61 , 62 ). Thus, all the mechanisms discussed above 

need to be studied in orthotopically implanted or autochthonous 

(spontaneous and carcinogen-induced) tumors in animals and 

whenever possible, in patients. 

 Several recent discoveries in tumor vascular biology may also 

infl uence the multistage model of post-radiation neovascularization 

proposed here. For example, it has been recently demonstrated 

that a fraction of ECs in growing tumors may be derived via trans-

differentiation from cancer cells ( 63 ) or from cancer stem-like cells 

(eg, in glioblastomas) ( 64  –  67 ). As stem-like cells may be more radio-

resistant than other neoplastic cells ( 68 , 69 ), it is conceivable that 

cancer stem cell  –  derived ECs are more resistant to radiation. In this 

larger context, the term “vasculogenesis” might be invoked to 

describe neovascularization in irradiated tumors from tumor stem 

cells. Vasculogenesis may also occur from endothelial precursor cells 

of non-bone marrow origin that are recruited to tumors from non-

irradiated adjacent tissues and/or circulation ( 70 , 71 ). It is also 

conceivable that tumor neovascularization via other local mecha-

nisms  —  intussusception or vascular co-option  —  could differentially 

occur post-radiation. However, the evidence for any of these phe-

nomena post-radiation in tumors is currently lacking. 

 In summary, there is an urgent need to better understand the 

cellular mechanisms of neovascularization in irradiated tumors. 

Experimental models should be built to be more relevant to human 

tumor biology and treatment, and clinical studies should be designed 

to answer these questions. Only when the source of ECs and the 

dynamics of post-radiation vessel formation are better understood ,  

will we be able to identify the molecular pathways coordinating the 

process to eventually target this critical component of relapse.  
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