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Abstract—Objective: In the last years, Robot-assisted partial
nephrectomy (RAPN) is establishing as elected treatment for
renal cell carcinoma (RCC). Reduced field of view, field occlusions
by surgical tools, and reduced maneuverability may potentially
cause accidents, such as unwanted vessel resection with conse-
quent bleeding. Surgical Data Science (SDS) can provide effective
context-aware tools for supporting surgeons. However, currently
no tools have been exploited for automatic vessels segmentation
from nephrectomy laparoscopic videos. Herein, we propose a new
approach based on adversarial Fully Convolutional Neural Net-
works (FCNNs) to kidney vessel segmentation from nephrectomy
laparoscopic vision. Methods: The proposed approach enhances
existing segmentation framework by (i) encoding 3D kernels for
spatio-temporal features extraction to enforce pixel connectivity
in time, and (ii) perform training in adversarial fashion, which
constrains vessels shape. Results: We performed a preliminary
study using 8 different RAPN videos (1871 frames), the first in the
field, achieving a median Dice Similarity Coefficient of 71.76%.
Conclusions: Results showed that the proposed approach could
be a valuable solution with a view to assist surgeon during RAPN.

Index Terms—kidney segmentation, fully convolutional neural
networks, adversarial training, blood vessel segmentation

I. INTRODUCTION

In 2018, the estimated prevalence of renal cancer in Europe

was around 136.5 thousands cases (3.5% of total cancer

cases) and this number has been growing since 2012 [1]. The

mortality rate of people suffering from renal cancer is around

40% [2]. Renal cell carcinoma (RCC), which is the most

common kidney cancer in adults, accounts for approximately

2− 3% of all adult malignancies [3].

Nowadays, with a 5-year after treatment survival rate equal

to 95%, nephrectomy is considered the main treatment option

for RCC [4]. In the last few decades, robot-assisted partial

nephrectomy (RAPN) has been increasingly adopted in the

treatment of RCC, offering significant advantages in terms of

patient safety, health outcomes and hospitalization costs over

conventional open and laparoscopic nephrectomy [5].

Despite the advantages brought by RAPN, surgeons still

have to face many obstacles, such as small field of view,

field occluded by surgical tools, and reduced maneuverability.

These obstacles highlight the need of introducing, in the

operating room, computer-assisted tools to support surgeons

and enhance his/her view. This could potentially reduce the

occurrence of intraoperative accidents (e.g., unwanted vessel

resection, bleeding due to surgical tool misplacement), while

minimizing surgeon mental workload [6]. Technical challenges

include the detection and localization of anatomical structures

and surgical instrumentation [7], [8], intraoperative registra-

tion [9], and workflow modeling and recognition [10].

The specific aim of this work is to provide vessel segmen-

tation in nephrectomy laparoscopic videos. The segmentation

could represent the baseline for enhanced surgeon visualization

(e.g., through highlighting vessels during surgery) and also

serve as baseline for vessel avoidance with virtual-fixture

control [11]. Nonetheless, despite its importance, few efforts

have been put in vessel segmentation from nephrectomy la-

paroscopic videos. This may be mainly due to the shortage of

public available annotated datasets and the challenges of the

task, such as presence of surgical tools and several anatomical

structures in the image, vessels covering a small portion of the

image and with varying position in the image, as well as low

image quality due to noise and blur.

To cope with these issues, researchers in closed fields high-

lighted the importance of integrating temporal information [8],

naturally encoded in the video, and shape-constraining training

strategy, to improve segmentation performance [12].

Following this considerations, we propose an adversarial

strategy to train a 3D Fully-Convolutional Neural Network

(FCNN) (the segmentor) for automatic renal artery segmen-

tation in RAPN videos. Here, the third dimension refers to

time, allowing for spatio-temporal features extraction naturally

encoded in intraoperative videos. In this preliminary study

based on 8 RAPN annotated videos (1871 frames), we in-

vestigated the following research hypotheses: (i) the use of

spatio-temporal information improves features extraction and

(ii) shape-constrained training can boost segmentation per-

formance by enforcing segmentation mask contiguity across

frame and preserving shape.

A. Related work on segmentation in laparoscopic images

Blood vessel segmentation is a topic of high interest in

medical research [14]. However, focusing on intraoperative

laparoscopic images, the work in [15] represents one of the

few approaches to blood vessels segmentation.

Anyway, an established literature on intraoperative tissue

segmentation exists. First attempts used handcrafted features

(e.g., [7], [16]–[18]). In the last years, FCNNs have become

the standard for segmentation in laparoscopy. The typical use
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Fig. 1: Schematic representation of NephCNN architecture for vessel segmentation in intraoperative nephrectomy. The segmentor

is a U-shaped network with long-skip connections (dashed arrows) inspired on 3D U-Net [13] architecture. Each block of

descending path (black thin arrows) is composed of a 3D convolution followed by batch normalization (BN) and Leaky ReLU

activation function. Only the first downscaling and the last upscaling blocks do not include a BN layer. In the ascending

path (red thin arrows), Conv3D-BN-LeakyReLU modules alternate with UpSampling-Conv3D-BN-LeakyReLU ones. The last

upscaling block has sigmoid activation function instead of Leaky ReLU one. The critic, inspired by [12], consists of the encoder

branch of 3D U-Net. During the training process, illustrated in Sec. II-C, the critic extracts the feature vectors from the input

image masked with the segmentor output and with the ground-truth. The Mean Absolute Error (MAE ) computed between the

two feature vectors contributes to the loss that is minimized during training. The other contribution to this loss is given by the

segmentor loss, i.e. the Weighted Cross-Entropy Loss (LWCE).

of a CNN for vessel segmentation is based on pixel–wise

classification: each pixel in the image is assigned to the class

vessel or background. [19]–[21] Recently, the work in [8]

introduced the idea of exploiting temporal information for

processing laparoscopic videos. Specifically, a 3D FCNN was

implemented to extract spatio-temporal features for instrument

joint detection in order to exploit the temporal information

intrinsically embedded in laparoscopic videos.

A second recent innovation in the field has been brought by

the introduction of adversarial networks for shape-constrained

segmentation. Some interesting results were presented in [22],

[23] for blood vessel segmentation and, more recenlty, in [12]

for fetal surgery.

Following considerations in the literature, the purpose of

this work is to exploit the potentiality of 3D FCNNs, in

combination with adversarial training, to provide automatic

and robust vessel segmentation in nephrectomy laparoscopic

images.

II. METHODS

The proposed method consists of a 3D FCNN segmen-

tor (Sec. II-A) and a discriminator network, called critic

(Sec. II-B), both trained in an adversarial fashion (Sec. II-C).

The overall architecture of NephCNN is shown in Fig. 1.
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Fig. 2: Sliding window algorithm: starting from the first video

frame, an initial clip with Wd frames (dotted violet line) is

selected and combined to generate a 4D datum of dimensions

image width × image height × Wd × 3. Then the window

moves of Ws frames along the temporal direction and a new

clip (dotted green line) is selected.

A. Segmentor

The segmentor has a U-Net-like architecture [24] consisting

of downsampling and upsampling paths, made of 10 pro-



TABLE I: Specification of the initial dataset, the number of frames for each patient is shown.

Dataset: 1871 frames

Patient 1 Patient 2 Patient 3 Patient 4 Patient 5 Patient 6 Patient 7 Patient 8

240 240 240 240 210 240 240 221

(a) (b) (c) (d)

Fig. 3: Challenges in the acquired dataset include varying vessel position and size, vessel occlusion by surgical tools, presence

of noise, blur, and varying illumination level.

cessing blocks each, linked via long-skip connections. Each

processing block of descending path is composed of a convo-

lution followed by batch normalization (BN) and Leaky ReLU

activation function. Only the first downscaling and the last

upscaling blocks do not include a BN layer. In the ascending

path, processing block alternate with upsampling layers. The

output module, at the end of the segmentor, consists of a 1x1

convolution layer activated with the sigmoid function.

To take the temporal information into account, we use 3D

convolutional layers to build the processing block. Hence, the

input of our segmentor is a temporal clip (i.e., set of Wd

temporally consecutive video frames) obtained with a sliding

window algorithm, as in [8]: starting from the first video

frame, the first Wd frames contribute to the temporal clip of

dimensions width × height × Wd × Nchannels, where width

and height are the frame width and height, respectively, and

Nchannels is the number of image channels. The window then

slides of Ws frames along the temporal direction, generating

a collection of overlapping temporal clips. To feed the 3D

architectures, temporal clips were obtained with the sliding-

window algorithm proposed in [8]. The algorithm is controlled

by the window temporal length (Wd) and step (Ws). Starting

from the first video frame, the first Wd images are collected

and used to generate a 4D tensor of dimension width × height

× Wd × Nchannels, where Nchannels = 3 for RGB images.

The window then moves of Ws frames along the temporal

direction and a new temporal clip is generated. This results

in a collection of 4D clips. The segmentor produces as output

4D tensors, each one of dimension width × height × Wd ×
Nchannels, where Nchannels = 1. These outputs are 4D clips

of binary segmentation masks, each referring to the renal artery

in the current frame.

B. Critic

The critic is fully inspired by that proposed in [12], and

consists of a standard U-Net encoding path for spatial feature

extraction to preserve segmentation mask macro-appearance,

The critic implements 3D convolution to process the temporal

information while performing feature extraction. It receives a

two-fold input, which consists of the temporal clip masked

(i.e., pixel-wise multiplication) by (i) the ground-truth (x · y,

where x is the input clip and y is the ground-truth) and (ii)

the output of the segmentor (x · S(x), where S(x) refers

to the output of the segmentor). The two masked inputs are

processed by the network to obtain two feature vectors. These

are compared via Mean Absolute Error (MAE), defined as:

MAE (C(x · y), C(x · S(x))) =
∑Wd

i=1

∑M

j=1
|Cj(xi · yi)− Cj(xi · S(xi))|

Wd ·M
(1)

where C is the output of the critic (i.e., the feature vector),

xi is the i-th frame of the input clip, yi is the i-th frame

of the ground-truth mask and M is the length of the feature

vector. The MAE is minimized in an adversarial fashion during

training, as explained in Sec. II-C.

C. Training strategy

The training of NephCNN is performed with stochastic gra-

dient descend (SGD) as optimizer, to minimize the adversarial

loss proposed in [12]. The L sums up the contribution of two

loss functions, i.e., the per-pixel Weighted Cross-Entropy Loss

(LWCE) from the segmentor and the MAE from the critic:

L =

−
1

Ω

∑

k∈Ω

(βyk · log(S(x)
k
)) + (1− yk) · log(1− S(x)

k
))+

MAE [C(x · y), C(x · S(x))] (2)

where yk and S(x)
k

denote the ground-truth value and the

corresponding prediction of the segmentor at pixel location k

in the frame domain Ω and β denotes the weight coefficient

(set equal to 2).

The (LWCE) proved to provide better performances in

learning from class unbalanced datasets [25] (e.g., images that

contains structures of interest occupy small part of the overall

image).



Fig. 4: Examples of the segmentation results on image frames of the test set produced by, respectively: 2D U-Net, 3D U-Net

and NephCNN. The blue contour represents the segmented part of the renal artery, while the light blue contour represents the

ground truth. In row I the same test set frame, corresponding to the highest DSC value, is shown for each tested architecture.

In row II an intermediate case is shown. In row III one of the most challenging case is shown: here is evident how the

state-of-the-art networks completely failed the vessel segmentation, while the proposed NephCNN segmented a portion of the

renal artery.

NephCNN was trained for 200 epochs with a batch size of

4 temporal clips and an initial learning rate of 0.0001. The

best model was selected as the one minimising the L loss on

the augmented validation set.

III. EXPERIMENTAL SETUP

A. Dataset

The dataset used to train and test NephCNN was selected

from the Nephrec9 dataset [26], which consists of 741573

frames (frame size = 283x218 pixels) extracted from 8 RAPN

videos of 8 different patients. The frames are divided accord-

ing to the RAPN surgical workflow steps. The renal artery

was visible only in frames from the dissection step. A total of

240 consecutive frames was selected for each patient, being

240 the minimum number of frames in which the vessel was

visible for a patient. Frames with heavy motion blur (due to

quick changes in camera position) and with largely occluded

vessels were removed from the analysis. Sample frames are

shown in Fig. 3. Table I summarizes the number of frames for

each patient. The final dataset consisted of 1871 frames.

Since the Nephrec9 dataset was built for surgical context

recognition, manual vessel annotation was performed. Images

and corresponding masks were resized to 256x256 pixels for

reducing memory constraint and training computational effort.

Six patients (for a total of 1391 frames) were used for

training, while one patient were kept as validation set (240

frames) and the remaining patient (240 frames) were used for

testing purpose. On-the-fly data augmentation was performed

on the training set applying a random set of flipping, zooming

([−0.1, 0.1]) and shearing ([−0.05, 0.05]) to every epoch.

For the sliding-window algorithm, Wd = 4, as a trade off

between memory requirements and training speed, and Ws =
1 to enlarge the training data size.



B. Ablation study

In this work we performed an ablation study to provide

a comprehensive comparison of NephCNN architecture with

state-of-the-art segmentation FCNNs, performing the follow-

ing experiments:

a) 2D U-Net: To understand how the temporal informa-

tion affected the segmentation performance, we implemented a

U-Net [24] with 2D kernels as baseline for our comparisons.

This network was designed to have the same depth of the

segmentor network for fair comparison. The network was

trained minimizing the loss function reported in Eq. 2, but

without the MAE term, (i.e., in a non-adversarial fashion).

b) 3D U-Net: To asses the impact of the adversarial

training, we trained a 3D U-Net [13], which is the segmentor

described in Sec.II-A, without the critic.

All experiments were implemented using TensorFlow 2 on

an Intel Core i5-8400 CPU with 32GB of RAM and NVIDIA

RTX2080TI GPU with 11GB memory.

C. Performance assessment

For performance assessment, we computed, using the test

set, the Recall (Rec), defined in Eq. 4, Precision (Prec) and

Dice Similarity Coefficient (DSC), (Eq. 5).

Prec =
TP

TP + FP
(3)

Rec =
TP

TP + FN
(4)

DSC =
2 · TP

FP + FN + 2 · TP
(5)

where TP (true positive) is the number of vessel pixels

correctly classified, FN (false negative) is the number of mis-

classified vessel pixels and FP (false positive) is the number

of misclassified not-vessel pixels.

The Wilcoxon Signed Rank Test was used to test if sta-

tistical differences existed both between the DSC and Rec

obtained with NephCNN and the other tested architectures,

considering a significance level (α) equal to 0.05.

IV. RESULTS

The NephCNN training lasted about 20 hours. Overall

performance metrics for the state-of-the-art networks and the

proposed method are illustrated in Table II. Median DSC

of the 2D U-Net, the 3D U-Net and the NephCNN was

59.70%, 66.33% and 71.76% with Inter-Quartile Range (IQR)

of 7.71%, 9.05% and 9.31%, respectively.

The boxplots in Fig. 5 show the performance comparison

between 2D U-Net, 3D U-Net and NephCNN in terms of

DSC. The Wilcoxon signed rank test (significance level α

equal to 5%) confirmed that there is a significant statistical

difference between the tested architectures.

In Fig. 4 segmentation examples obtained by the tested

CNNs are shown, overlaid with the corresponding ground

truth.

TABLE II: Evaluation of different frameworks tested on test

set images. The average performance, in terms of Dice Similar-

ity Coefficient (DSC), Precision (Prec) and Recall (Rec), with

its corresponding standard error is reported. Optimal results

are highlighted in bold.

Framework DSC Prec Rec

2D U-Net 0.5970 +− 0.0771 0.8731 +− 0.0626 0.4593 +− 0.0879

3D U-Net 0.6633 +− 0.0905 0.9377 +− 0.0774 0.4547 +− 0.1113

NephCNN 0.7176 +− 0.0931 0.8976 +− 0.1132 0.5066 +− 0.1377

Fig. 5: Boxplots representing segmentation performances for

all the analyzed networks, the metric shown is the DSC.

Distributions tested with Wilcoxon signed rank are coupled

with brackets above each graph, asterisks indicate statistical

significance of the difference (* p < 0.05).

V. DISCUSSION AND CONCLUSIONS

This paper represents the first attempt, to the best of

our knowledge, that combines shape-constrained adversarial

training strategy with spatio-temporal features to perform the

automatic segmentation of the renal artery from intraoperative

nephrectomy videos.

In order to assess the capability of the proposed network

in accomplishing this task, 1871 frames from 8 RAPN videos

were extracted and manually annotated.

The results achieved by testing the proposed NephCNN

showed to successfully increase performances in vessel seg-

mentation with respect to state of the art approaches, providing

the highest median DSC value (71.76%) among the ablation

studies. These results supported our research hypotheses that

shape-constraining and spatio-temporal features can tackle the

peculiar challenges, listed in Sec. I and shown in Fig. 3, of

nephrectomy images.

Although widely employed for medical tasks, the 2D U-Net

showed the lowest performance due to the high complexity and

variability of intraoperative laparoscopic images, as already

reported in [12]. The introduction of 3D kernels in the U-Net

framework, as proposed in [8], enforced the temporal con-

nectivity of features, thanks to the processing of the temporal



information naturally encoded in the laparoscopic videos. In

line with [12], further improvements were obtained with the

adversarial training, which preserved shape consistency across

frames leading to better results.

Specularities on surgical tools and tissues, as shown in

Fig. 4 (III), hampered the segmentation performance of all the

networks. However, the shape constraining effect of adversar-

ial training discouraged the segmentor from wrongly identify

pixels outside the vessel region.

To improve the segmentation performance in these challeng-

ing cases, possible solutions could be provided by exploiting

Dense CNNs, which preserve features at different complexity

levels, and introducing Atrous Spatial Pyramid Pooling, useful

in multi-scale object detection.

Despite our efforts, the complexity of the task and the

dataset size remains a strong limitation of our experimental

protocol. A more comprehensive validation of the proposed

framework will be addressed in the future by investigating

extensions of this framework supported by a broader dataset

and advanced data augmentation techniques.

To conclude, the encouraging results achieved suggest that

the proposed approach could be a first step towards applica-

tions able to improve the actual clinical workflow, helping sur-

geons to reduce intraoperative complications due to unwanted

vessel resections and bleeding in robotic-assisted surgery (e.g.,

automatically implementing virtual fixtures). This method may

have a positive impact on RAPN practice, by lowering the

surgery duration and surgeons’ mental workload and, as a

consequence, increasing surgical safety.
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