
Neptune: A Domain Specific Language for Deploying HPC
Software on Cloud Platforms

Chris Bunch Navraj Chohan
Chandra Krintz

Computer Science Department
University of California, Santa Barbara

{cgb, nchohan, ckrintz} @ cs.ucsb.edu

Khawaja Shams
Jet Propulsion Laboratory

California Institute of Technology

Khawaja.S.Shams@jpl.nasa.gov

ABSTRACT

In this paper, we present the design and implementation
of Neptune, a domain specific language (DSL) that auto-
mates configuration and deployment of existing HPC soft-
ware via cloud computing platforms. We integrate Neptune
into a popular, open-source cloud platform, and extend the
platform with support for user-level and automated place-
ment of cloud services and HPC components. Such platform
integration of Neptune facilitates hybrid-cloud application
execution as well as portability across disparate cloud fab-
rics. Supporting additional cloud fabrics through a single
interface enables high throughput computing (HTC) to be
achieved by users who do not necessarily own grid-level re-
sources but do have access to otherwise independent cloud
technologies.

We evaluate Neptune using different applications that em-
ploy a wide range of popular HPC packages for their im-
plementation including MPI, X10, MapReduce, DFSP, and
dwSSA. In addition, we show how Neptune can be extended
to support other HPC software and application domains,
and thus be used as a mechanism for many task computing
(MTC).

Categories and Subject Descriptors

D.3.2 [Programming Languages]: Software Engineering
- Language Classifications (Extensible Languages); C.2.4 [
Computer Systems Organization]: Computer-Commun-
ication Networks - Distributed Systems (Distributed Appli-
cations)

General Terms

Design, Languages, Performance

Keywords

Cloud Platform, Service Placement, Domain Specific Lan-
guage

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ScienceCloud’11, June 8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0699-7/11/06 ...$10.00.

1. INTRODUCTION
Cloud computing is a service-oriented methodology that

simplifies distributed computing through transparent and
adaptive resource (compute, networking, storage) acquisi-
tion and management. With traditional systems, developers
typically assume a static number of nodes and a fixed de-
ployment style. Cloud computing enables developers to chal-
lenge these assumptions and to do so to build applications
that can quickly acquire and release resources on-demand.

To date, public cloud providers largely have focused on
delivering very low-cost, scalable web service support – at
varying levels of abstraction. Amazon Web Services pro-
vides a scalable infrastructure from which users acquire ac-
cess to individual and configurable virtual machine (VM)
instances and to application-level services (e.g., persistent
storage, key-value and relational databases, and queuing).
As an alternative to fully customer self-service VM use,
Amazon, Google, Microsoft, and others, offer complete run-
time stacks (cloud platforms) that facilitate access to sim-
ilar scalable services (storage, data management, queuing,
messaging, etc.) through well-defined APIs. With platform
cloud computing, developers implement and test their code
locally against a non-scalable version of the platform and
then upload their application to a proprietary implementa-
tion of the platform (typically executing on the provider’s re-
sources) that implements scalable versions of the APIs, and
that provides automatic scaling of the application front-end
(web servers). Other cloud vendors, such as SalesForce, pro-
vide remote access to scalable implementations of complete
applications, which can be customized by users.

Despite the abundance of offerings, there remain barriers
to entry to the use of cloud systems for execution of HPC
applications. Most significant is the challenge of configura-
tion and deployment of libraries, services, and technologies
that HPC applications employ for execution. Although not
specific to cloud computing, this challenge is exacerbated by
the cloud execution model since cloud fabrics are either fully
customer self-service, or provide support that targets and is
optimized for the web services domain. The former pre-
cludes the reuse of HPC application infrastructure (tools,
services, packages, libraries, etc.) and requires non-trivial
installation, configuration, and deployment effort to be re-
peated. This is in sharp contrast to the computational grid
model in which the software infrastructure is configured and
maintained by experts and used by developers.

Modern virtualization technology alleviates this problem
to some degree: an expert developer can customize a sin-
gle VM and distribute it to others to automate and share

the software configuration. However, three key challenges
remain. First, most applications require services to be cus-
tomized for a particular use or instance (e.g. via writing
configuration files) and for service components to be started
in the proper order. Incorrect configuration and startup or-
dering can lead to the inability to use the software at all or
to poorly performing programs. The cloud-based configura-
tion and deployment process for a wide variety of popular
HPC software imposes a severe learning curve on scientists
and tends to make HPC application execution using cloud
fabrics inaccessible to all but expert users [13]. Moreover,
complex configuration and deployment of HPC applications
can prevent scientists from reproducing results, as well as
from comparing to, reusing, and extending the work of oth-
ers, thus slowing or stifling scientific advance.

The other two primary challenges to HPC application de-
ployment using cloud resources are specific to the cloud com-
puting model: (i) clouds are, by definition, opaque, and (ii)
extant cloud systems implement a wide range of APIs (even
for access to similar services) that differ across systems and
that evolve as their implementers identify new ways of im-
proving their offerings for users. Both of these character-
istics add an additional level of complexity to the software
stack that developers must master to deploy software ef-
ficiently and in a repeatable fashion. Differing APIs pose
a greater threat to application developers since targeting a
single API (cloud system) leads to lock-in – the inability to
easily move from one cloud system to another.

The goal of our work is to address these challenges to en-
able users to develop HPC applications for execution over
cloud systems in a more flexible and portable fashion. While
cloud infrastructures employ virtualization technologies and
overprovision in a manner that may be unacceptable to sci-
entists with HPC technologies, we still wish to provide them
with a cloud solution that can transparently use cloud re-
sources to provide both high throughput computing (HTC)
and many task computing (MTC). To enable this, we present
Neptune, a domain-specific language that facilitates config-
uration and deployment of disparate cloud-based services
for use by applications. Neptune provides a single interface
and language through which developers configure cloud re-
sources and services for the execution of an HPC application.
It also leverages hybrid cloud resources in a unified manner
for HTC and MTC use cases.

We implement the Neptune language and runtime within
the AppScale cloud platform – an open-source implemen-
tation of Google App Engine. We extend AppScale with
new services that implement and export popular, general-
purpose, HPC packages, including MPI, X10, MapReduce,
and biological simulations via the Diffusive Finite State Pro-
jection algorithm (DFSP) [9] and doubly-weighted Stochas-
tic Simulation Algorithm (dwSSA) [7]. Neptune is extensible
in a way that users can add support for other HPC software
packages in a straightforward manner. The Neptune run-
time manages and controls these services.

In addition, we extend AppScale with support for dynamic
placement of application components and platform services.
This support can be employed manually by cloud adminis-
trators or automatically by the platform. The latter pro-
vides elasticity – the platform spawns only those nodes re-
quired by the cloud application and dynamically grows and
shrinks the resources according to program behavior (and/or
other factors, e.g. cost). The platform also reuses virtual

machines between computations to amortize their cost over
multiple runs. Also unique to our work, we target place-
ment within virtual machines, allowing developers to spec-
ify which machines run which services without requiring the
specific knowledge of how to do so. This support enables de-
velopers to experiment with their own placement strategies.
This ability to experiment is vital - many platforms assume
a fully separated system, where each component is run on
a dedicated machine, is the optimal system layout, while
others assume that colocating components will improve per-
formance. Neptune allows developers to measure and quan-
tify the differences between layouts. Finally, since Neptune
is integrated at the platform-level and we have ported the
platform to different cloud infrastructures, our system facil-
itates application portability across cloud fabrics. We use
this support to investigate placement of HTC and MTC ap-
plications across private-public and public-public cloud hy-
brids using popular cloud infrastructures (Eucalyptus and
Amazon EC2).

In summary, we contribute:

• The design of a domain specific language that auto-
mates configuration and deployment of cloud services
for HPC applications.

• An implementation of the language that integrates with
an open-source cloud platform to provide support for
MPI, X10, and MapReduce for general-purpose com-
putation, and DFSP and dwSSA for computational sci-
ence.

• Platform-agnostic techniques for user-specified place-
ment of platform services while retaining flexibility
for the platform to intelligently schedule placement of
other services, including the ability for the cloud plat-
form to reuse virtual machines between computation
jobs.

• Hybrid cloud placement techniques that facilitate de-
veloper deployment of HTC and MTC applications
within homogeneous clouds (e.g., multi-availability zones
within Amazon EC2) and heterogeneous clouds (e.g.,
a Eucalyptus cloud and an Amazon EC2 cloud).

• An experimental evaluation of the HPC software pack-
ages supported by Neptune as well as a cost analysis
that harnesses the cloud platform’s ability to reuse vir-
tual machines between computation jobs.

• An investigation into what is required to make arbi-
trary cloud software scale within their respective plat-
forms, including what aids and hampers scaling for
cloud applications and a discussion of how to extend
Neptune with support for other services and applica-
tion domains.In the sections that follow, we describe the design and imple-

mentation of Neptune and our extensions to the AppScale
cloud platform. We then empirically evaluate our system
using HPC applications and different placement strategies.
We then present related work and conclude.

2. DESIGN
Neptune is a domain-specific language that gives cloud ap-

plication developers the ability to easily configure and deploy
various HPC software over cloud fabrics. Neptune operates
at the cloud platform layer (runtime system level) so that

it can control infrastructure-level entities (virtual machines)
as well as application components and cloud services.

2.1 Syntax and Semantics
The Neptune language is a metaprogramming extension

of the Ruby programming language. As such, it is high-level
and familiar, and enables the Neptune runtime to leverage
the large set of Ruby libraries with which it can interact
with cloud infrastructures and platforms. Moreover, any
legal Ruby code is also legal within Neptune programs, en-
abling users to use Ruby’s scripting capabilities to quickly
construct functioning programs. The reverse is also true:
Neptune can be used within Ruby programs, to which it ap-
pears in the way that a library or API would appear to users
of a particular programming language.

Neptune uses a reserved keyword (denoted throughout
this work via the neptune keyword) to identify and commu-
nicate with services within a cloud platform. Legal Neptune
code follows the syntax:

neptune : type => ‘ ‘ s e r v i c e−name ’ ’ ,
: opt ion1 => ‘ ‘ s e t t ing1 ’ ’ ,
: opt ion2 => ‘ ‘ s e t t ing2 ’ ’

The semantics of the Neptune language are as follows:
each valid Neptune program consists of one or more nep-

tune invocations, each of which indicate a job to run in a
given cloud. The service−name marker indicates the name
of the job to run (e.g., MPI, X10) and thus which parameters
(prefixed by a colon) are necessary for the given invocation.
This point is important to emphasize: Neptune jobs are ex-
tensible enough to enable each job to require a certain set
of keywords be used. This design choice is intentional: not
all jobs are created equal, and while some jobs require lit-
tle information be passed to the runtime, other runtimes
can benefit greatly from this added information. As a fur-
ther step, we leverage Ruby’s dynamic typing to enable the
types of parameters to be constrained by the developer: thus
Neptune can dictate exactly what parameters are needed to
optimize a job and what data types are required for each.
If the user specifies a Neptune job but fails to provide the
necessary parameters, the runtime informs them which pa-
rameters are required and aborts execution.

The value that the block returns is also extensible: in the
cases where a HPC job is being initiated, a common pattern
is used: the Ruby symbol (similar to that of a constant string
in other programming languages) :success is returned when
the job is successfully started, and the symbol :failure

is returned in all other conditions. In the scenario where
the block asks for the data access policy for a particular
piece of data stored in the underlying cloud platform, the
return value for the block is the data access policy itself (and
:failure in scenarios where the ACL cannot be retrieved).

Finally, when the user wishes to retrieve data via a Nep-
tune job, the block returns the location on the user’s filesys-
tem where the output can be found, and :failure if the
output could not be retrieved. Work is in progress to expand
the number of failure symbols to give users more information
about why particular operations failed (e.g., if the data stor-
age mechanism was unavailable or had failed, or if the cloud
platform itself was unreachable in a reasonable amount of
time), to enable Neptune programs written by users to be-
come more robust and more adequately deal with failures at
the cloud level.

2.2 Design Choices
It is important to contrast the decision to design Neptune

as a domain specific language with other configuration op-
tions that use XML or other markup languages [16]. These
languages work well for configuration but, since they are not
Turing-complete programming languages, they are bound
to their particular execution model. In contrast, Neptune’s
strong binding to the Ruby programming language enables
users to leverage Neptune and its HPC capabilities to eas-
ily incorporate it into their own codes. For example, Ruby
is well known for its Rails web programming framework,
and Neptune’s interoperability enables Rails users to easily
spawn HPC applications without explicit knowledge of how
Neptune or the HPC application operates.

To enable code reuse, we allow certain primitive opera-
tions to be used across HPC applications. In particular, set-
ting access control policies (ACLs) for data produced by jobs
and the ability to retrieve output from a job are two opera-
tions that occur throughout all the HPC software Neptune
supports. Thus, the Neptune runtime enables these opera-
tions to share a single code base for the implementation of
these functions. This feature is optional: not all software
packages may support ACLs and a unified model for data
output, so Neptune gives developers the option to imple-
ment support for only the features they require, but with
the ability to leverage existing support as well.

3. IMPLEMENTATION
To enable deployment of Neptune jobs, the cloud plat-

form must support a number of primitive operations. These
operations are similar to those found in computational grid
and cluster utilities such as the Portable Batch System [19].
The cloud platform must be able to receive Neptune jobs, ac-
quire computational resources to execute jobs on, run these
jobs, and place the output of these jobs in a way that en-
ables users to retrieve them later or share them with other
users. Additionally, there must be mechanisms from the
user’s perspective that enable them to deploy jobs and mod-
ify the access permissions on data that has been uploaded to
the cloud platform. For this work, we employ the AppScale
cloud platform to add these capabilities.

AppScale is an open-source cloud platform that imple-
ments the Google App Engine APIs. Users deploy applica-
tions using AppScale via either a set of command-line tools
or web interface, which then deploys and hosts the applica-
tion. An AppScale cloud consists of one or more distributed
database components, one or more web servers, a load bal-
ancer, a monitoring daemon (the AppController) that coor-
dinates services on a single node as well as across nodes in
the cloud, and a set of tools to configure, deploy, and man-
age a cloud. AppScale implements a wide range of distribut-
ed/replicated datastore technologies for its database inter-
face (the Google Datastore API) via popular open source
technologies, including Cassandra, Hypertable, and others.
AppScale runs over virtualized and un-virtualized cluster
resources as well as over Amazon EC2 and Eucalyptus [18]
cloud infrastructures automatically. The full details of App-
Scale are described in [6, 3]. In this section, we overview
the AppScale components (the AppScale Tools and App-
Controller) that are impacted by our extensions that enable
customized placement, automatic scaling, and Neptune sup-
port within AppScale.

3.1 Cloud Support
Our extensions to AppScale facilitate interoperation with

Neptune. In particular, we modified AppScale to acquire
and release machines used for computation and to enable
service placement (statically or automatically). To do so,
we modify two components within AppScale: the AppScale
Tools and the AppController.

3.1.1 AppScale Tools

The AppScale Tools are a set of command line tools that
developers and administrators can use to manage AppScale
deployments and applications. In a typical deployment, the
user writes a configuration file specifying which node in
the system is the “master” node and which nodes are the
“slave” nodes. Prior to this work, this meant that the mas-
ter node always deployed a Database Master (or Database
Peer for Peer-to-Peer databases) and AppLoadBalancer to
handle and route incoming user requests, while slave nodes
always deployed a Database Slave (or Database Peer) and
AppServer hosting the user’s application.

We extend this configuration model to enable users to pro-
vide a configuration file that identifies which nodes in the
system should run which components. For example, users
can specify that they want to run each component on a ded-
icated machine by itself, or alternatively users could specify
that they want their database nodes running on the same
machines as their AppServers and have all other components
running on another machine. Critically, we also allow users
to designate certain nodes in the system as “open”, which
tells the AppController that no services are to run on this
node and that it can be utilized for running Neptune jobs.

We extend this support to enable hybrid cloud deploy-
ment of AppScale – in which different nodes are managed
by different cloud infrastructures over which AppScale runs.
Here, users specify which nodes belong to each cloud, and
then export a set of environment variables that correspond
to the credentials needed for each cloud. This is done by
design, to mirror the styles used by Amazon EC2 and Euca-
lyptus. One potential use case of this hybrid cloud support
is for users who have a small, dedicated Eucalyptus deploy-
ment and access to Amazon EC2: these users could indicate
to use their smaller Eucalyptus deployment to test and op-
timize the performance of their HPC codes and then deploy
to Amazon EC2 when a larger number of nodes are needed.
Similarly, Neptune users can use this hybrid cloud support
to run jobs in multiple availability-zones simultaneously, en-
abling them to always run HPC jobs in the availability zone
that is physically closest (and thus with the lowest latency)
to their data. Furthermore, for scenarios when the appli-
cation to be deployed is not an HPC application (e.g., in
the case of web applications), it may be beneficial to en-
sure that instances of the application are served in as many
availability zones as possible to ensure that the user has
access to a nearby instance whenever possible. This de-
ployment strategy enables web users much lower latencies
to their applications and some degree of fault-tolerance in
the rare cases when an entire availability zone is temporarily
inaccessible [12].

3.1.2 AppController

The AppController is the AppScale monitoring service
that runs on every node in the cloud. On each node, the
AppController configures and instantiates all necessary ser-

vices. This typically involves the starting of databases and
running Google App Engine applications. AppControllers
also monitor the status of the services they run, and period-
ically sends heartbeat messages to other AppControllers to
learn the status of the components running there. Specifi-
cally, it queries each node to learn the CPU, memory, and
hard drive usage, although it is extensible to other metrics
as well.

We extend the AppController component to receive Nep-
tune jobs from users. Our extensions enable the AppCon-
troller to receive and understand RPC (via SOAP) messages
from the Neptune runtime and to coordinate Neptune activ-
ities across other AppControllers (and thus other nodes) in
the AppScale deployment. Furthermore, upon receiving a
configuration file from the AppScale Tools designating that
certain machines are to be allocated for Neptune jobs, the
AppController ensures that no other services run on those
machines.

If running in hybrid cloud deployments, this also entails
spawning machines in each cloud that the user has requested
machines in, with the credentials that the user has provided.
Additionally, as cloud infrastructures currently meter on a
per-hour basis, we have modified the AppController to be
cognizant of this and reuse virtual machines between Nep-
tune jobs. Currently, any virtual machine that is not run-
ning a Neptune job at the 55-minute mark is terminated; all
other machines are renewed for another hour.

Administrators can query the system via either the App-
Scale Tools and users via the web interface provided by the
AppLoadBalancer. These interfaces inform users about the
jobs in progress and in hybrid cloud deployments, which
clouds are running which jobs.

A perk of providing a cloud platform is that since a well-
specified set of APIs are offered to users, the platform can
profile the usage patterns of the underlying system and act
accordingly. We provide customizable scheduling mecha-
nisms for scenarios in which the user is unsure how many
nodes are required to achieve optimal performance, a use
case that is unlikely to occur within HPC applications but
more likely to occur within HTC and MTC applications.
Here, users specify how many nodes the application can run
over, necessary because many codes cannot run over an ar-
bitrary number of nodes, but instead require specific num-
bers of nodes (e.g., powers of two). Neptune then employs
a hill-climbing algorithm to determine how many machines
to acquire: given an initial guess, Neptune acquires that
many machines and runs the user’s job, recording the total
execution time for later use. On subsequent job requests,
Neptune tries the next highest number of nodes, and follows
this strategy until the execution time fails to improve.

Our initial release of Neptune provides scheduling based
on total execution time, total cost incurred (e.g., only ac-
quire more nodes if it costs less to do so), or a weighted
average of the two. This behavior is customizable, however,
and is open to the implementation and experimentation of
more advanced scheduling techniques.

More appropriate to HPC users is the ability to automat-
ically choose the type of instance acquired for computation.
Cloud infrastructure providers offer a wide variety of ma-
chines, referred to as “instance types”, that differ in terms of
cost and performance. Inexpensive instance types offer less
compute power and memory, while more expensive instance
types offer more compute power and memory. In the case of

Amazon EC2, specialized instance types are available that
are designed for HPC computation. If the user does not
specify an instance type to use for computation, Neptune
will automatically acquire these HPC instances. A bene-
fit of this strategy is that since these machines are among
the more expensive machines available, the virtual machine
reuse techniques we employ amortize their cost between mul-
tiple users for jobs taking less than an hour.

3.2 Job Data
Clouds that run Neptune jobs must allow for data to be

used as input to other Neptune jobs and thus we must store
this data and make it available for later use. In Neptune,
the output of a job is stored as a three-tuple: a string con-
taining the job’s identification number, a string containing
the output of the job, and a composite type indicating the
access policy of the given data. The access policy used for
Neptune is similar to that of the access policy used by Ama-
zon’s Simple Storage Service [1]: a particular piece of data
can be tagged as either private (only visible to the user that
uploaded it) or public (visible to anyone). Data is by default
private but can be changed by the user by running a Nep-
tune job. Similarly, data is referenced as though it were on a
file-system: paths must begin with a forward-slash (‘/’) and
can be compartmentalized into folders in the familiar man-
ner. The data itself is stored and accessed via a Google App
Engine application that is automatically started when App-
Scale is deployed, thus allowing it to automatically store
Neptune job outputs in the any datastore that AppScale
supports.

The Neptune program required to set the ACL for a par-
ticular piece of data to be public is:

neptune : type => ‘ ‘ set−ac l ’ ’ ,
: output => ‘ ‘ /mydata/nqueens−output ’ ’ ,
: a c l => ‘ ‘ pub l ic ’ ’

Just as a Neptune job can be used to set the ACL for a
piece of data, a Neptune job is also used to the current ACL
for a piece of data:

c u r r e n t a c l = neptune : type => ‘ ‘ get−ac l ’ ’ ,
: output => ‘ ‘ /mydata/nqueens−output ’ ’

puts ‘ ‘The cu r ren t ACL i s : ’ ’ + cu r r e n t a c l

Retrieving the output of a given job works in the same
fashion as it does for access policies: a Neptune job suffices.
By default, it returns a string containing the results of the
job, but as many jobs return data that is far too large to
efficiently be used in this manner, a special parameter can
be used to instead indicate that it should be copied to a file
on the local machine.

3.3 Employing Neptune for HPC Frameworks
To expand the set of cloud services available from extant

fabrics in support of HPC applications, we service-ize a num-
ber of key HPC packages within the platform for use via
Neptune. Specifically, we provide support for MPI, X10,
and MapReduce, to enable users to run arbitrary codes for
different computational models within cloud systems. We
also provide two popular stochastic simulation algorithms
(the diffusive finite state projection algorithm and the dou-
bly weighted SSA coupled with the cross-entropy method)
which are used by a wide range of computational science
applications.

3.3.1 MPI

The Message Passing Interface (MPI) is a popular, general-
purpose computational framework for distributed scientific
computing. The most popular implementation is written
in a combination of C, C++, and assembly, however many
other implementations exist for other programming languages,
such as Java and Python. AppScale employs the C/C++
version, enabling developers to write code in either of these
languages to access MPI bindings within an AppScale cloud.
The developer uses Neptune to specify the location of the
compiled application binary and output data. This informa-
tion is communicated via Neptune to the AppScale Shadow.
The Shadow then starts up NFS on all the nodes in the sys-
tem, as is required by MPI. The job is then run, and once
it is completed, Neptune returns the standard output and
standard error of the job (the results) to the developer. An
example of such a specification is as follows:

neptune : type => ‘ ‘mpi ’ ’ ,
: code => ‘ ‘ nqueens ’ ’ ,
: nodes to u se => 4 ,
: output => ‘ ‘ / mpioutput ’ ’

In this example. we specify the location where the com-
piled code to execute is located on the machine running Nep-
tune, as well as how many machines are required to run the
code using MPI. Finally, we also indicate where the output
of the job should be placed for later retrieval. Note that
this program does not use any input parameters nor need to
write to any files on disk as part of its output, however, we
can extend Neptune to do so if necessary. We also can des-
ignate which shared file system to use when running MPI.
Currently, we support NFS and are working on support for
the Lustre Distributed File System [17].

3.3.2 X10

While MPI is suitable for many types of application do-
mains, one demand in computing has been to enable pro-
grammers to write fast, scalable code using a high-level pro-
gramming language. In addition, as many years of research
have gone into optimizing virtual machine technologies, it
was also desirable for a new technology to be able to lever-
age this work. In this spirit, IBM introduced the X10 pro-
gramming language [5], which uses a Java-like syntax and
executes transparently over a non-distributed Java backend
and a distributed MPI backend.

As X10 code can compile to executables for use by MPI,
X10 jobs are reducible to MPI jobs. Thus, the following Nep-
tune code deploys an X10 executable that has been compiled
for use with MPI:

neptune : type => ‘ ‘mpi ’ ’ ,
: code => ‘ ‘ NQueensDist ’ ’ ,
: nodes to u se => 2 ,
: output => ‘ ‘ / x10output ’ ’

With the combination of MPI and X10 within Neptune,
users can trivially write algorithms in both frameworks and
(provided a common output format exists) compare the re-
sults of a particular algorithm to ensure correctness across
implementations.

3.3.3 MapReduce

Popularized by Google in 2004 for its internal data pro-
cessing [8], the map-reduce programming paradigm (MapRe-

duce) has experienced a resurgence and renewed interest re-
cently. In contrast to the general-purpose message passing
paradigm embodied in MPI, MapReduce targets embarrass-
ingly parallel problems. Users provide input, which is split
and sent to a user-defined Map function. The output of this
function is then sorted based on a key provided by the Map
function and all the outputs with the same key are given to
a user-defined Reduce function, which typically aggregates
the data. As no communication can be done by the user
in the Map and Reduce phases, these programs are highly
amenable to parallelization.

Hadoop provides an open-source implementation of MapRe-
duce that runs over the Hadoop Distributed File System
(HDFS) [11]. The standard implementation requires users
to write their code in the Java programming language, while
the Hadoop Streaming implementation faciliates writing code
in any programming language. Neptune has support for
both implementations - users specify a Java archive file (JAR)
for the standard implementation, or name where the Map
and Reduce files are located on their computer.

Neptune copies the required files to AppScale. AppScale
runs the job on the Neptune-specified nodes in the system.
In particular, the AppScale Shadow contacts the Hadoop
JobTracker node with this information, and polls for job
completion (indicated by the output location having data).
When this occurs, Neptune copies the data back to a user-
specified location. From the user’s perspective, the neces-
sary Neptune code is:

neptune : type => ‘ ‘ mapreduce ’ ’ ,
: input => ‘ ‘ / input−t ex t . txt ’ ’ ,
: output => ‘ ‘ / mroutput . txt ’ ’ ,
: mapreducejar => ‘ ‘ hadoop−examples . jar ’ ’ ,
: main => ‘ ‘ wordcount ’ ’ ,
: nodes to u se => 4

Neptune exposes a number of interesting options specific
to MapReduce to the user. As was the case with the MPI
code, the user specifies where the input is located, where
to write the output to (here this is an HDFS location), as
well as the location of the code on their local machine. Users
specify either a relative path or full path to their code. Since
MapReduce inputs can be large, we allow the user to specify
an HDFS input location for the input file instead of copying
it over the network on every run. This is useful if a previous
Neptune run has already copied the input or if it was already
placed there by another service.

3.3.4 SSA

One type of algorithm that computational biologists em-
ploy in their research is the Stochastic Simulation Algorithm
(SSA), popularized by Gillespie [10]. At the highest level
of abstraction, SSA is a Monte Carlo algorithm that simu-
lates chemical or biochemical systems of reactions efficiently
and accurately. As these simulations are non-deterministic,
a large number of these simulations must be performed to
achieve acceptable estimation accuracy. Statistical analy-
sis (such as mean and variance) is then performed on the
results of these simulations. Such computations are embar-
rassingly parallel and like MapReduce, can be characterized
as Single Program Multiple Data. Two implementations of
the SSA are the Diffusive Finite State Projection algorithm
(DFSP) [9] and the doubly weighed SSA coupled with the
cross-entropy method (which we hereafter refer to as simply

dwSSA) [7], which offer both accurate and efficient simula-
tion compared to other methods.

Currently, scientists at UCSB and elsewhere execute simu-
lations in an ad-hoc manner. Scientists reserve a set of com-
pute nodes and run a large number of simulations over these
nodes, with at least 10,000 simulations needed to minimize
error to acceptable levels for DFSP and 1,000,000 simula-
tions for dwSSA. To simplify these processes, we implement
cloud service support for both DFSP and dwSSA in App-
Scale and export Neptune support to end-users. With Nep-
tune, scientists only need to specify the number of simula-
tions they wish to run. Neptune then contacts the AppScale
Shadow, which splits the work across nodes in the system
that are used for the computation. Neptune then merges
the results and stores the final output in the distributed
datastore for retrieval when completed.

3.4 Employing Neptune for Cloud Scaling and
Enabling Hybrid Clouds

Our goal with Neptune is to simplify configuration and de-
ployment of HPC applications. However, Neptune is flexible
enough to be used with other application domains. Specifi-
cally, Neptune can be used to control the scaling and place-
ment of services within the underlying cloud platform. Fur-
thermore, if the platform supports hybrid cloud placement
strategies, Neptune can also be used to control how services
are placed across cloud infrastructures. This allows Nep-
tune to be used as a mechanism for both high throughput
computing (HTC) and many task computing (MTC). In the
former case, resources can be claimed from various cloud in-
frastructures and used to serve user jobs. In the latter case,
Neptune can be used to serve both compute-intensive jobs
as well as web service programs.

To demonstrate this, we use Neptune to enable users to
manually scale up a running AppScale deployment. Users
need only specify which component they wish to scale up
(e.g., the load balancer, application server, or database server)
and how many of them they required. This reduces the typ-
ically difficult problem of scaling up a cloud to the following
code:

neptune : type => ‘ ‘ appsca le ’ ’ ,
: nodes to u se => { : c loud1 => 3 ,

: c loud2 => 6 } ,
: add component => ‘ ‘ appengine ’ ’ ,
: t ime needed for => 3600

In this example, the user has specified that they wish to
add nine application servers to their AppScale deployment.
Furthermore, three of the servers should be placed in the first
cloud that the platform is running over, while six servers
should be placed in the second cloud that the platform is
running over. This type of scaling would be useful for in-
stances where the amount of load in both clouds is known:
here, this would be useful if both clouds are over-provisioned
but the second is either expecting greater traffic in the near
future or is sustaining more load than the first cloud.

As was the case with other Neptune-enabled services, scal-
ing and automation is only amenable to the same degree as
the underlying services allow for. For example, while the
Cassandra database does allow new nodes to be added to
the system dynamically, users cannot add more nodes to the
system than already exist (e.g., in a system with N nodes,
no more than N − 1 nodes can be added at a time) [4].

Therefore, if more than the allowed for number of nodes
are needed, either multiple Neptune jobs must be submit-
ted or the cloud platform must absorb this complexity into
its scaling mechanisms. Similarly, the underlying cloud plat-
form must have the capability to manually add user-specified
components: Neptune directs these capabilities and does not
implement them.

3.5 Limitations with Employing Neptune
As previously stated, Neptune enables automatic config-

uration and deployment of software by a supported cloud
platform to the extent that the underlying software allows.
It is thus important to make explicit scenarios in which Nep-
tune encounters difficulties, as they are the same scenarios
in which the supported software packages are not amenable
to being placed in a cloud platform. From the end-users we
have designed Neptune to aid, we have experienced three
common problems that are not specific to Neptune or to
distributed systems (e.g., clouds, grids) in general:

• Programs that require a unique identifier, whether it
be an IP address or process name to be used to locate
each machine in the computation (e.g. as is required
by Erlang systems).

• Programs that are run on machines of a different ar-
chitecture than the cloud supports, requiring either re-
mote compilation or cross-compilation.

• Programs that have highly specialized libraries for end-
users but are not free / open-source, and thus are cur-
rently difficult to dynamically acquire and release li-
censes for.

We are investigating how to mitigate these limitations as
part of future work. In particular, since Neptune is exten-
sible in the parameters it supports, we can extend it to en-
able remote-compilation as-a-service. For unique identifiers,
it is possible to have Neptune take a parameter containing
a list of process identifiers to use within computation. For
licensing issues, we can have the cloud fabric make licenses
available on per-use basis. Our platform then can guide de-
velopers to cloud fabrics have the appropriate licenses for
execution of their application.

3.6 Extensibility
Neptune is designed to be extensible, both in the type of

job supported as well as to the infrastructures that it can
harness. Developers who wish to add support for a given
software framework within Neptune need to modify the Nep-
tune runtime as well as the cloud platform that receives Nep-
tune job requests. With respect to the Neptune runtime, the
developer needs to indicate which parameters users need to
specify in their Neptune code (e.g., how input and output
should be handled) and if any framework-specific parameters
should be exposed to the user. At the cloud platform layer,
the developer needs to add functionality that can understand
the particulars of their Neptune job. This often translates
into performing special requests based on the parameters
present (or absent) in a Neptune job request. For example,
MapReduce users can specify that the input be copied from
the local file system to the Hadoop Distributed File System,
and our implementation within AppScale skips this step if
the user indicates that the input is already present within
HDFS.

4. EVALUATION
We next use Neptune to empirically evaluate how effec-

tively the supported services execute within the AppScale
cloud platform. We begin by presenting our experimental
methodology and then discuss our results.

4.1 Methodology
To evaluate the software packages supported by Neptune,

we use benchmark and example applications provided by
each. We also measure the cost of running Neptune jobs
with and without VM reuse.

To evaluate MPI and X10, we use publicly available im-
plementations that solve the n-queens problem. The MPI
version is made available by the authors of [21], while the
X10 version is provided by the X10 team as a sample appli-
cation. To ensure that a sufficient amount of computation
is available, we set n = 16, thus creating a 16x16 chessboard
and placing 16 queens on the board.

To evaluate MapReduce, we use the publicly available
Java WordCount benchmark, which takes an input data set
and finds the number of occurrences of each word in that
set. Each Map task is assigned a line of the input text, and
for every word it finds, it reports this with an associated
count of one. Each Reduce task then sums the counts for
each word and saves the result to the output file. Our input
file consists of the works of William Shakespeare appended
to itself 500 times, producing an input file roughly 2.5GB in
size.

For our SSA codes, DFSP and dwSSA, we run 10,000 and
1,000,000 simulations, respectively, and measure the total
execution time. As mentioned earlier, previous work in each
of these papers indicate that these numbers of simulations
are the minimum numbers of simulations that scientists typ-
ically must run to achieve a reasonable accuracy.

We execute these tests over different dynamic AppScale
cloud deployments of 1, 4, 8, 16, 32, and 64 nodes. In all
cases, each node is a Xen guestVM that executes with 1 vir-
tual processor, 10GB of disk (maximum), and 1GB of mem-
ory. The physical machines that we deploy VMs to execute
with 8 processors, 1TB of disk, and 16GB of memory.

We employ a placement strategy provided by AppScale
where an additional node deploys an AppLoadBalancer (ALB)
and Database Peer (DBP), while the other nodes are desig-
nated as “open” (that is, they can be claimed for any role by
the AppController as needed). Since no Google App Engine
applications are deployed, no AppServers run in the system.
All values reported here represent the average of five runs.

For these experiments, Neptune employs AppScale 1.5,
MPICH2 1.2.1p1, X10 2.1.0, Hadoop MapReduce 0.20.0, the
DFSP implementation graciously made available by the au-
thors of the DFSP paper [9], and the dwSSA implementa-
tion graciously made available by the authors of the dwSSA
paper [7].

4.2 Experimental Results
We begin by discussing the performance of the MPI and

X10 n-queens codes within Neptune. We time the compu-
tation (including any necessary communication required for
the computation); we exclude the time to start NFS, to write
MPI configuration files, and to start prerequisite MPI ser-
vices. When applicable, we also present the parallel effi-

ciency, given by the standard formula:

E =
T1

pTp

(1)

where E denotes the parallel efficiency, T1 denotes the run-
ning time of the algorithm running on a single node, p de-
notes the number of processors used in the computation, and
Tp denotes the running time of the algorithm running on p

processors.
Figure 1 shows these trends: the MPI code’s performance

is optimal at 4 nodes, while the X10’s code performance
is optimal at 16 nodes. The X10’s n-queens code suffers
substantially at the lower numbers of nodes compared to
its MPI counterpart; this is likely due to its relatively new
work-stealing algorithm, and is believed to be improved in
subsequent versions of X10. This is also the rationale for the
larger standard deviation encountered in the X10 code. We
omit the discussion of parallel efficiency for this code: this is
because the MPI code dedicates the first node to coordinate
computation, and thus we cannot compute the time needed
to run this code on a single node (required for computing
parallel efficiencies).

0 10 20 30 40 50 60 70
0

500

1000

1500

2000

2500

3000

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

MPI
X10

Figure 1: Average running time for the n-queens

code utilizing MPI and X10 over varying numbers

of nodes. These timings include running time as

reported by the MPI and X10 codes and do not

include NFS and MPI startup and shutdown times.

MapReduce WordCount experiences a superior scale-up
compared to our MPI and X10 codes. This is largely be-
cause this MapReduce code is highly optimized by Hadoop
and does not use any communication between nodes aside
from that required for communication between the Map and
Reduce phases. Figure 2 and Table 1 show the running times
of WordCount via Neptune. Like with MPI, we measure
computation time and not the time incurred starting and
stopping Hadoop on the nodes involved.

Figure 2 and Table 1 show opposing trends compared to
the MPI results. With our MapReduce code, we see con-
sistent speedups as more nodes are added to the system,
although the impact of this is diminished as we add more
nodes to the system. This is clear from the decreasing par-
allel efficiencies, and as stated before, these speedups are
not related to MapReduce specifically but are due to the
programs evaluated here.

DFSP also benefits from parallelization and support via
Neptune and a cloud platform. This is because the DFSP

0 10 20 30 40 50 60 70
0

200

400

600

800

1000

1200

1400

1600

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Figure 2: Average running time for WordCount uti-

lizing MapReduce over varying numbers of nodes.

These timings include Hadoop MapReduce runtimes

and do not include Hadoop startup or shutdown

times.

Table 1: Parallel efficiency for WordCount using

MapReduce over varying numbers of nodes.

of Nodes Parallel Efficiency
4 0.8455
8 0.5978
16 0.5313
32 0.3591
64 0.3000

implementation used has no internode communication dur-
ing its computation and is embarrassingly parallel. This is
in contrast to the MapReduce framework, where communi-
cation occurs between the Map and Reduce phases. Figure 3
and Table 2 show the running times for 10,000 simulations
via Neptune. Unlike MapReduce and MPI, which provide
distributed runtimes, the DFSP code does not, so we time
all interactions once AppScale receives the message to be-
gin computation from Neptune until the results have been
merged on the master node.

Figure 3 and Table 2 show similar trends for the DFSP
code as seen in MapReduce WordCount. This code also sees
a consistent reduction in runtime as the number of nodes
increase, but retains a much higher parallel efficiency com-
pared to the MapReduce code. This is due to the lack of
communication within computation, as the framework needs
only to collect results once the computation is complete,
and does not need to sort or shuffle data, as is needed in
the MapReduce framework. As even less communication is
used here compared to the WordCount code, the DFSP code
exhibits a smaller standard deviation, and a standard devi-
ation that tends to decrease with respect to the number of
nodes in the system.

One final example that follows similar trends to the DFSP
code is the other Stochastic State Algorithm, dwSSA, shown
in Figure 4 and Table 3. This code achieves a reduction in
runtime with respect to the number of nodes in the system,
but does not do so at the same rate as the DFSP code, as
can be seen through the lower parallel efficiencies.

4.3 VM Reuse Analysis
Next, we perform a brief examination of the costs of the

experiments in the previous section if run over Amazon EC2,

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5
x 10

4

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Figure 3: Average running time for the DFSP code

over varying numbers of nodes. As the code used

here does not have a distributed runtime, timings

here include the time that AppScale takes to dis-

tribute work to each node and merge the individual

results.

Table 2: Parallel efficiency for the DFSP code over

varying numbers of nodes.

of Nodes Parallel Efficiency
4 0.9929
8 0.9834
16 0.9650
32 0.9216
64 0.8325

with and without the VM reuse. The VMs are configured
with 1 virtual CPU, 1 GB of memory, and a 64-bit platform.
This is similar to the Amazon EC2 “Small” machine type
(1 virtual CPU, 1.7 GB of memory, and a 32-bit platform)
which costs $0.085 per hour.

Each MapReduce, DFSP, and dwSSA experiment is run
five times at 1, 4, 8, 16, 32, and 64 nodes to produce the
data shown earlier, while each NQueens experiment is run
five times at 2, 4, 8, 16, 32, and 64 nodes. We compute the
cost of running these experiments without VM reuse (that
is, by acquiring the needed number of machines, running the
experiments, and then powering them off) compared to the
cost with VM reuse (that is, by acquiring the needed number
of machines, performing the experiment for all numbers of
nodes, and not powering them off until all runs complete).
Note that in the reuse case, we do not perform reuse between
experiments.

Table 4 shows the expected cost of running these experi-
ments with and without VM reuse. In all experiments, em-
ploying VM reuse greatly reduces the cost. This is largely
due to inefficient use of nodes without reuse: many scenarios
employ large numbers of nodes to run experiments that use
only a subset of an hour (VMs are charged for by AWS by
the hour).

5. RELATED WORK
Other works exist that provide either language support for

cloud infrastructures or automated configuration or deploy-
ment, but not both. In the former category exist projects
like SAGA [14], the RightScale Gems [20] and boto [2].
SAGA enables users to write programs in C++, Python,

0 10 20 30 40 50 60 70
0

100

200

300

400

500

600

Number of Nodes

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Figure 4: Average running time for the dwSSA code

over varying numbers of nodes. As the code used

here does not have a distributed runtime, timings

here include the time that AppScale takes to dis-

tribute work to each node and merge the individual

results.

Table 3: Parallel efficiency for the dwSSA code over

varying numbers of nodes.

of Nodes Parallel Efficiency
4 0.7906
8 0.4739
16 0.3946
32 0.2951
64 0.1468

or Java that interact with grid resources, with the recent
addition of support for cloud infrastructure interaction. A
key difference between SAGA and Neptune is that SAGA is
conceptually designed to work with grid resources, and thus
the locus of control remains squarely in that of the user. The
programming paradigm embodied here serves use cases that
favor a static number of nodes and an unchanging environ-
ment. Conversely, Neptune is conceptually designed to work
over cloud resources, and thus can elastically add or remove
resources based on the environment, which is automatically
monitored by AppScale. The RightScale Gems and boto are
similar to SAGA but only provide interaction with cloud in-
frastructures (e.g., Amazon EC2 and Eucalyptus).

In the latter category, the Nimbus Context Broker [15] au-
tomates configuration and deployment of otherwise complex
software packages in a matter similar to that of Neptune. It
acquires a set of virtual machines from a supported cloud
infrastructure and runs a given series of commands to unify
them as the user’s software requires. Conceptually, this is
similar to what Neptune offers. However, it does not offer
a language by which it can be operated, like Neptune and
SAGA. Furthermore, the Nimbus Cloud Broker, like SAGA,
does not make decisions dynamically based on the underly-
ing environment. A set of machines could not be acquired,
tested to ensure a low latency exists, and released within
a script running on Nimbus Cloud Broker. Furthermore,
it does not employ virtual machine reuse techniques such
as those seen within Neptune. This would require a closer
coupling with the supported cloud infrastructures or the use
of a middleware layer to coordinate VM scheduling, which
would effectively present a cloud platform.

Table 4: Cost to run all experiments for each type

of Neptune job, with and without reusing virtual

machines.
Type Cost with Cost without
of Job VM Reuse VM Reuse

NQueens(MPI) $12.92 $64.60
NQueens(X10) $13.01 $64.60
MapReduce $13.01 $64.18

DFSP $35.70 $78.63
dwSSA $12.84 $64.18

Total $87.48 $336.19

6. CONCLUSIONS
We contribute Neptune, a Domain Specific Language (DSL)

that abstracts away the complexities of deploying and us-
ing high performance computing services within cloud plat-
forms. We integrate support for Neptune into AppScale,
an open-source cloud platform and add cloud software sup-
port for five disparate HPC software packages: MPI, X10,
MapReduce, and the SSA packages DFSP and dwSSA. Nep-
tune allows users to deploy supported software packages over
varying numbers of nodes with minimal effort, simply, uni-
formly, and scalably.

We also contribute techniques for placement support of
critical components within cloud platforms in a way that en-
sure that running cloud software does not negatively impact
existing services. This also entails hybrid cloud placement
techniques, facilitating deployment of applications by devel-
opers across cloud infrastructures without application mod-
ification. We implement these techniques within AppScale
and provide sharing support that allows users to share the
results of Neptune jobs between one another and to pub-
lish data to the scientific community via a data tagging
system. The system is also flexible enough to allow users
to reuse Neptune job outputs as inputs to other Neptune
jobs. Neptune is open-source and can be downloaded from
http://neptune-lang.org. Users with Ruby installed can
also install Neptune directly via Ruby’s integrated software
repository by running gem install neptune. Our modifi-
cations to AppScale have been committed back to the App-
Scale project and can be found at http://appscale.cs.ucsb.edu.

7. REFERENCES
[1] Amazon Simple Storage Service (Amazon S3).

http://aws.amazon.com/s3/.

[2] Boto. http://code.google.com/p/boto/.

[3] C. Bunch, N. Chohan, C. Krintz, J. Chohan,
J. Kupferman, P. Lakhina, Y. Li, and Y. Nomura. An
Evaluation of Distributed Datastores Using the
AppScale Cloud Platform. In IEEE International
Conference on Cloud Computing, Jul. 2010.

[4] Cassandra Operations.
http://wiki.apache.org/cassandra/Operations.

[5] P. Charles, C. Grothoff, V. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and
V. Sarkar. X10: an object-oriented approach to
non-uniform cluster computing. SIGPLAN Not.,
40:519–538, October 2005.

[6] N. Chohan, C. Bunch, S. Pang, C. Krintz, N. Mostafa,
S. Soman, and R. Wolski. AppScale: Scalable and

Open AppEngine Application Development and
Deployment. In ICST International Conference on
Cloud Computing, Oct. 2009.

[7] B. J. Daigle, M. K. Roh, D. T. Gillespie, and L. R.
Petzold. Automated estimation of rare event
probabilities in biochemical systems. J. Phys. Chem.,
2011.

[8] J. Dean and S. Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. Proceedings of 6th
Symposium on Operating System Design and
Implementation(OSDI), pages 137–150, 2004.

[9] B. Drawert, M. J. Lawson, L. Petzold, and
M. Khammash. The diffusive finite state projection
algorithm for effficient simulation of the stochastic
reaction-diffusion master equation. J. Phys. Chem.,
132(7), 2010.

[10] D. T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem., 81(25):2340–2361,
1977.

[11] Hadoop Distributed File System.
http://hadoop.apache.org.

[12] Heroku Learns from Amazon EC2 Outage. http:
//searchcloudcomputing.techtarget.com/news/

1378426/Heroku-learns-from-Amazon-EC2-outage.

[13] Engaging the Missing Middle.
http://www.hpcinthecloud.com/features/

Engaging-the-Missing-Middle-in-HPC-95750644.

html.

[14] H. Kaiser, A. Merzky, S. Hirmer, G. Allen, and
E. Seidel. The SAGA C++ reference implementation:
a milestone toward new high-level grid applications. In
Proceedings of the 2006 ACM/IEEE conference on
Supercomputing, SC ’06, New York, NY, USA, 2006.
ACM.

[15] K. Keahey and T. Freeman. Nimbus or an Open
Source Cloud Platform or the Best Open Source EC2
No Money Can Buy. In Supercomputing 2008, 2008.

[16] G. Koslovski, T. T. Huu, J. Montagnat, and
P. Vicat-Blanc. Executing distributed applications on
virtualized infrastructures specified with the VXDL
language and managed by the HIPerNET framework.
In ICST International Conference on Cloud
Computing, 2009.

[17] Lustre. http://www.lustre.org/.

[18] D. Nurmi, R. Wolski, C. Grzegorczyk, G. Obertelli,
S. Soman, L. Youseff, and D. Zagorodnov. The
Eucalyptus Open-source Cloud-computing System. In
IEEE International Symposium on Cluster Computing
and the Grid, 2009. http:
//open.eucalyptus.com/documents/ccgrid2009.pdf.

[19] Pbspro home page –
http://www.altair.com/software/pbspro.htm.

[20] RightScale. RightScale Gems.
http://rightaws.rubyforge.org/.

[21] T. J. Rolfe. A Specimen MPI Application: N-Queens
in Parallel. inroads (bulletin of the ACM SIG on
Computer Science Education), 40(4), 2008.

