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Abstract - This paper 
graphical simulators used 
presents the taxonomy of 

overviews the field of 
for AUV development, 
these applications and 

proposes a classification. It also presents NEPTUNE, a 
multi-vehicle, real-time, graphical simulator based on 
OpenGL that allows hardware in the loop simulations. 

I. INTRODUCTION 

Simulation, as a tool for UUV development, plays an 
important role at different phases of the development 
process. At first steps of the design, offline simulators are 
very helpful. MATLABlSimulink is a good tool for such kind 
of simulations. Nowadays there are several toolboxes 
available to be used for marine robots, including UUVs [9]. 
Although these toolboxes are very useful for the simulation 
of robot models and control systems, they don’t reproduce 
the external world and hence, external sensors like sonar 
cannot be modelled. Therefore, intelligent control 
architectures which relay on the robot-environment 
interaction cannot be simulated. In [5], a MATLAB/Simulink 
framework including world modelling is used for the 
comparison of different intelligent control architectures for 
AUVs . Although the framework allows the simulation of the 
sonar, other external sensors like computer vision cannot 
be reproduced. In [13], a MATLABlSimulink framework is 
used for the simulation of a system for fault diagnosis and 
recovery applied to ROVs . The system uses OpenGL 3D 
graphics for world representation. Although not used for 
computer vision simulation, the system is able to reproduce 
different views including those of the onboard cameras. 
Other researchers [I ] ,  have developed a 3D simulator using 
C++ which allows the simulation of sonar and vision. Using 
the texture mapping capability of OpenGL, they project an 
image mosaic of the real environment onto the bottom 
surface. This allows a quite realistic simulation of vision 
systems. In the offline simulation, 1 second of simulation 
doesn’t last for 1 second of the reality. In some cases, the 
simulated time is much smaller than the real time [I]. This is 
of particular interest, for instance, when algorithms like GAS 
are used, since it allows the system to find a fast solution. In 
other cases [13], the simulation load is so heavy that 1 
second of simulation lasts for more that 1 second in the 
reality. In both cases, the temporal properties of the 
implemented algorithms are not taken into account. Hence, 
when the code is transferred to the actual robot, the 
temporal consistency must be checked for correctness. 

The online simulators on the other hand, ensure the time 

consistency between the simulated and the real time. 
Hence, the time properties of the simulated algorithm are 
taken into account within the simulation. Online simulation 
plays an important role in UUV development since, normally, 
only few prototypes are available for development and 
testing. With online simulators it is possible to achieve 
concurrent engineering. Hence, different engineers are able 
to develop in parallel different aspects of the control 
systems on a totally virtual reproduction of the actual robot. 
Nevertheless, the algorithm is not executed in the actual 
hardware of the robot and therefore, the time behaviour of 
the computer used for the simulation can be different from 
the one that will be used during the robot control. 

Hardware in the loop (HIL) simulators are used for 
overcoming such an inconvenience. In this case, the 
developed software is executed on the actual robot 
hardware but the robot actions are routed towards the 
simulator instead than to the real actuators. In the same 
way, the sensor readings are simulated from the outputs of 
the online simulator. In all these sort of simulation systems, 
the fidelity of the simulation depends on the accuracy of the 
robot model, the world model and the sensor models being 
used. Nevertheless, even complex models are ideal 
reproductions of the observed reality. Although some 
researchers have introduced error models which are added 
to the output of the virtual sensors, there is still a gap 
between the simulated and the real mission. 

A step forward to the real execution performance is 
achieved with the use of hybrid simulators (HS). A HS is a 
HIL simulator where the real and virtual systems operate 
together in an augmented reality environment. Then, it is 
possible, for instance, to simulate a mission where a robot 
navigates in a water tank while using virtual sonar to avoid 
virtual obstacles. HS are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof particular interest to test the 
expected performance that could be achieved when new 
sensors have to be acquired. This approach has been used 
by different authors like [I21 and [8] among others. 

Once the whole system is ready to work, 3D graphical 
simulations can still be used to operate, supervise and 
monitor (OM) the current operation of the vehicle [12,8], as 
well as for mission playback zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P) and post mission analysis. 
Another common utility is their use for operator training (TR) 
in commercial ROV systems [18, 191. 

This paper overviews the field of graphical simulators for 
AUV development and presents a new simulator called 
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NEPTUNE. The paper is organized as follows. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I ,  
the architecture of a generic simulator is described. Section 
I l l  presents the models used for robot and thrusters 
simulation. Then, Sections IV, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV and VI present the models 
used for world, environment and sensor simulation. Section 
VI1 presents the NEPTUNE simulator. Section Vlll presents 
a case of study, and finally, the conclusions are found in 
section IX. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 
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Figure 1 shows the main components of a generic 
underwater robot simulator. Light grey blocks represent 
physical components of the robotic system, white blocks 
represent their virtual counterparts, and dark grey blocks 
represent shared components working in real and virtual 
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Figure. 1 Block diagram of the robot simulator 

Hereafter, the components are briefly described: 

Real Robot: This component represents the real UUV. 
Its input is the generalized force and torque vector 
applied by the thrusters and the control planes. 

Real Sensors: This component represents de physical 
sensors used by the robot to sense its internal state, 
the state of the environment, or the underwater world. 

UUV Model: Set of nonlinear differential equations that 
describe the hydrodynamics of the UUV. 

World Model: The underwater world is composed by 
the topography of the ocean bottom, the presence of 
other underwater agents (fishes, robots, ...) and objects 
(underwater wrecks, ROV panels, structures, ...). 
Hence, the world model is composed by a data 
representation of these elements. 

Environment model: The robot is exposed to different 
physical phenomenas like tides, currents, waves ... 
which affect its performance in some way. Hence, the 
goal of this block is to simulate the environmental 
parameters which are representative for robot 
operation. 

Sensor Models: The robot state, the robot world and 
the robot environment are sensed through simulated 
robot sensors. This block contains the model of these 
sensors. 

3D Graphical engine: This block is responsible for the 
graphical representation of the real/virtual scene of the 
robot operation. 

Depending on the working mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof these blocks as well as 
their interconnections, different taxonomies can be 
achieved like: offline (OFF), online (ON), hardware in the 
loop (HIL) or hybrid simulation (HS), as well as an online 
monitoring (OM) or operator training (TR). The 
functionalities of such taxonomies have been introduced in 
the previous section. Table 1 shows the differences of such 
configurations in terms of data paths (interconnections of 
the switches shown in figure I ) ,  relationship of the real and 
the simulated time, hardware used for the execution of the 
control software, relationship of the simulated and the real 
robot software, mission playback and training capabilities 

I 9-43 I 
O M 1 6 + 7 I = I D [ - I  - I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
At=Ak? - At: Simulation time spent by and integration step; 
Ak: integration step. Hw - D: Robot hw differs from the hw 
used for the simulation: A: Actual robot hw is used durina 
the simulation; F: a Functionally equivalent hw is used for 
the simulation. Sw - D: The actual robot software differs 
from the one used in the simulation; A: Actual robot software 
is used during the simulation. Sensors/Robot - S: 
Simulated sensordrobot a r e h  used; R: Real sensors/robot 
arebs used. 

Table 1 Simulators Taxonomy. 

Ill. UUV MODEL 

The robot model estimates the robot movement as 
response to a given input. Depending on the simulation 
needs, different kind of models can be used. While for 
guidance simulations a kinematics model can be enough, 
for more realistic control simulation a full hydrodynamics 
model should be used. In the second case, the model input 
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is the force and torque exerted by the thrusters. The thruster 
models allow the prediction of such force and torque. 
Hereafter, a brief description of these models is presented. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKinematics Model 

Let {E} and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{B} be the earth and the body fixed frames 
respectively, given the robot velocity vector in the body 
frame the kinematics equation allows the computation of the 
robot position and attitude as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'q i  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ (  ' 7 )  Bv ; 'v= I'qidt 

Where Bv , and ' 7  are the acceleration and the 
position-attitude vector, and J ( € q )  is the kinematics 
transformation matrix (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9] for details). With this model 
the robot is assumed to achieve the desired velocity 
instantaneously. 

B. Hidrodynamics Model 
The non-linear hydrodynamic equation of motion of an 
underwater vehicle with 6 DOF [9], in the body fixed frame, 
can be conveniently expressed as: 

where, 
Br is the force and torque exerted by the thrusters 

are the environmental forces and torques 
MRB and MA are the inertia matrix and the added-mass 

B L j  is the acceleration 
CRB and CA are the rigid-body and the added Coriolis 

D is the damping matrix 
BG is gravity and buoyancy force and torque 

matrix 

and centripetal matrixes 

Equation (2) relates the forces exerted on the UUV with the 
acceleration and the velocity experimented by the vehicle. 
In other words, if the forces acting on the robot are known, 
equation (2) allows the estimation of the robot acceleration 
and, through integration, the computation of the velocity 
vector. Once the robot velocity is known, equation (1) can 
be used for estimating the position and attitude. 

C. Thruster Models 
Thruster models are used for predicting the force exerted by 
the thrusters. Some of them are also able to estimate the 
torque. Hereafter, the main steady state and dynamic 
thruster models are presented. 

i) Steady State Models 
Using the steady state models, the thruster is considered to 
respond instantaneously with respect to its input. Two main 
models can be distinguished: (1) the bilinear model and (2) 
the affine model. The bilinear model is a nonlinear function 
that computes the thrust as a function of the angular speed 
of the propeller (0) and the linear speed of the robot in the 
thruster direction (U): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(3) 

For low speed robots, the second term is often neglected 
and the previous model becomes the so called affine model: 

ii) Dynamic Models 
In [I71 the authors review 3 different dynamical models for 
electrically driven motor thrusters. Model 1 is a first order 
nonlinear model with state variable w and control input Q 
(motor torque): 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and p are two coefficients. Model 2 is a first order 
nonlinear model with state variables w and v,, (axial fluid 
velocity at the propeller) and control input V,,, (motor 
voltage): 

k = k,w + k2Vm - k,Q (6) 

l ip = yT - ySvp lvp 1 (7) 

where k l ,  kp, ka, y and 6 are constant coefficients. The 
rotational velocity w can be used to compute the tangential 
velocity of the blade. Using the axial fluid velocity (vp) and 
the tangential velocity (vt) the relative velocity vector 
between the fluid and the blade wing (vt0ta,) can be 
computed as well as the angle of attack (a): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vl = 0 . 7 ~ 0  ; B = atan2(vp, vl ) ; a = p - B 

(8 )  
Vt0tal = Jm 

where p is the propeller pitch. Then, lift theory is used to 
estimate lift and drag: 

L = 1 puvita,CLmax sin (2a) 

(9) 

here, p, a, CLmax and CDmax are the fluid density, the 
thrusters duct area, the lift and the drag coefficients. Then, 
from the lift and drag the thrust and torque are computed: 

If a high gain servo velocity loop is used to compensate 
the motor electro-mechanic dynamics, then a simpler model 
with the state variable is v, and control input w is suggested. 
This model, called model 3, is formulated through equations 
7 to 10. 

IV. WORLD MODEL 

In order to decide how to act, when the robot moves through 
the underwater world its sensors are used for sensing. To be 
able to simulate this behaviour, a world model is needed. 
The topographical model of the world has two goals: (1) to 
represent the virtual world in the computer screen and (2) to 
act as the input to the virtual sensors. There are two 
principal methods for underwater world encoding: (1) 
bathymetry and (2) 3D CAD-like models. A bathymetry 
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model is an elevation map consisting on a grid of altitudes 
[15]. It is a way to encode a level curves map. Any surface 
that can be represented with a two variables function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(x,y), 
can be represented by this kind of map. In fact, in [2] 
authors used mathematical functions to encode the 
bathymetry model. Nevertheless, bathymetry models 
cannot be used to represent some natural features like 
caves or some artificial structures that could be located on 
the ocean bottom. The other way to represent the virtual 
world is the use of CAD files. Most of the current 3D 
graphical packages are able to export the designs into 
VRML format. Hence, if this format is adopted it is very easy 
to edit new worlds [3]. Moreover, there are several libraries 
freely available able to parse the VRML language and 
represent the objects using OpenGL. Some times, both 
models are used together. This is the case of NEPTUNE 
(Section VII). 

V. ENVIRONMENT MODEL 

On the other hand, there are several physical variables that 
define the state of the environment: waves, wind, currents, 
temperature, and salinity within others. Temperature, for 
instance, has an important impact in the acoustics since the 
sound speed depends on it. Salinity, magnetic and 
termocline models have been reported in [7] while wave 
models have been used in [15]. Wind and waves forces 
affects only to the vehicles in the surface. Hence, for 
underwater robots, currents play the major role. For 
computer simulations is realistic enough zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9] to simulate 
currents as a random walk process. 

geometric method is very appropriate [3] since the sound 
speed remains constant. Commonly, geometric methods 
trace a ray from the sonar transducer to the environment and 
return the corresponding range [3]. An alternative method, 
considers each sonar beam as a cone with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp degrees of 
aperture. Points belonging to this cone are explored in order 
to see if they impact with objects in the vehicle surroundings, 
returning, then, the corresponding value. In this case, the 
multipath can be simulated by using a source of non-zero 
mean high variance gaussian noise which is added with a 
particular probability depending on the environment type. 
This is the case of NEPTUNE which is described in section 
VII. 

The use of realistic 3D graphical simulations allows 
nowadays making the simulation of computer vision 
systems. The virtual views generated by the 3D graphical 
engine can be used to grab images. Moreover, using texture 
mapping it is possible to use real images to generate the 
virtual scene (see [ I ]  for a nice application about the 
simulation of a cable tracking mission). Nevertheless, the 
simulation of computer vision has several drawbacks. 
Although OPENGL provides the functionality needed for fog 
simulation, it is not obvious how to simulate the turbulence 
commonly present in the underwater environment. The 
same happens with other phenomena like the forward and 
backward scattering. It should be noted that those processes 
must be simulated in real-time, which makes this problem 
even more challenging. Therefore, none of the studied 
systems (see table 2) simulate them. Instead, they simulate 
a theoretical vision sensor in a clear water. This is also the 
case of NEPTUNE. 

VI. SENSOR MODELS 

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinternal Sensors 
Internal sensors include the sensors used for measuring the 
state variables of the UUV as well as their integrals and 
derivatives. A common way to model these sensors is to use 
the corresponding output of the UUV model, sampled at the 
same frequency that the real sensors works, limited to the 
range of the sensor and using the same resolution. Some 
authors introduce noise to the measurement in order to do it 
more realistic. In [I51 the authors used a magnetic deviation 
lookup table for simulating the compass measurement. They 
also introduced a bias in the measurement and gaussian 
distributed white noise. For the modelling of the LBL, they 
proposed to use a sound speed profile together with a 
gaussian ray tracing method. In [4], the authors used a 
method for estimating the probability density function of the 
sensor noise after removing the outliers. 

Figure 2. Virtual View of NEPTUNE 

VII. NEPTUNE 

B. External Sensors 
External sensors are used for sensing the environment. 
Sonar and vision are examples of this type of sensors. Sonar 
can be simulated at different levels: (1) using the sonar 
equation together with an acoustic ray tracing algorithm 
taking into account the sound speed profile and (2) using a 
geometrical method. 

First method is based on the physics of the sound 
propagation and it is able to reproduce effects like the 
multipath. The problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis that it is computationally intensive. 
For range detection in the immediate robot surroundings, a 

NEPTUNE is a real-time graphical simulator with 
capabilities for on-line, hardware in the loop and hybrid 
simulation. Externally, the virtual world is based on two 
components: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) a VRML file containing the topography of 
the scene and (2) a set of objects also defined in VRML. 
Internally, the topography of the scene is converted into a 
bathymetry grid and the objects are considered spheres of a 
particular radius of action. This model, together with a conic 
beam sonar model allows a very simple and fast geometric 
method for obstacle and/or collision detection. Of course, 
there is a basic assumption which considers the bottom 
surface as convex. 
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NEPTUNE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5: Bathymetry; 0: set of 3 0  object models; I: Ice covert topography; H: hydrodynamics; S,: Steady State; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA: thruster affine 
model; S: Salinity field; M: Magnetic field; T: Temperature field; D: Density; C: Currents; W: Waves; OFF: Offline 
Simulation; On: Online Simulation; Hi/: Hardware in the loop Simulation; Hs: Hybrid Simulation; P: Mission Playback; OM: 
Online Monitoring; G =: Conic beam geometric mode; Gb: Single beam geometric mode; N: Not detailed; Y: Yes; 

NEPTUNE is a multi-vehicle Simulator (figure 2). Hence, 
more than one robot can be simulfaneously simulated. Each 
robot is defined through three basic files. The first is a 
VRML file containing the robot geometry. The second is a 
file which contains the robot and thruster hydrodynamics 
coefficients. For simulation, the hydrodynamic model (eq.l) 
is used. Thrusters are simulated using the affine model 
(eq.4). Finally, the third file contains the file names of the 
previous two files plus a definition of the sensors included in 
the robot (number of sonar beams, position and attitude 
within the robot frame ...). A custom developed language 
has been used for the definition of the last two files. Then, it 
is very easy to adapt NEPTUNE to simulate new robots. At 
this moment, simulated sensors include: (1) range detection 
sonar, (2) vision and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) internal sensors (position, attitude, 
speed and depth). Since this is an ongoing project, ocean 
currents and waves are no yet supported, although we plan 
to introduce them in next versions. In order to allow a real 
time performance, the application has been build as a 
distributed application including several processes: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 ) the 
NEPTUNE main program, (2) one robot dynamics process 
for each simulated robot, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) a name server. All the 
programs interact among them through a TCPllP network 
(figure 3). In Table 2 the main properties of NEPTUNE as 
well as the main properties of several surveyed graphical 
simulators are reported. 

VIII. A CASE OF STUDY 

of 350mm, designed to withstand pressures of 4 
atmospheres (30 meters depth). On the outside of the 
sphere there are two video cameras (forward and down 
looking) and thrusters (2 in X direction and 2 in Z direction). 
Due to the stability of the vehicle in pitch and roll, the robot 
has four degrees of freedom (DOF): surge, heave, sway 
and pitch. Except for the sway, the others DOFs can be 
directly controlled. The robot has two onboard PC-104 
computers. One runs the low level and high level controllers 
on a QNX real time operating system. The other runs 
computer vision algorithms on a Linux operating system. 
Both computers are connected through an Ethernet network. 
An umbilical wire is used for communication, power and 
video signal transmissions. 

For small-size, low-cost robots like URlS navigation is a 
really challenging problem to solve. Compared with the 
dimension of URIS, conventional sensors like DVLs or the 
transponders used for LBL and USBL are too big to be 
included. URlS uses the MT9 INS from XSens 
Technologies, which is a good low cost solution for attitude 
estimation. Nevertheless, as other low-cost INS it is not 
accurate enough for the localization through double 
integration of the acceleration, since the robot exhibits very 
small accelerations. Only extremely expensive and very big 
INS can be used for this purpose. For this reason, URlS 
navigation will be based on computer vision. While the 
Image mosaicking based navigation [ IO]  is modified to be 

The URlS robot (figure 4) was developed at the University 
of Girona with the aim of building a small-sized AUV. The 
hull is composed of a stainless steel sphere with a diameter 
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Name Mission Payload 
Server HMI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATv 

REAL EXECUTION VIRTUAL EXECUTION 

Figure 3 Networked architecture of URlS and NEPTUNE. 

Figure 4 URlS UUV during a pool test. 

I Note: The parameters not shown are eaual to zero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Model parameters for URlS UUV. 

~ 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA529 - 

Table 4 Thruster coefficients for URlS UUV (affine model) 

able to run in real time, a navigation system based on 
computer vision was especially developed to be used within 
our water tank. This localization system, briefly described in 
next section, was used during the experiments for the 
identification of the URlS hydrodynamic parameters which 
are shown in Table 3 and Table 4 (see [I41 for details). 

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALab Setup For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAURlS UUV 

A small water tank located in the lab is used for 
experimenting with URIS. The tank is 4.5 m. diameter and 1 
m. depth (figure 3). Although its small size, the dimensions 
are enough to run experiments in yaw, pitch and surge. 
Only heave experiments cannot be run, due to the lack of 
depth. An specially coded pattern is located in the bottom 
of the water tank. Using a down looking camera mounted in 
the robot, URlS is able to process the coded pattern images 
and estimate its position, attitude and velocity in real time [6]. 
Two more cameras are used in the setup. One provides a 
top view of the robot. The other, is an underwater camera 
located into the water tank. 

B. HI1 Simulation of URlS using NEPTUNE 

In order to be able to run a HIL simulation of URlS several 
components are needed: 

URIS.UUV: this file (figure 5) contains the robot 
definition which is composed by the file name of the URlS 
model, the file name of the VRML file containing the 
graphical 3D model of the robot, the radius of the smaller 
sphere containing the robot, the initial position of the robot 
and a list of the sonar sensors included in the robot. For 
each sensor, the maximum range, the resolution and its 
position and attitude in the robot fixed frame are defined. 

URIS.DYN: this file (figure 6) defines the robot and 
thruster models. Here, the values for the matrixes of eq. 2 
are defined for both senses: forward and backward. It 
defines de buoyancy, the buoyancy centre, the weight and 
the gravity centre. For each thruster the thrust and torque 
coefficients (eq.4) are defined together with the force and 
torque direction vectors. 

URIS.WRL: this is the VRML file generated using 
conventional software for 3D object modelling. 

URIS.MON: (figure 7) this file defines the components of 
the virtual world where the robot will move. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt defines the 
VRML file which contains the 3D topography of the world. A 
list of objects which complement the world is also provided. 
Each of these objects has its own scale factor, radius of 
influence (for obstacle detection) and position-attitude 
vector. 

Once all the files are available, a NEPTUNE project must be 
setup. The project defines the world definition file to be used 
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(URISMON), and the UUVs to be included in the simulation 
(URIS.UUV in this case, nevertheless, several UUVs can be 
included in this step). The final step consists on enabling the 
simulation. During the'execution, it is possible to open as 
views as desired and to save the images of the views in a 
file in order to build videos of the simulation. 

dynamic <uris.dyn> 
model <uris.wrl> 
scale <0.0030> 
radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<12.6> 
position <O.O 0.0 0.0 0.0 0.0 O.O> 
sensor <downward>< 
x-max <10.0> 
beta <0.3> 
inc-x <0.3> 
inc-z <0.2> 
position <0.5 0.25 0.5 0.0 -90.0 O.O> 

> 
sensor <forward>< 
x-max <10.0> 
beta <0.3> 
inc-x <0.3> 
inc-z <0.2> 
position <O.O 0.0 1.25 0.0 -30.0 O.O> 

> 

Figure 5 URIS.UUV file. 

Mf 49.4462 0.0 0.0 0.0 0.0 0.0 
0.0 59.4462 0.0 0.0 0.0 0.0 
0.0 0.0 59.4462 0.0 0.0 0.0 
0.0 0.0 0.0 1.1444 0.0 0.0 
0.0 0.0 0.0 0.0 1.1444 0.0 
0.0 0.0 0.0 0.0 0.0 1.8123> 

Mb 
~59.4462 0.0 0.0 0.0 0.0 0.0 
0.0 59.4462 0.0 0.0 0.0 0.0 
0.0 0.0 59.4462 0.0 0.0 0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0 0.0 I .I444 0.0 0.0 
0.0 0.0 0.0 0.0 1.1444 0.0 
0.0 0.0 0.0 0.0 0.0 1.8123> 

D Lf 
17.51 0.0 0.0 0.0 0.0 0.0 

' 

0.0 17.51 0.0 0.0 0.0 0.0 
0.0 0.0 17.51 0.0 0.0 0.0 
0.0 0.0 0.0 0.8090 0.0 0.0 
0.0 0.0 0.0 0.0 0.8090 0.0 
0.0 0.0 0.0 0.0 0.0 2.4> 

DLb 
< 17.51 0.0 0.0 0.0 0.0 0.0 
0.0 17.51 0.0 0.0 0.0 0.0 
0.0 0.0 17.51 0.0 0.0 0.0 
0.0 0.0 0.0 0.8090 0.0 0.0 
0.0 0.0 0.0 0.0 0.8090 0.0 
0.0 0.0 0.0 0.0 0.0 2.4> 

DQf 
< 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 

0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 o.o> 

DQb 
< 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 o.o> 

b <300.0> 
bc <O.O 0.0 -0.01 18> 
w <300.0> 
gc <o.o 0.0 02 

motor <motorO>< 
CTf ~0.00001434760~ CTb ~0.000014780836~ 
CQf <0.00000430428> CQb <0.0000044342508> 
0 <I .o 0.0 O.O> 
PA ~ 0 . 0  0.0 1 .O> 
> 

motor <motor1 >< 
CTf ~0.00001434760~ CTb ~0.000014780836~ 
CQf <-0.00000430428> CQb <-0.0000044342508> 
0 <I .o 0.0 o.o> 
PA co.0 0.0 1 .o> 
> 

motor <motor2>< 
CTf <0.00001294597> CTb ~0.0000125~ 
CQf <-0.000003883791~ CQb <-0.0000038835> 
0 <o.o 0.0 1 .o> 
PA <O.O 1 .O O.O> 
> 

motor <motor3>< 
CTf <0.00001294597> CTb <0.0000125> 
CQf ~0.000003883791~ CQb <0.0000038835> 
0 <o.o 0.0 1 .o> 
PA co.0 1 .o 0.0s 
> 

Figure 6 URIS.DYN file 

world< 
<water-tank.wrl> 
scale <2.0> 
resolution <0.01> 

> 
object< 

<underwater-camera.wrl> 
scale <0.05> 
radius <0.1> 
position ~ 0 . 0  -2.0 -4.0 0.0 0.0 O.O> 

> 

Figure 7 URIS.MON file 

IX. CONCLUSIONS 

Graphical simulators play a key role for UUV development. 
They can perform in different ways (offline, online, hardware 
in the loop and/or hybrid simulation as well as monitoring 
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and/or mission playback) depending on the application. 
They also differ in the sort of UUV, world, environment and 
sensor models they use. NEPTUNE is a real-time 3D 
graphical simulator for running online, hardware in the loop 
and hybrid simulations. It is very flexible in the sense that 
new virtual worlds and new UUV models can be added in a 
very easy way. UUVs are modelled through their 
hydrodynamic equation and thrusters are modelled using 
the affine model. The world is modelled using VRML as well 
as a bathymetry model and sonar is modelled using a 
geometric method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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