
NEPTUNE: A HIL Simulator for Multiple UUVs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
P. Ridao, E. Batlle, D. Ribas and M. Carreras

Institute of Informatics and Applications. University of Girona,
Campus de Montilivi

Girona, CP:17071, Spain
{pere,bbtalle,dri bas,marcc}@eia.udg.es zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract - This paper
graphical simulators used
presents the taxonomy of

overviews the field of
for AUV development,
these applications and

proposes a classification. It also presents NEPTUNE, a
multi-vehicle, real-time, graphical simulator based on
OpenGL that allows hardware in the loop simulations.

I. INTRODUCTION

Simulation, as a tool for UUV development, plays an
important role at different phases of the development
process. At first steps of the design, offline simulators are
very helpful. MATLABlSimulink is a good tool for such kind
of simulations. Nowadays there are several toolboxes
available to be used for marine robots, including UUVs [9].
Although these toolboxes are very useful for the simulation
of robot models and control systems, they don’t reproduce
the external world and hence, external sensors like sonar
cannot be modelled. Therefore, intelligent control
architectures which relay on the robot-environment
interaction cannot be simulated. In [5], a MATLAB/Simulink
framework including world modelling is used for the
comparison of different intelligent control architectures for
AUVs . Although the framework allows the simulation of the
sonar, other external sensors like computer vision cannot
be reproduced. In [13], a MATLABlSimulink framework is
used for the simulation of a system for fault diagnosis and
recovery applied to ROVs . The system uses OpenGL 3D
graphics for world representation. Although not used for
computer vision simulation, the system is able to reproduce
different views including those of the onboard cameras.
Other researchers [I] , have developed a 3D simulator using
C++ which allows the simulation of sonar and vision. Using
the texture mapping capability of OpenGL, they project an
image mosaic of the real environment onto the bottom
surface. This allows a quite realistic simulation of vision
systems. In the offline simulation, 1 second of simulation
doesn’t last for 1 second of the reality. In some cases, the
simulated time is much smaller than the real time [I]. This is
of particular interest, for instance, when algorithms like GAS
are used, since it allows the system to find a fast solution. In
other cases [13], the simulation load is so heavy that 1
second of simulation lasts for more that 1 second in the
reality. In both cases, the temporal properties of the
implemented algorithms are not taken into account. Hence,
when the code is transferred to the actual robot, the
temporal consistency must be checked for correctness.

The online simulators on the other hand, ensure the time

consistency between the simulated and the real time.
Hence, the time properties of the simulated algorithm are
taken into account within the simulation. Online simulation
plays an important role in UUV development since, normally,
only few prototypes are available for development and
testing. With online simulators it is possible to achieve
concurrent engineering. Hence, different engineers are able
to develop in parallel different aspects of the control
systems on a totally virtual reproduction of the actual robot.
Nevertheless, the algorithm is not executed in the actual
hardware of the robot and therefore, the time behaviour of
the computer used for the simulation can be different from
the one that will be used during the robot control.

Hardware in the loop (HIL) simulators are used for
overcoming such an inconvenience. In this case, the
developed software is executed on the actual robot
hardware but the robot actions are routed towards the
simulator instead than to the real actuators. In the same
way, the sensor readings are simulated from the outputs of
the online simulator. In all these sort of simulation systems,
the fidelity of the simulation depends on the accuracy of the
robot model, the world model and the sensor models being
used. Nevertheless, even complex models are ideal
reproductions of the observed reality. Although some
researchers have introduced error models which are added
to the output of the virtual sensors, there is still a gap
between the simulated and the real mission.

A step forward to the real execution performance is
achieved with the use of hybrid simulators (HS). A HS is a
HIL simulator where the real and virtual systems operate
together in an augmented reality environment. Then, it is
possible, for instance, to simulate a mission where a robot
navigates in a water tank while using virtual sonar to avoid
virtual obstacles. HS are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof particular interest to test the
expected performance that could be achieved when new
sensors have to be acquired. This approach has been used
by different authors like [I21 and [8] among others.

Once the whole system is ready to work, 3D graphical
simulations can still be used to operate, supervise and
monitor (OM) the current operation of the vehicle [12,8], as
well as for mission playback zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(P) and post mission analysis.
Another common utility is their use for operator training (TR)
in commercial ROV systems [18, 191.

This paper overviews the field of graphical simulators for
AUV development and presents a new simulator called

0-7803-8669-8/04/$20.00 02004 IEEE. - 524 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:02:24 UTC from IEEE Xplore. Restrictions apply.

NEPTUNE. The paper is organized as follows. In Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I ,
the architecture of a generic simulator is described. Section
I l l presents the models used for robot and thrusters
simulation. Then, Sections IV, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV and VI present the models
used for world, environment and sensor simulation. Section
VI1 presents the NEPTUNE simulator. Section Vlll presents
a case of study, and finally, the conclusions are found in
section IX. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm

l-0
ti

No

No

No

No

Yes

Yes

I I . SIMULATOR ARCHITECTURE

0 0
x m

Yes

Yes

Yes

Yes

Yes

Yes

Figure 1 shows the main components of a generic
underwater robot simulator. Light grey blocks represent
physical components of the robotic system, white blocks
represent their virtual counterparts, and dark grey blocks
represent shared components working in real and virtual

HS

TR

1

4,5-+7 = A A S&R S&R
9 , 1 0 4

1-3
4-7 = D A S S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I '
Figure. 1 Block diagram of the robot simulator

Hereafter, the components are briefly described:

Real Robot: This component represents the real UUV.
Its input is the generalized force and torque vector
applied by the thrusters and the control planes.

Real Sensors: This component represents de physical
sensors used by the robot to sense its internal state,
the state of the environment, or the underwater world.

UUV Model: Set of nonlinear differential equations that
describe the hydrodynamics of the UUV.

World Model: The underwater world is composed by
the topography of the ocean bottom, the presence of
other underwater agents (fishes, robots, ...) and objects
(underwater wrecks, ROV panels, structures, ...).
Hence, the world model is composed by a data
representation of these elements.

Environment model: The robot is exposed to different
physical phenomenas like tides, currents, waves ...
which affect its performance in some way. Hence, the
goal of this block is to simulate the environmental
parameters which are representative for robot
operation.

Sensor Models: The robot state, the robot world and
the robot environment are sensed through simulated
robot sensors. This block contains the model of these
sensors.

3D Graphical engine: This block is responsible for the
graphical representation of the real/virtual scene of the
robot operation.

Depending on the working mode zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof these blocks as well as
their interconnections, different taxonomies can be
achieved like: offline (OFF), online (ON), hardware in the
loop (HIL) or hybrid simulation (HS), as well as an online
monitoring (OM) or operator training (TR). The
functionalities of such taxonomies have been introduced in
the previous section. Table 1 shows the differences of such
configurations in terms of data paths (interconnections of
the switches shown in figure I) , relationship of the real and
the simulated time, hardware used for the execution of the
control software, relationship of the simulated and the real
robot software, mission playback and training capabilities

I 9-43 I
O M 1 6 + 7 I = I D [- I - I - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
At=Ak? - At: Simulation time spent by and integration step;
Ak: integration step. Hw - D: Robot hw differs from the hw
used for the simulation: A: Actual robot hw is used durina
the simulation; F: a Functionally equivalent hw is used for
the simulation. Sw - D: The actual robot software differs
from the one used in the simulation; A: Actual robot software
is used during the simulation. Sensors/Robot - S:
Simulated sensordrobot a r e h used; R: Real sensors/robot
arebs used.

Table 1 Simulators Taxonomy.

Ill. UUV MODEL

The robot model estimates the robot movement as
response to a given input. Depending on the simulation
needs, different kind of models can be used. While for
guidance simulations a kinematics model can be enough,
for more realistic control simulation a full hydrodynamics
model should be used. In the second case, the model input

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA525 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:02:24 UTC from IEEE Xplore. Restrictions apply.

is the force and torque exerted by the thrusters. The thruster
models allow the prediction of such force and torque.
Hereafter, a brief description of these models is presented. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAKinematics Model

Let {E} and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{B} be the earth and the body fixed frames
respectively, given the robot velocity vector in the body
frame the kinematics equation allows the computation of the
robot position and attitude as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

'q i = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ (' 7) Bv ; 'v= I'qidt

Where Bv , and ' 7 are the acceleration and the
position-attitude vector, and J (€ q) is the kinematics
transformation matrix (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9] for details). With this model
the robot is assumed to achieve the desired velocity
instantaneously.

B. Hidrodynamics Model
The non-linear hydrodynamic equation of motion of an
underwater vehicle with 6 DOF [9], in the body fixed frame,
can be conveniently expressed as:

where,
Br is the force and torque exerted by the thrusters

are the environmental forces and torques
MRB and MA are the inertia matrix and the added-mass

B L j is the acceleration
CRB and CA are the rigid-body and the added Coriolis

D is the damping matrix
BG is gravity and buoyancy force and torque

matrix

and centripetal matrixes

Equation (2) relates the forces exerted on the UUV with the
acceleration and the velocity experimented by the vehicle.
In other words, if the forces acting on the robot are known,
equation (2) allows the estimation of the robot acceleration
and, through integration, the computation of the velocity
vector. Once the robot velocity is known, equation (1) can
be used for estimating the position and attitude.

C. Thruster Models
Thruster models are used for predicting the force exerted by
the thrusters. Some of them are also able to estimate the
torque. Hereafter, the main steady state and dynamic
thruster models are presented.

i) Steady State Models
Using the steady state models, the thruster is considered to
respond instantaneously with respect to its input. Two main
models can be distinguished: (1) the bilinear model and (2)
the affine model. The bilinear model is a nonlinear function
that computes the thrust as a function of the angular speed
of the propeller (0) and the linear speed of the robot in the
thruster direction (U): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(3)

For low speed robots, the second term is often neglected
and the previous model becomes the so called affine model:

ii) Dynamic Models
In [I71 the authors review 3 different dynamical models for
electrically driven motor thrusters. Model 1 is a first order
nonlinear model with state variable w and control input Q
(motor torque):

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and p are two coefficients. Model 2 is a first order
nonlinear model with state variables w and v,, (axial fluid
velocity at the propeller) and control input V,,, (motor
voltage):

k = k,w + k2Vm - k,Q (6)

l ip = yT - ySvp lvp 1 (7)

where k l , kp, ka, y and 6 are constant coefficients. The
rotational velocity w can be used to compute the tangential
velocity of the blade. Using the axial fluid velocity (vp) and
the tangential velocity (vt) the relative velocity vector
between the fluid and the blade wing (vt0ta,) can be
computed as well as the angle of attack (a): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
vl = 0 . 7 ~ 0 ; B = atan2(vp, vl) ; a = p - B

(8)
Vt0tal = Jm

where p is the propeller pitch. Then, lift theory is used to
estimate lift and drag:

L = 1 puvita,CLmax sin (2a)

(9)

here, p, a, CLmax and CDmax are the fluid density, the
thrusters duct area, the lift and the drag coefficients. Then,
from the lift and drag the thrust and torque are computed:

If a high gain servo velocity loop is used to compensate
the motor electro-mechanic dynamics, then a simpler model
with the state variable is v, and control input w is suggested.
This model, called model 3, is formulated through equations
7 to 10.

IV. WORLD MODEL

In order to decide how to act, when the robot moves through
the underwater world its sensors are used for sensing. To be
able to simulate this behaviour, a world model is needed.
The topographical model of the world has two goals: (1) to
represent the virtual world in the computer screen and (2) to
act as the input to the virtual sensors. There are two
principal methods for underwater world encoding: (1)
bathymetry and (2) 3D CAD-like models. A bathymetry

- 526 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:02:24 UTC from IEEE Xplore. Restrictions apply.

model is an elevation map consisting on a grid of altitudes
[15]. It is a way to encode a level curves map. Any surface
that can be represented with a two variables function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh(x,y),
can be represented by this kind of map. In fact, in [2]
authors used mathematical functions to encode the
bathymetry model. Nevertheless, bathymetry models
cannot be used to represent some natural features like
caves or some artificial structures that could be located on
the ocean bottom. The other way to represent the virtual
world is the use of CAD files. Most of the current 3D
graphical packages are able to export the designs into
VRML format. Hence, if this format is adopted it is very easy
to edit new worlds [3]. Moreover, there are several libraries
freely available able to parse the VRML language and
represent the objects using OpenGL. Some times, both
models are used together. This is the case of NEPTUNE
(Section VII).

V. ENVIRONMENT MODEL

On the other hand, there are several physical variables that
define the state of the environment: waves, wind, currents,
temperature, and salinity within others. Temperature, for
instance, has an important impact in the acoustics since the
sound speed depends on it. Salinity, magnetic and
termocline models have been reported in [7] while wave
models have been used in [15]. Wind and waves forces
affects only to the vehicles in the surface. Hence, for
underwater robots, currents play the major role. For
computer simulations is realistic enough zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9] to simulate
currents as a random walk process.

geometric method is very appropriate [3] since the sound
speed remains constant. Commonly, geometric methods
trace a ray from the sonar transducer to the environment and
return the corresponding range [3]. An alternative method,
considers each sonar beam as a cone with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp degrees of
aperture. Points belonging to this cone are explored in order
to see if they impact with objects in the vehicle surroundings,
returning, then, the corresponding value. In this case, the
multipath can be simulated by using a source of non-zero
mean high variance gaussian noise which is added with a
particular probability depending on the environment type.
This is the case of NEPTUNE which is described in section
VII.

The use of realistic 3D graphical simulations allows
nowadays making the simulation of computer vision
systems. The virtual views generated by the 3D graphical
engine can be used to grab images. Moreover, using texture
mapping it is possible to use real images to generate the
virtual scene (see [I] for a nice application about the
simulation of a cable tracking mission). Nevertheless, the
simulation of computer vision has several drawbacks.
Although OPENGL provides the functionality needed for fog
simulation, it is not obvious how to simulate the turbulence
commonly present in the underwater environment. The
same happens with other phenomena like the forward and
backward scattering. It should be noted that those processes
must be simulated in real-time, which makes this problem
even more challenging. Therefore, none of the studied
systems (see table 2) simulate them. Instead, they simulate
a theoretical vision sensor in a clear water. This is also the
case of NEPTUNE.

VI. SENSOR MODELS

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAinternal Sensors
Internal sensors include the sensors used for measuring the
state variables of the UUV as well as their integrals and
derivatives. A common way to model these sensors is to use
the corresponding output of the UUV model, sampled at the
same frequency that the real sensors works, limited to the
range of the sensor and using the same resolution. Some
authors introduce noise to the measurement in order to do it
more realistic. In [I51 the authors used a magnetic deviation
lookup table for simulating the compass measurement. They
also introduced a bias in the measurement and gaussian
distributed white noise. For the modelling of the LBL, they
proposed to use a sound speed profile together with a
gaussian ray tracing method. In [4], the authors used a
method for estimating the probability density function of the
sensor noise after removing the outliers.

Figure 2. Virtual View of NEPTUNE

VII. NEPTUNE

B. External Sensors
External sensors are used for sensing the environment.
Sonar and vision are examples of this type of sensors. Sonar
can be simulated at different levels: (1) using the sonar
equation together with an acoustic ray tracing algorithm
taking into account the sound speed profile and (2) using a
geometrical method.

First method is based on the physics of the sound
propagation and it is able to reproduce effects like the
multipath. The problem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis that it is computationally intensive.
For range detection in the immediate robot surroundings, a

NEPTUNE is a real-time graphical simulator with
capabilities for on-line, hardware in the loop and hybrid
simulation. Externally, the virtual world is based on two
components: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) a VRML file containing the topography of
the scene and (2) a set of objects also defined in VRML.
Internally, the topography of the scene is converted into a
bathymetry grid and the objects are considered spheres of a
particular radius of action. This model, together with a conic
beam sonar model allows a very simple and fast geometric
method for obstacle and/or collision detection. Of course,
there is a basic assumption which considers the bottom
surface as convex.

- 527 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:02:24 UTC from IEEE Xplore. Restrictions apply.

NEPTUNE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5: Bathymetry; 0: set of 3 0 object models; I: Ice covert topography; H: hydrodynamics; S,: Steady State; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA: thruster affine
model; S: Salinity field; M: Magnetic field; T: Temperature field; D: Density; C: Currents; W: Waves; OFF: Offline
Simulation; On: Online Simulation; Hi/: Hardware in the loop Simulation; Hs: Hybrid Simulation; P: Mission Playback; OM:
Online Monitoring; G =: Conic beam geometric mode; Gb: Single beam geometric mode; N: Not detailed; Y: Yes;

NEPTUNE is a multi-vehicle Simulator (figure 2). Hence,
more than one robot can be simulfaneously simulated. Each
robot is defined through three basic files. The first is a
VRML file containing the robot geometry. The second is a
file which contains the robot and thruster hydrodynamics
coefficients. For simulation, the hydrodynamic model (eq.l)
is used. Thrusters are simulated using the affine model
(eq.4). Finally, the third file contains the file names of the
previous two files plus a definition of the sensors included in
the robot (number of sonar beams, position and attitude
within the robot frame ...). A custom developed language
has been used for the definition of the last two files. Then, it
is very easy to adapt NEPTUNE to simulate new robots. At
this moment, simulated sensors include: (1) range detection
sonar, (2) vision and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) internal sensors (position, attitude,
speed and depth). Since this is an ongoing project, ocean
currents and waves are no yet supported, although we plan
to introduce them in next versions. In order to allow a real
time performance, the application has been build as a
distributed application including several processes: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1) the
NEPTUNE main program, (2) one robot dynamics process
for each simulated robot, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(3) a name server. All the
programs interact among them through a TCPllP network
(figure 3). In Table 2 the main properties of NEPTUNE as
well as the main properties of several surveyed graphical
simulators are reported.

VIII. A CASE OF STUDY

of 350mm, designed to withstand pressures of 4
atmospheres (30 meters depth). On the outside of the
sphere there are two video cameras (forward and down
looking) and thrusters (2 in X direction and 2 in Z direction).
Due to the stability of the vehicle in pitch and roll, the robot
has four degrees of freedom (DOF): surge, heave, sway
and pitch. Except for the sway, the others DOFs can be
directly controlled. The robot has two onboard PC-104
computers. One runs the low level and high level controllers
on a QNX real time operating system. The other runs
computer vision algorithms on a Linux operating system.
Both computers are connected through an Ethernet network.
An umbilical wire is used for communication, power and
video signal transmissions.

For small-size, low-cost robots like URlS navigation is a
really challenging problem to solve. Compared with the
dimension of URIS, conventional sensors like DVLs or the
transponders used for LBL and USBL are too big to be
included. URlS uses the MT9 INS from XSens
Technologies, which is a good low cost solution for attitude
estimation. Nevertheless, as other low-cost INS it is not
accurate enough for the localization through double
integration of the acceleration, since the robot exhibits very
small accelerations. Only extremely expensive and very big
INS can be used for this purpose. For this reason, URlS
navigation will be based on computer vision. While the
Image mosaicking based navigation [IO] is modified to be

The URlS robot (figure 4) was developed at the University
of Girona with the aim of building a small-sized AUV. The
hull is composed of a stainless steel sphere with a diameter

- 528 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:02:24 UTC from IEEE Xplore. Restrictions apply.

Name Mission Payload
Server HMI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATv

REAL EXECUTION VIRTUAL EXECUTION

Figure 3 Networked architecture of URlS and NEPTUNE.

Figure 4 URlS UUV during a pool test.

I Note: The parameters not shown are eaual to zero zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 Model parameters for URlS UUV.

~

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA529 -

Table 4 Thruster coefficients for URlS UUV (affine model)

able to run in real time, a navigation system based on
computer vision was especially developed to be used within
our water tank. This localization system, briefly described in
next section, was used during the experiments for the
identification of the URlS hydrodynamic parameters which
are shown in Table 3 and Table 4 (see [I41 for details).

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALab Setup For zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAURlS UUV

A small water tank located in the lab is used for
experimenting with URIS. The tank is 4.5 m. diameter and 1
m. depth (figure 3). Although its small size, the dimensions
are enough to run experiments in yaw, pitch and surge.
Only heave experiments cannot be run, due to the lack of
depth. An specially coded pattern is located in the bottom
of the water tank. Using a down looking camera mounted in
the robot, URlS is able to process the coded pattern images
and estimate its position, attitude and velocity in real time [6].
Two more cameras are used in the setup. One provides a
top view of the robot. The other, is an underwater camera
located into the water tank.

B. HI1 Simulation of URlS using NEPTUNE

In order to be able to run a HIL simulation of URlS several
components are needed:

URIS.UUV: this file (figure 5) contains the robot
definition which is composed by the file name of the URlS
model, the file name of the VRML file containing the
graphical 3D model of the robot, the radius of the smaller
sphere containing the robot, the initial position of the robot
and a list of the sonar sensors included in the robot. For
each sensor, the maximum range, the resolution and its
position and attitude in the robot fixed frame are defined.

URIS.DYN: this file (figure 6) defines the robot and
thruster models. Here, the values for the matrixes of eq. 2
are defined for both senses: forward and backward. It
defines de buoyancy, the buoyancy centre, the weight and
the gravity centre. For each thruster the thrust and torque
coefficients (eq.4) are defined together with the force and
torque direction vectors.

URIS.WRL: this is the VRML file generated using
conventional software for 3D object modelling.

URIS.MON: (figure 7) this file defines the components of
the virtual world where the robot will move. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIt defines the
VRML file which contains the 3D topography of the world. A
list of objects which complement the world is also provided.
Each of these objects has its own scale factor, radius of
influence (for obstacle detection) and position-attitude
vector.

Once all the files are available, a NEPTUNE project must be
setup. The project defines the world definition file to be used

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:02:24 UTC from IEEE Xplore. Restrictions apply.

(URISMON), and the UUVs to be included in the simulation
(URIS.UUV in this case, nevertheless, several UUVs can be
included in this step). The final step consists on enabling the
simulation. During the'execution, it is possible to open as
views as desired and to save the images of the views in a
file in order to build videos of the simulation.

dynamic <uris.dyn>
model <uris.wrl>
scale <0.0030>
radius zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA<12.6>
position <O.O 0.0 0.0 0.0 0.0 O.O>
sensor <downward><
x-max <10.0>
beta <0.3>
inc-x <0.3>
inc-z <0.2>
position <0.5 0.25 0.5 0.0 -90.0 O.O>

>
sensor <forward><
x-max <10.0>
beta <0.3>
inc-x <0.3>
inc-z <0.2>
position <O.O 0.0 1.25 0.0 -30.0 O.O>

>

Figure 5 URIS.UUV file.

Mf 49.4462 0.0 0.0 0.0 0.0 0.0
0.0 59.4462 0.0 0.0 0.0 0.0
0.0 0.0 59.4462 0.0 0.0 0.0
0.0 0.0 0.0 1.1444 0.0 0.0
0.0 0.0 0.0 0.0 1.1444 0.0
0.0 0.0 0.0 0.0 0.0 1.8123>

Mb
~59.4462 0.0 0.0 0.0 0.0 0.0
0.0 59.4462 0.0 0.0 0.0 0.0
0.0 0.0 59.4462 0.0 0.0 0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0 0.0 I .I444 0.0 0.0
0.0 0.0 0.0 0.0 1.1444 0.0
0.0 0.0 0.0 0.0 0.0 1.8123>

D Lf
17.51 0.0 0.0 0.0 0.0 0.0

'

0.0 17.51 0.0 0.0 0.0 0.0
0.0 0.0 17.51 0.0 0.0 0.0
0.0 0.0 0.0 0.8090 0.0 0.0
0.0 0.0 0.0 0.0 0.8090 0.0
0.0 0.0 0.0 0.0 0.0 2.4>

DLb
< 17.51 0.0 0.0 0.0 0.0 0.0
0.0 17.51 0.0 0.0 0.0 0.0
0.0 0.0 17.51 0.0 0.0 0.0
0.0 0.0 0.0 0.8090 0.0 0.0
0.0 0.0 0.0 0.0 0.8090 0.0
0.0 0.0 0.0 0.0 0.0 2.4>

DQf
< 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 o.o>

DQb
< 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 o.o>

b <300.0>
bc <O.O 0.0 -0.01 18>
w <300.0>
gc <o.o 0.0 02

motor <motorO><
CTf ~0.00001434760~ CTb ~0.000014780836~
CQf <0.00000430428> CQb <0.0000044342508>
0 <I .o 0.0 O.O>
PA ~ 0 . 0 0.0 1 .O>
>

motor <motor1 ><
CTf ~0.00001434760~ CTb ~0.000014780836~
CQf <-0.00000430428> CQb <-0.0000044342508>
0 <I .o 0.0 o.o>
PA co.0 0.0 1 .o>
>

motor <motor2><
CTf <0.00001294597> CTb ~0.0000125~
CQf <-0.000003883791~ CQb <-0.0000038835>
0 <o.o 0.0 1 .o>
PA <O.O 1 .O O.O>
>

motor <motor3><
CTf <0.00001294597> CTb <0.0000125>
CQf ~0.000003883791~ CQb <0.0000038835>
0 <o.o 0.0 1 .o>
PA co.0 1 .o 0.0s
>

Figure 6 URIS.DYN file

world<
<water-tank.wrl>
scale <2.0>
resolution <0.01>

>
object<

<underwater-camera.wrl>
scale <0.05>
radius <0.1>
position ~ 0 . 0 -2.0 -4.0 0.0 0.0 O.O>

>

Figure 7 URIS.MON file

IX. CONCLUSIONS

Graphical simulators play a key role for UUV development.
They can perform in different ways (offline, online, hardware
in the loop and/or hybrid simulation as well as monitoring

- 530 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:02:24 UTC from IEEE Xplore. Restrictions apply.

and/or mission playback) depending on the application.
They also differ in the sort of UUV, world, environment and
sensor models they use. NEPTUNE is a real-time 3D
graphical simulator for running online, hardware in the loop
and hybrid simulations. It is very flexible in the sense that
new virtual worlds and new UUV models can be added in a
very easy way. UUVs are modelled through their
hydrodynamic equation and thrusters are modelled using
the affine model. The world is modelled using VRML as well
as a bathymetry model and sonar is modelled using a
geometric method. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Acknowledgments

Authors want to thanks Dani Ferres, Narcis Palomeras and
Emili Hernandez for their help with the implementation of
different versions of NEPTUNE.
This research was sponsored by the Spanish commission
MCYT (DP12001-2311-C03-01).

REFERENCES

[I] Antich J. and Ortiz A., “Experimental Evaluation of the
Control Architecture for an Underwater Cable Tracker”,
6th IFAC MCMC, Girona (Spain), pp.140-165,
September 2003.
Borges de Sousa J. and Gdllu A. “A Simulation
Environment For The Coordinated Operation Of Multiple
Autonomous Underwater Vehicles”, Winter Simulation
Conference, Atlanta (USA), pp. 1169-1 175, December
1997.
Brutzman D.P., “A Virtual World for an Autonomous
Underwater Vehicle”, Phd. Thesis, Monterey (USA), Dec.
1994.
Bruzzone Ga., et al, “A Simulation Environment for
Unmanned Underwater Vehicles Development“,
MTSIIEEE Oceans 2001, Honolulu (USA), pp.
1066-1072, November 2001.
Carreras M. et al.. “An overview on behaviour-based
methods for AUV control”, 5th IFAC Manoeuvring and
Control of Marine Crafts, Alborg (Denmark), pp. 141-146,
August 2000.
M. Carreras. et al.. “Vision-based Localization of an
Underwater Robot in a Structured Environment“, IEEE
International Conference on Robotics and Automation
ICRA’03, Taipei (Taiwan), September 2003.
Chappell S.G. et al., “Cooperative AUV Development
Concept (CADCON) An Environment for High-Level
Multiple AUV Simulation”, 1 I th International Symposium
on Unmanned Untethered Submersible Technology,
Durham (USA), pp.112-120, August 1999.
Choi S.K., et al., “Distributed Virtual Environment

Collaborative Simulator for Underwater Robots”,
IEEElRSJ Int. Conf. on Robots and Systems,
Takamatsu (Japan), pp 861-866, November 2000.
Fossen, T.1, “Marine Control Systems: Guidance,

Navigation and Control of Ships, Rigs and Underwater
Vehicles”, Marine Cybernetics AS, Trondheim,
December 2002.

Practice, vol. 6, no. 5, pp. 653-660, 1998.
[I21 Y. Kuroda, et al., “AUV Test using RealNirtual

Synthetic World”, IEEE Symp. on Autonomous
Underwater Vehicle Technology, Monterey (USA),
pp.365-372, June 1996.

[I31 Omerdic, E. et al., “Fault Detection and
Accommodation for ROVS”, 6th IFAC MCMC, Girona
(Spain), pp.155-160. Sept. 2003.

[I41 P. Ridao, A. Tiano, A. El-Fakdi, M. Carreras and A.
Zirilli, “On the identification of non-linear models of
unmanned underwater vehicles”, Control Engineering
Practice, Vol. 12, Issue 12 , Pages 1483-1499,
December 2004.

[I51 Song zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF. et al., “Modeling and simulation of autonomous
underwater vehicles: design and implementation”, IEEE
Journal of Oceanic Engineering, Vol. 28, Issue: 2,
pp.283-296, April 2003.

[I61 Tuohy S. T., “A Simulation Model for AUV
Navigation,” IEEE Oceanic Engineering Society
Conference Autonomous Underwater Vehicles,
Cambridge (USA), pp. 470-478, July 1994.

[I 71 Whitcomb L.L.and Yoerger D. R., “Development,
comparison, and preliminary experimental validation of
nonlinear dynamic thruster models”, IEEE Journal of
Oceanic Engineering, Vol. 24, Issue: 4, pp.481-494,
October 1999.

[I81 ROV Pilot Trainer Web page, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
hiiD://www. underwater. pq. Qda . p//O I ro v. htm , accessed
on 31/08/2004.

http://rovolution. CO. uwqrlhomepaqe. htm, accessed on
31/08/2004.

[I 91 ROVolution Web page,

[IO] Garcia, R. et al., “Towards a Real-Time Vision-Based
Navigation System for a Small-Class UUV,” IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS), Las Vegas (USA), October 2003.

[Ill Gracanin et al., “Virtual Environment Testbed for
Autonomous Underwater Vehicles”, Control Engineering

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA531 -

Authorized licensed use limited to: UNIVERSITAT DE GIRONA. Downloaded on April 26,2010 at 12:02:24 UTC from IEEE Xplore. Restrictions apply.

http://rovolution

