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Abstract

Recent advances have shown that symmetry, a structural

prior that most objects exhibit, can support a variety of

single-view 3D understanding tasks. However, detecting 3D

symmetry from an image remains a challenging task. Previ-

ous works either assume the symmetry is given or detect the

symmetry with a heuristic-based method. In this paper, we

present NeRD, a Neural 3D Reflection Symmetry Detector,

which combines the strength of learning-based recognition

and geometry-based reconstruction to accurately recover

the normal direction of objects’ mirror planes. Specifically,

we enumerate the symmetry planes with a coarse-to-fine

strategy and find the best ones by building 3D cost volumes

to examine the intra-image pixel correspondence from the

symmetry. Our experiments show that the symmetry planes

detected with our method are significantly more accurate

than the planes from direct CNN regression on both syn-

thetic and real datasets. More importantly, we also demon-

strate that the detected symmetry can be used to improve the

performance of downstream tasks such as pose estimation

and depth map regression by a wide margin over existing

methods. The code of this paper has been made public at

https://github.com/zhou13/nerd .

1. Introduction

Recovering the 3D orientation of objects in an image is
a fundamental problem in 3D vision, which plays important
roles in tasks such as robotics, autonomous driving, virtual
reality (VR), augmented reality (AR), and 3D scene under-
standing. Traditionally, such a problem is hard to solve. Re-
searchers can to RGB-D input captured with time-of-flight
cameras or structured light [5, 27, 29]. Unfortunately, depth
cameras often have limited range and can be interfered with
by other light sources, and the requirement of owning a depth
camera is inconvenient for average users, which severely re-
stricts its applications.

Recent advances in convolutional neural networks in ob-
ject detection and instance segmentation have shown good
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Figure 1: Illustration of the symmetry detection process in NeRD.
For each pixel, we enumerate its depth and warp features along the
line according to the symmetry plane hypothesis. If the hypothesis
is correct, there should be matched features for most of the pixels.

potential in inferring object-level information from RGB im-
ages by leveraging supervised learning. Nowadays, single-
view neural network-based methods are able to predict the
object pose under different settings. Some work explores
the instance-level 3D pose estimation problem [21, 28, 32]
in which the CAD models of the objects are known before-
hand. However, these settings are rather limited because
in practice we do not have CAD models for many objects.
Therefore, other work tries to tackle the category-level 3D

pose estimation problem [4, 25, 39] without relying on the
exact CAD models of objects. Unlike the cases where either
depth information or CAD models are available, previous
single-view category-level 3D pose estimation methods can
hardly exploit the geometric constraints between the input
RGB image and the 3D shape and predict the pose solely by
interpolating the training data. Hence, such formulation is
ill-posed, which leads to inaccurate pose recovery [31].

To address this difficulty, we identify a structure that com-
monly exists in man-made objects, the reflection symmetry,
as a geometric connection between the object poses and the
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images. We observe that the canonical space of objects
often is determined by aligning the Y-Z plane to the symme-
try planes of objects [2, 30], so the normal direction of the
symmetry plane encodes most of the geometric information
regarding the pose of the object. To this end, we propose
the NeRD network to detect the reflection symmetry from
RGB images. NeRD combines the strength of learning-based
recognition and geometry-based reconstruction methods. It
first enumerates the normal direction of the mirror plane
from the image with a coarse-to-fine strategy and then veri-
fies their correctness with a geometric-based neural network.
More specifically, we incorporate the concept of reflection
symmetry into deep networks through plane-sweep cost vol-
umes built from features of corresponding pixels, as shown
in Figure 1. This allows us to accurately recover the normal
direction of the mirror plane under the principle of shape-
from-symmetry [13].

The network (see Figure 3) consists of a backbone fea-
ture extractor, a differentiable warping module for building
the 3D cost volumes, and a cost volume network. This
framework naturally enables neural networks to utilize the
information from corresponding pixels of reflection sym-
metry inside a single image. We evaluate our method on
the ShapeNet dataset [2] and Pix3D dataset [30]. Exten-
sive comparisons and analysis show that by detecting and
utilizing intra-image pixel correspondence from reflection
symmetry, our method has better accuracy for recovering
the normal direction of the symmetry plane and hence the
object pose, even when the object is not perfectly symmetric.

Our main contributions are summarized as below:
• we identify the problem of learning neural 3D reflection

symmetry detector, in which the intra-image pixel cor-
respondence of symmetry can be utilized for accurate
plane normal estimation;

• we propose a novel framework that leverages single-
view dense feature matching to estimate symmetry
planes, significantly outperforming previous methods;

• we show that the learned symmetry planes benefit
tremendously a variety of downstream tasks, includ-
ing single-view pose recovery and depth estimation.

2. Related Work

3D Reflection Symmetry. For many years, scientists from
vision science and psychology have found that symmetry
plays an important role in the human vision system [33,35].
People have exploited different kinds of symmetry for tasks
such as texture impainting [20], unsupervised shape recover-
ing [38], and image manipulation [45]. Researchers have uti-
lized the correspondences of symmetry to reconstruct shapes
in different representations, such as points [13], curves [14],
and recent deep implicit fields [41]. However, these methods
either assume that the input camera pose or the symmetry
plane is given or require its correspondence points. This

(a) 2D reflection symmetry (b) 3D reflection symmetry

Figure 2: Examples of 2D and 3D reflection symmetry reconstruc-
tion. 2D symmetries are not helpful for 3D understading due to
lack of perspective distortion.

is because detecting 3D symmetry from a single view is
challenging.

Symmetry Detection. [8] is a recent survey of existing
2D/3D symmetry detection methods. On one hand, most of
the geometry-based symmetry detection methods use hand-
crafted features and only work for 2D planar and front-facing
objects [19,22,44] as shown in Figure 2a. The extracted 2D
symmetry axes and correspondences cannot provide enough
geometric cues for depth reconstruction. In order to make
reflection symmetry useful for depth reconstruction, it is
necessary to detect the 3D mirror plane and corresponding
points of symmetric objects (Figure 2b) from perspective
images. On the other hand, recent single-image processing
neural networks [2,15,36,42,46] can approximately recover
the camera orientation with respect to the canonical pose,
which gives a mirror plane of symmetry. However, the cam-
era poses from those data-driven networks are not accurate
enough [9], because they cannot exploit the geometric con-
straints of symmetry. To remedy the above issues, our NeRD
tries to take the best of both worlds. The proposed method
first detects the 3D mirror plane of a symmetric object from
an image and then recovers the depth map by finding the
pixel-wise correspondence with respect to the symmetry
plane, all of which are supported with geometric principles.
Our experiment (Section 4) shows that NeRD is indeed much
more accurate for 3D symmetry plane detection, compared
to previous learning-based methods [40, 46].

Learning-Based Single-Image 3D Understanding. In-
spired by the success of CNNs in image classification and
object detection, multiple single-view learning-based 3D
understanding tasks have been explored, including depth
estimation [3, 7], camera pose recovery, etc. Although
these methods demonstrate promising results on benchmark
datasets, the inferred results are not accurate enough for most
subsequent 3D reconstruction purposes. To alleviate this is-
sue, our method leverages the symmetry prior by matching
pixel-level features for accurate single-view 3D understand-
ing.
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Figure 3: Overview of the NeRD. During inference, the coarse-to-fine symmetry sampler gives a list of candidate normal directions of the
symmetry plane. For each candidate symmetry plane, a warping transformation matrix C is computed according to Equation (5). Input
images first go through the feature extraction (backbone) network. Features are then warped by a warping module based on the symmetry
transformation C and depth di. A cost volume is constructed by fusing the warped features and feeding into a 3D convolutional neural
network for refinement. The final confidence of each symmetry plane is predicted by aggregating the resulting depth probability tensor.

3. Methods

3.1. Camera Model and 3D Symmetry

Let O ⊂ R
4 be the set of points in the homogeneous

coordinate that are on the surface of an object. If we say O

admits the symmetry1 with respect to a rigid transformation
M ∈ R

4×4, it means that

∀X ∈ O : MX ∈ O, and F(X) = F(MX), (1)

where X is homogeneous coordinates of a point on the
surface of the object, MX is the corresponding point of X
with respect to the symmetry, andF(·) represents the surface
properties at a given point, such as the surface material and
texture. For example, if an object has reflection symmetry
with respect to the Y-Z plane in the world coordinate, then we
have its transformation Mx = diag(−1, 1, 1, 1). Figure 2
shows an example of 3D reflection symmetry.

Given two 3D points X,X′ ∈ O in the homogeneous
coordinate that are associated by the symmetry transform
X

′ = MX, their 2D projections x and x
′ must satisfy the

following conditions:

x = KRtX/d, and x
′ = KRtX

′/d′. (2)

Here, we keep all vectors in R
4. x = [x, y, 1, 1/d]T and

x
′ = [x′, y′, 1, 1/d′]T represent the 2D coordinates of the

points in the pixel space, d and d′ are the depth in the
camera space, K ∈ R

4×4 is the camera intrinsic matrix, and
Rt = [R t

0 1 ] is the camera extrinsic matrix that rotates and
translates the coordinate from the object space to the camera
space.

1An object might admit multiple symmetries. For example, a rectangle
has two reflective symmetries and one rotational symmetry. We here only
consider the principle symmetry.

From Equation (2), we can derive the following constraint
for their 2D projections x and x

′:

x
′ ∝ KRtMRt

−1
K

−1

︸ ︷︷ ︸

C

x
.
= Cx. (3)

We use the proportional symbol here as the 3rd dimen-
sion of x′ can always be renormalized to one so the scale
factor does not matter. The constraint in Equation (3) is
valuable to us because the neural network now has a geo-
metrically meaningful way to check whether the estimated
depth d is reasonable at (x, y) by comparing the image ap-
pearance at (x, y) and (x′, y′), where (x′, y′) is computed
from Equation (3) given x, y, and d. If d is a good estima-
tion, the two corresponding image patches should be similar
due to F(X) = F(X′) from the symmetry constraint in
Equation (1). This is often called photo-consistency in the
literature of multi-view steropsis [10].

An alternative way to understand Equation (3) is to sub-
stitute X′ = MX into Equation (2) and treat the later equa-
tion as the projection from another view. By doing that, we
reduce the problem of shape-from-symmetry to two-view
stereopsis, only that the stereo pair is in special positions.

Reflection Symmetry in 3D. Equation (3) gives us a gener-
alized way to represent any types of symmetry with matrix
C = KRtMRt

−1
K

−1. For reflection symmetry, a more
intuitive parametrization is to use the equation of the symme-
try plane in the camera space. Let x̃ ∈ R

3 be the coordinate
of a point on the symmetry plane in the camera space. The
equation of the symmetry plane can be written as

w
T
x̃+ 1 = 0, (4)

where we use w ∈ R
3 as the parameterization of symmetry.
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Figure 4: Illustration of scale ambiguity. We display two scenes
that only differ by a scale c. The images of the two scenes are
exactly the same, but the distances between the origin and two
symmetry planes are different, i.e., ‖w‖2 = c‖w′‖2.

The relationship between C and w is

C(w) = K

(

I−
2

‖w‖22

[
w

0

]
[
w

T
1
]
)

K
−1. (5)

We derive Equation (5) in the supplementary material. The
goal of reflection symmetry detection is to recover w from
images.

On the first impression, one may wonder why Rt (i.e.,
camera poses) in Equation (3) has 6 degrees of freedoms
(DoFs) while w only has 3. This is due to the specialty of
reflection symmetry. Rotating the camera with respect to the
normal of the symmetry plane (1 DoF) and translating the
camera along the symmetry plane (2 DoFs) cannot change
the relative pose of the camera with respect to the symmetry
plane. Therefore the number of DoFs in reflection symmetry
is indeed 6− 1− 2 = 3.

Scale Ambiguity. Similar to structure-from-motion in
which it is impossible to determine the absolute size of
scenes [23], shape-from-symmetry also has a scale ambigu-
ity. This is demonstrated in Figure 4. In the case of reflection
symmetry, we cannot determine the value of ‖w‖2, i.e., the
symmetry plane’s distance from the origin, from a single im-
age without relying on size priors, as it is always possible to
scale the scene by a constant (and thus scale ‖w‖2) without
affecting images. Therefore, we fix ‖w‖2 to be a constant
and leave the ambiguity as it is. In other words, NeRD is de-
signed only to recover the normal direction of the symmetry
plane. For real-world applications, this scale ambiguity can
be resolved when the object size or the distance between the
object and the camera is known.

3.2. Overall Pipeline of NeRD

Motivation. Section 3.1 provides us a geometric way to
verify whether a given w is valid: For each pixel (x, y), we

Coarse-to-fine Inference Round 1 Coarse-to-fine Inference Round 2

Coarse-to-fine Inference Round 3 Coarse-to-fine Inference Round 4

Figure 5: Illustration of the process of coarse-to-fine inference.
We show the sampled normal direction in a 4-round coarse-to-fine
inference. The color of points represents the scores from symmetry
confidence network.

check if there exists a d so that the image feature at (x, y)
and its mirror point (x′, y′) are similar, where (x′, y′) are
computed with Equation (3). If w is correct, then for pixels
whose mirror parts are not occluded, we should be able to
find their corresponding pixels that are similar to themselves.
To utilize such an idea, we turn the problem of regressing w

into a classification problem: We first enumerate possible
plane normal directions and use a neural network to verify
whether these directions are closed to the real symmetry
planes or not.

Methods. Figure 3 illustrates the overall pipeline of NeRD
during inference. For each input image, we compute its 2D
feature map (Section 3.3) and generate a list of candidate
normal directions of its symmetry plane. For each candidate
normalw, we use it to warp the 2D feature map and construct
an initial 3D cost volume (Section 3.4) for photo-consistency
matching. After that, the cost volume network (Section 3.5)
converts the cost volume tensor into a confidence value. We
pick w with the highest confidence as the resulting normal
direction of the symmetry plane.

A brute-force enumeration of w is slow, especially when
high precision is needed. To accelerate it, NeRD uses a
coarse-to-fine strategy, which we will describe in detail in
Section 3.6. Figure 5 illustrates the process of coarse-to-
fine inference. In ith round of inference, the coarse-to-fine
sampler samples N candidates symmetry plane {wk

i }
K
k=1

uniformly and evaluate their confidence with our neural net-
work. Then, we find the posew∗

i with the highest confidence
score and limit the symmetry sampler to the nearby region
around it. This process is repeated until we achieve the
desired accuracy.

415943



3.3. Backbone Network

The goal of the backbone network is to extract 2D features
from images. We use a modified ResNet-like network as
our backbone. To reduce the memory footprint, we first
down-sample the image with a stride-2 5 × 5 convolution.
After that, the network has 8 basic blocks [12] with ReLU
activation. The 5th basic block uses stride-2 convolution
to further downsample the feature maps. The number of
channels is 64. The output feature map F has dimension
⌊H

4
⌋ × ⌊W

4
⌋ × 64. The network structure diagram is shown

in the supplementary materials.

3.4. Feature Warping Module

The function of the feature warping module is to con-
struct the initial 3D cost volume tensor V(x, y, d) for photo-
consistency matching. We discretize d so that d ∈ D =
{dmin+

i
D−1

(dmax−dmin) | i = 0, 1, . . . , D− 1} to make
the 3D cost volume homogeneous to 3D convolution, in
which dmin and dmax is the minimal and maximal depth we
want to predict and D is the number of sampling points for
depth. As mentioned in Section 3.1, the correctness of d at
(x, y) correlates with the appearance similarity of the image
patch at pixels represented by x and Cx. Therefore, we
set V by concatenating the backbone features at these two
locations, i.e.,

V(x, y, d) =
[

F(x, y), F(x′, y′)
]

, (6)

where [x′, y′, 1, 1/d′ ]T ∝ C[x, y, 1, 1/d ]T , i.e., (x′, y′)
being the projection of the mirror point of the pixel (x, y)
assuming its depth is d. Here F is the backbone feature,
and C is computed from the sampled symmetry plane ŵ.
We apply bilinear interpolation to access the features at
non-integer coordinates. The dimension of the cost volume
tensor is ⌊H

4
⌋ × ⌊W

4
⌋ ×D × 32.

3.5. Cost Volume Network

The goal of the cost volume network is to turn the initial
3D cost volume tensor V from the feature warping mod-
ule into a confidence value representing whether the current
pose w is close to the ground truth. It may also predict
a depth probability tensor P(x, y, d) := Pr[D(x, y) = d]
for downstream tasks (Section 3.7). The cost volume net-
work uses matrix multiplication on the channel dimension to
check for the photo-consistency on V. However, the initial
cost volume aggregated from image features can be noisy.
Thus, we use a network consists of multiple 3D convolu-
tion layers that are capable of regularizing the cost volume
information. We aggregate the multi-resolution encoder fea-
tures with max-pool operators and then apply the sigmoid
function to normalize the confidence values into [0, 1].

3.6. Symmetry Sampler

Inference. As shown in Figure 5, the symmetry sam-
pler uniformly samples {wk

i }
K
k=1 from Wi ⊂ R

3 using
the Fibonacci lattice [11, 47], where Wi is the sampling
space of the ith round of inference. In the first round,
candidates are sampled from the surface of a unit hemi-
sphere. For the following rounds, we set Wi = {w ∈
S
2 | arccos(|hw,w∗

i−1i|) < ∆i} to be a spherical cap,
where w

∗
i−1 is the optimal w from the previous round and

∆i is a hyper-parameter.

Training. During training, we sample symmetry planes
for each image according to the hyper-parameter ∆i. For
the ith level, symmetry candidates are sampled from {ŵ ∈
S
2 | arccos(|hw, ŵi|) ≤ ∆i}, where w is the ground truth

symmetry pose. We also add a random sample ŵ ∈ S
2 to

reduce the sampling bias. For each sampled ŵ, its confi-
dence labels is li = 1[arccos(|hw, ŵi|) < ∆i] for the ith
level. The training error could be written as

Lcls =
∑

i

BCE(l̂i, li),

where BCE represents the binary cross entropy error, and l̂i
is predicted confidence of ŵ for the ith level in the coarse-
to-fine inference.

3.7. Applications

In this section, we introduce some potential applications
of reflection symmetry detection that benefit from the accu-
rate normal direction of the reflection symmetry plane.

Pose Recovery. In the problem of pose recovery, the goal is
to find the pose of an object from an RGB image, in which
people normally set up the canonical space of objects so
that objects are symmetric with respect to the X-Z plane or
the Y-Z plane [2]. Because NeRD is able to pinpoint the
normal direction of the symmetry plane, we can accurately
determine 2 DoFs of the 6 DoFs pose with our geometry-
based method. For the rest 4 DoFs, we can still resort to
data-driven approaches (e.g., direct regression) with neural
networks.

Depth Estimation. As we construct cost volumes (i.e.,
depth probability tensors) in the symmetry detection
pipeline (Section 3.5), it is straightforward to use it for a
geometry-based depth estimation. With the estimated w

∗,
we compute the expectation of depth from the probability
tensor P as the depth map prediction D̂. This is sometimes
referred as soft argmin [17]. Mathematically, we have

D̂(x, y) =
1

|D|

∑

d∈D

dP(x, y, d). (7)

We rescale the ground truth depth according to ‖ŵ‖2 and add
an additional ℓ1 term to the training loss as the supervision
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of depth:

Ldpt =
1

n

∑

x,y

∣
∣
∣D̂(x, y)−D(x, y)

∣
∣
∣ , (8)

where n is the number of pixels.

4. Experiments

4.1. Datasets

We conduct experiments on the synthetic ShapeNet
dataset [2] and real-world Pix3D dataset [30], in which mod-
els have already been processed so that in their canonical
poses the Y-Z plane is the plane of the reflection symmetry.

ShapeNet. We use the same camera pose, intrinsic, and
train/validation/test split from a 13-category subset of the
dataset as in R2N2 and others [6, 16, 37] to make the com-
parison easy and fair. We exclude the lamp category as
it contains many asymmetric objects. We use Blender to
render the images with resolution 256× 256.

Pix3D. Pix3D [30] is a real-world dataset containing image-
shape pairs with 2D-3D registrations. To demonstrate the
versatility of NeRD, we test NeRD on the Pix3D dataset.
We assume that the bounding boxes of objects have been de-
tected, and we use them to crop the images for removing the
background while maintaining the aspect ratio. We rescale
the resulting images to 256 × 256 and adjust the camera
intrinsic matrix K accordingly and reject images extraordi-
nary with focal lengths and depth values. We randomly split
the remaining data into train and test sets, which contain
5285 and 588 images, respectively.

4.2. Implementation Details

We implement NeRD in PyTorch. We use the planex = 0
in the object space as the ground truth symmetry plane be-
cause it is explicitly aligned for each model by authors of
ShapeNet. We set dmin and dmax according to the depth
distribution of the dataset, and use D = 64 for the depth of
the cost volume. We use N = 4 rounds in the coarse-to-fine
inference, in each of which K = 32 normal directions are
sampled. We choose ∆ = [20.7◦, 6.44◦, 1.99◦, 0.61◦] ac-
cording to the gap between near directions on the Fibonacci
lattice. Our experiments are conducted on two NVIDIA
RTX 2080Ti GPUs. We use Adam [18] for training. The
learning rate is set to 3 × 10−4 and batch size is set to 16
per GPU. We train the NeRD for 40 epochs and decay the
learning rate by a factor of 10 at the 30th epoch. The overall
inference speed is about 1 image per second per GPU.

Metrics. To better understand the performance of symme-
try detection, we show two forms of metrics. We plot a
performance curve for each detector-dataset pair, in which
the x-axis represents the angle accuracy and the y-axis repre-
sents the proportion of the data whose error is less than that.
We also report quantitative metrics, including the median

backbone

(sec 3.3)

cost volume

(sec 3.5)

feature warping error metrics

var avg cat avg med <1◦ <2◦

a X X 7.12◦ 0.54
◦ 66.8% 77.2%

b X X 6.82◦ 0.99◦ 50.1% 70.1%

c X X X 6.33◦ 0.57◦ 68.1% 81.5%

d X X X 6.41◦ 0.66◦ 63.7% 77.7%

e X X X 5.41
◦ 0.56◦ 68.2% 81.5%

Table 1: Ablation study of 3D reflection symmetry detection on
ShapeNet.
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Figure 6: Performance curves of symmetry detection and camera
pose recovery networks. Higher is better.

and mean of the angle difference, and the percentages of
testing images whose error is smaller than 0.5◦, 1.0◦, 2.0◦,
and 4.0◦, for the ease of comparison.

4.3. Ablation Studies

We conduct ablation studies to justify each component
in NeRD. In Table 1, we analyize the function of three
main components of NeRD: the 2D backbone network (Sec-
tion 3.3), feature warping module (Section 3.4), and the
cost volume network (Section 3.5). The second column of
Table 1 represents whether we use the feature from the 2D
backbone or just RGB values with a single 1×1 convolution
to construct the cost volume. Comparing (a) and (e), we find
that removing the 2D backbone degrades the performance,
especially at the region > 2◦. We think this is because the
2D backbone network increases the receptive field, which
makes our method more robust. The third column repre-
sents whether we want to replace the cost volume network
with a simple max-pool layer. Results in (b) and (e) show
that the cost volume network is the key component for an
accurate symmetry detector. Finally, we study the different
pooling schemes in the feature warping module. From (c),
(d), and (e), we find that the feature concatenation and vari-
ance pooling gives the best results, while the average pooling
performs poorly in the high-precision region (< 1◦). This
matches our intuition in Section 3.1 that NeRD compares
the feature to check photo-consistency.

4.4. Symmetry Detection on Synthetic Datasets

Baselines. We briefly introduce some state-of-the-art
single-view symmetry detection and pose estimation base-
lines. Probably the plainest way to estimate the 3D sym-
metry plane w is direct regression [9]. We implement it
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avg med <0.5◦ <1.0◦ <2.0◦

DISN [40] 2.80◦ 1.65◦ 7.96% 24.9% 61.0%

ResNet [12] 2.08◦ 1.06◦ 19.7% 47.3% 76.6%

RotationContinuity [46] 1.94◦ 1.14◦ 17.6% 43.9% 76.2%

Front2Back [42] 9.41◦ 1.76◦ 16.8% 34.0% 53.2%

NOCS [36] 9.95◦ 6.18◦ 0.39% 2.83% 11.9%

NeRD 1.58
◦

0.36
◦

64.5% 80.6% 87.8%

Table 2: Performance of symmetry detection and object pose re-
covery algorithms on ShapeNet. We report the normal direction
error of the predicted symmetry planes. We note that NOCS [36]
requires ground truth object shapes as input.

avg med <1.0◦ <2.0◦ <4.0◦

ResNet [12] 8.01◦ 5.06◦ 5.78% 18.5% 42.3%

RotationContinuity [46] 7.91◦ 4.67◦ 6.12% 20.4% 44.3%

NeRD 3.37
◦

0.73
◦

56.3% 71.9% 80.4%

Table 3: Performance of symmetry detection and object pose re-
covery algorithms on real-world dataset Pix3D [30]. We report the
normal direction error of the predicted symmetry planes.

with ResNet-50 [12] and train it with L1 loss. Rotation-
Continuity [46] identifies a 6D representation of rotation
which they claim is more suitable for learning. We also
implement it and train with L1 loss. DISN [40] also im-
plements its 6D representation for ShapeNet but is trained
with L2 loss. We report the performance of their pre-trained
model. Front2Back [42] is a recent work that detects the
3D symmetry plane, which first predicts a depth map and
then fits the symmetry plane with a traditional method [24].
We report the performance of their results provided by the
authors. NOCS [36] predicts a coordinate of normalized
object coordinate space for each pixel and recovers the pose
with Umeyama algorithm [34]. Following their paper, we
train the NOCS estimator on ShapeNet and use their code to
recover the orientation of objects from prediction.

Results. Table 2 and Figure 6a show the comparison on
ShapeNet. By utilizing geometric cues from symmetry, our
approach significantly outperforms previous state-of-the-art
methods. The performance gap is larger in the region of
higher precision (< 1◦). For example, NeRD can achieve an
accuracy of 0.5◦ on about 70% of testing cases, while direct
regression with ResNet and other baselines can only reach
that on less than 20% of data. Such phenomena indicate that
the intra-image correspondence does help algorithms re-
cover symmetry planes more accurately, while naive CNNs
can only roughly predict the plane normal by interpolating
from training data. We also find that end-to-end approaches
that directly predict the symmetry plane (ResNet, DISN,
NeRD, etc) performs better than the methods which require
heavier post-processing (NOCS and Front2Back). This hints
us that using a loss function that is more directly related to
the goal has an advantage.

absRel sqRel rmse mae <δ1 <δ2 <δ3

DORN [7] 0.028 0.0014 0.026 0.020 30.8% 54.1% 69.0%

GeoNet [43] 0.028 0.0013 0.025 0.019 29.7% 53.4% 69.2%

Hourglass [26] 0.026 0.0012 0.024 0.018 33.0% 56.9% 71.5%

DenseDepth [1] 0.024 0.0011 0.022 0.017 36.3% 60.5% 74.6%

Pixel2Mesh [37] 0.102 0.0546 0.032 0.073 28.6% 49.2% 62.3%

DISN [40] 0.040 0.0030 0.038 0.028 24.0% 43.4% 57.8%

NeRD 0.019 0.0009 0.021 0.011 49.5% 71.9% 82.3%

NeRD* 0.015 0.0006 0.018 0.011 60.2% 78.7% 86.5%

Table 4: Quantitative comparison of NeRD and other baseline
methods on ShapeNet. We set δ = 1.01. NeRD* uses the ground
truth symmetry plane as input.

(a) ResNet (b) NeRD (a) ResNet (b) NeRD

Figure 7: Qualitative results on the task of symmetry detection
on Pix3D. We show the detected symmetry planes from ResNet
and our NeRD. Errors of symmetry planes (pixels between the
predicted and ground truth planes) are highlighted.

4.5. Symmetry Detection on Real-World Datasets

Table 3 and Figure 6b show the comparison on the real-
world Pix3D dataset. NeRD outperforms the naive CNN
regression, and the margin is even bigger compared to the
results on ShapeNet. We hypothesize that this is because
images in Pix3D use a larger number of camera configura-
tions, including different focal lengths and object positions
with respect to the focal center, while the dataset has fewer
images. This requires more generalizability from the algo-
rithms. Our geometry-based approach shines here because
it can rely on the cues from correspondence to find the sym-
metry planes. Also, it is hard for naive convolutional neural
networks to make use of the camera intrinsics, which varies
from images to images, unlike ShapeNet. In contrast, NeRD
uses camera intrinsic matrices in the feature warping mod-
ule (Section 3.4) and thus generalizes better when dealing
with different camera configurations.

4.6. Depth Estimation as an Application

As mentioned in Section 3.7, NeRD can be modified as
a symmetry-guided depth estimator. We compare it with
popular monocular depth estimation networks [1, 7, 26, 43]
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(a) Front2Back (b) ResNet (c) NeRD (a) Front2Back (b) ResNet (c) NeRD (a) Front2Back (b) ResNet (c) NeRD

Figure 8: Qualitative results on ShapeNet. Errors of symmetry planes (pixels between the predicted and ground truth planes) are highlighted.

(a) Input (b) Hourglass (c) DISN (d) NeRD (e) GT (a) Input (b) Hourglass (c) DISN (d) NeRD (e) GT

Figure 9: Qualitative results on the task of of depth estimation. We visualize the depth maps from Pixel2Mesh [37], DISN [40], and our
NeRD on ShapeNet. The per-pixel errors are plotted at the lower right corner. Bluish color represents smaller values for error and depth.

and shape reconstruction networks [37, 40]. The results on
the task of depth estimation are shown in Table 4. NeRD
outperforms both monocular depth estimation networks and
shape reconstruction networks. Besides, NeRD*, the variant
of NeRD that uses the ground truth symmetry plane instead
of the one predicted in coarse-to-fine inference, only slightly
outperforms the standard NeRD. These behaviors indicate
that detecting symmetry planes and incorporating photo-
consistency priors of reflection symmetry into the neural
network makes the task of single-view reconstruction less
ill-posed and thus can improve the performance.

4.7. Visualization

We visualize our results in Figure 7 and Figure 8. We
have the following observations: 1) our method outperforms
previous methods on unusual objects, e.g. chairs in atypical
shapes. This indicates that previous learning-based methods
need to extrapolate from seen patterns and cannot generalize
to unusual images well, while our method relies more on
geometry cues from symmetry, a more reliable source of
information for 3D understanding. 2) NeRD gives accurate

symmetry planes even on challenging camera poses such
as the orientation from the back of chairs. We believe that
this is because geometric information from correspondence
helps to pinpoint the normal of symmetry planes.

In Figure 9, we show sampled results of depth maps.
Visually, NeRD gives the most accurate results among all
the tested methods. For example, it can capture the details of
desk frames and the shapes of ship cabins. Results from the
hourglass network are also sharp but are less accurate, which
may be the sign of overfitting. In the region such as the chair
armrests and table legs, NeRD can recover the depth more
accurate compared to the baseline methods. This is because,
for NeRD, pixel-matching based on photo-consistency in
those areas is easy and can provide a strong signal.
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