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Figure 1: Neural Reflectance Decomposition for Relighting. We encode multiple views of an object under varying or fixed

illumination into the NeRD volume. We decompose each given image into geometry, spatially-varying BRDF parameters

and a rough approximation of the incident illumination in a globally consistent manner. We then extract a relightable textured

mesh that can be re-rendered under novel illumination conditions in real-time.

Abstract

Decomposing a scene into its shape, reflectance, and il-

lumination is a challenging but important problem in com-

puter vision and graphics. This problem is inherently more

challenging when the illumination is not a single light

source under laboratory conditions but is instead an uncon-

strained environmental illumination. Though recent work

has shown that implicit representations can be used to

model the radiance field of an object, most of these tech-

niques only enable view synthesis and not relighting. Ad-

ditionally, evaluating these radiance fields is resource and

time-intensive. We propose a neural reflectance decompo-

sition (NeRD) technique that uses physically-based render-

ing to decompose the scene into spatially varying BRDF

material properties. In contrast to existing techniques, our

input images can be captured under different illumination

conditions. In addition, we also propose techniques to con-

vert the learned reflectance volume into a relightable tex-

tured mesh enabling fast real-time rendering with novel

illuminations. We demonstrate the potential of the pro-

posed approach with experiments on both synthetic and

real datasets, where we are able to obtain high-quality re-

lightable 3D assets from image collections. The datasets

and code are available at the project page: https://

markboss.me/publication/2021-nerd/.

1. Introduction

Capturing the geometry and material properties of an

object is essential for several computer vision and graph-

ics applications such as view synthesis [10, 54], relight-

ing [5, 10, 21, 22, 30, 55], object insertion [7, 20, 30]

etc. This problem is often referred to as inverse render-

ing [24, 41], where shape and material properties are esti-

mated from a set of images, e.g., representing the surface

properties as spatially-varying Bidirectional Reflectance

Distribution functions (SVBRDF) [38].

Modeled according to physics, the reflected color ob-

served by a viewer is the integral of the product of SVBRDF

and the incoming illumination over the hemisphere around

that surface’s normal [23]. Disentangling this integral and

estimating shape, illumination, and SVBRDF from images

is a highly ill-posed and underconstrained inverse problem.

For instance, an image region may appear dark either due to

a dark surface color (material), the absence of incident light

at that surface (illumination), or due to the normal of that

surface facing away from the incident light (shape).

Traditional SVBRDF estimation techniques involve cap-

turing images using a light-stage setup where the light di-

rection and camera view settings are controlled [4, 9, 26,

27, 28]. More recent approaches for SVBRDF estimation

employ more practical capture setups [6, 7, 8, 10, 19, 37],
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but limit the illumination to a single dominant source (e.g.,

a flash attached to a camera). Assuming known illumina-

tion or constraining its complexity significantly reduces the

ambiguity of shape and material estimation and limits the

practical utility to laboratory settings or to flash photogra-

phy in dark environments.

In contrast to standard SVBRDF and shape estima-

tion techniques, recently introduced coordinate-based scene

representation networks such as Neural Radiance Fields

(NeRF) [34, 36, 60] can directly perform high-quality view

synthesis without explicitly estimating shape or SVBRDF.

They represent the radiance field of the scene using a neu-

ral network trained specifically for a single scene, using

as input multiple images of that scene. These neural net-

works directly encode the geometry and appearance as vol-

umetric density and color functions parameterized by 3D

coordinates of query points in the scene. Realistic novel

views can be generated by raymarching through the vol-

ume. Though these approaches are capable of reproducing

view-dependent appearance effects, the radiance of a point

in a direction is “baked in” to these networks, making them

unusable for relighting. Even if such techniques could be

extended to relighting, the rendering speed of these meth-

ods limits their practicality — the time required by NeRF to

generate a single view is about 30 seconds [36].

This work presents a shape and SVBRDF estimation

technique that allows for a more flexible capture set-

ting while enabling relighting under novel illuminations.

Our key technique is an explicit decomposition model

for shape, reflectance, and illumination within a NeRF-

like coordinate-based neural representation framework [36].

Compared to NeRF, our volumetric geometry representa-

tion stores SVBRDF parameters at each 3D point instead of

radiance. Each image is then differentiably rendered with

a jointly optimized spherical Gaussian illumination model

(see Figure 1). Shape, BRDF parameters, and illumination

are all optimized simultaneously to minimize the photomet-

ric rendering loss w.r.t. each input image. We call our ap-

proach “Neural Reflectance Decomposition” (NeRD)

NeRD not only enables simultaneous relighting and view

synthesis but also allows for a more flexible range of image

acquisition settings: Input images of the object need not

be captured under the same illumination conditions. NeRD

supports both camera motion around an object as well as

captures of rotating objects. All NeRD requires as input is

a set of images of an object with known camera pose (com-

puted for e.g. using COLMAP [43, 44]), where each image

is accompanied by a foreground segmentation mask. Be-

sides the SVBRDF and shape parameters, we also explicitly

optimize the illumination corresponding to each image for

varying illuminations or globally for static illumination.

As a post-processing step, we propose a way to ex-

tract a 3D surface mesh along with SVBRDF parameters as

textures from the learned coordinate-based representation

network. This allows for a highly flexible representation

for downstream tasks such as real-time rendering of novel

views, relighting, 3D asset generation, etc.

2. Related Work

Neural scene representations. Recently, neural scene rep-

resentations have attracted considerable attention [33, 34,

35, 36, 46, 47, 53, 60, 56]. These methods surpassed previ-

ous state-of-the-art in novel view interpolation and achieved

photo-realistic results in most cases. The primary innova-

tion of these methods is to model a scene using a volumet-

ric, voxel or implicit representation, and then train a neu-

ral network per object to represent it. Because these neural

representations are inherently 3D, they enable novel view

synthesis. Our approach follows a similar representation

but decomposes the appearance into shape, BRDF and il-

lumination. One significant concern with these approaches

is their long training and inference time [36]. We address

the latter issue by explicitly extracting a surface mesh and

BRDF parameters to make use of the learned 3D model in

common game engines or path tracers. Some concurrent

works [48, 59] also try to estimate BRDFs in neural vol-

umes. In NeRV [48], the illumination is assumed to be

known. Another work, PhySG [59] also leverages spherical

Gaussians to model the illumination, but constraints itself

to scenes under a fixed illumination, compared to our setup

which handles both fixed and varying illumination.

BRDF estimation. Though highly accurate BRDF mea-

surements can be achieved under laboratory conditions with

known view and light positions [4, 9, 26, 27, 28], the com-

plicated setup of these methods often renders on-site mate-

rial capture infeasible. Methods aiming at “casual” capture

frequently rely on neural networks to learn a prior on the

relationship between images and their underlying BRDFs.

Often, planar surfaces under camera flash illumination are

considered for single-shot [2, 15, 31, 42], few-shot [2] or

multi-shot [3, 9, 16, 17, 19] estimation. This casual setup

can be extended to estimating the BRDF and shape of ob-

jects [7, 8, 10, 37, 58] or scenes [45]. Recently, Bi et al. [6]

leveraged a NeRF-style framework to decompose a scene

into shape and BRDF parameters with a single co-located

light source. Uncontrolled natural illumination adds ad-

ditional ambiguities, which are partially addressed by self

augmented networks [29, 57] that work on single input im-

ages. However, their SVBRDF model assumes homoge-

neous specularities. Full SVBRDF estimations in natural

light setups have been proposed by Dong et al. [18] by

explicitly optimizing for illumination and reflectance from

temporal appearance traces of rotating objects. Later, ge-

ometry reconstruction was added to the process [52]. Our

method supports more flexible and practical capture set-

tings.
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(a) Sampling Network. The main task of the

coarse sampling network is to generate a finer dis-

tribution for sampling in the decomposition net-

work. To match the input during training the

color prediction needs to account for the illumi-

nation. We combine a compacted Γ
j from Nθ2

with the latent color output of Nθ1 to generate the

illumination-dependent color in Nθ3 .
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(b) Decomposition Network. With the sampling pattern generated from the coarse

network, we perform SVBRDF decomposition at each point in neural volume. The

density, σ, and direct RGB color d is queried from the Nφ1
. Additionally, a vector is

passed to Nφ2
, which decodes it to the point’s BRDF parameters b. By compressing

the BRDF to a low-dimensional latent space, all surface points contribute to train-

ing a joint space of plausible BRDFs for the scene. Each point still interpolates its

parameters in this space. The gradient from the density forms the normal n and is

passed with the BRDF and spherical Gaussians Γj to the differentiable renderer.

Figure 2: NeRD Architecture. The architecture consists of two networks. Here, Nθ1 /Nφ1
denote instances of the main

network which encodes the reflectance volume. r(t) defines a ray with sampling positions xi, γ(x) is the Fourier Em-

bedding [36], and Γ
j denotes the SG parameters per image j. c is the output color and σ is the density in the volume. The

individual samples along the ray need to be alpha composed based on the density σ along the ray. This is denoted as “Comp.”.

3. Method

Our method jointly optimizes a model for shape, BRDF,

and illumination by minimizing the photometric error to in-

put image collection of an object that are captured under

fixed or different illuminations.

Problem setup. Our input consists of a set of q images with

s pixels each, Ij ∈ R
s×3; j ∈ 1, ..., q potentially captured

under different illumination conditions. We aim to learn a

3D volume V , where at each point x = (x, y, z) ∈ R
3 in

3D space, we estimate BRDF parameters b ∈ R
5, surface

normal n ∈ R
3 and density σ ∈ R. The environment maps

are represented by spherical Gaussian mixtures (SG) with

parameters Γ ∈ R
24×7 (24 lobes).

Preliminaries. We follow the general architecture of

NeRF [36]. NeRF creates a neural volume for novel view

synthesis using two Multi-Layer-Perceptrons (MLP). NeRF

model encodes view-dependent color and object density in-

formation at each point in 3D space using MLPs. NeRF

consists of two MLPs in which a course sampling net-

work samples the volume in a fixed grid and learns the

rough shape of an object i.e. estimating density σ at a

given input 3D location (x, y, z). The second finer net-

work uses this course density information to generate a

more dense sampling pattern along the viewing ray where

higher density gradients are located. Formally, rays can

be defined as r(t) = o + td with ray origin o and the

ray direction d. Each ray is cast through the image plane

and samples a different pixel location with correspond-

ing color ĉjr. Marching along the ray through the volume

at each sample coordinate x = (x, y, z), the networks

N(.) are queried for the volume parameters p(t). Here,

we use p(t) as a stand in for the color c(t), density σ(t)
or in our case BRDF parameters b(t). Following Tan-

cik et al. [49] and Mildenhall et al. [36], which showed

that coordinate-based approaches struggle with learning de-

tails based on high frequency x inputs, we also use their

proposed Fourier embedding γ(x) representation of a 3D

point. The sampled volume parameters are combined along

the ray via alpha composition (Comp.) using the den-

sity at each point σ(t): P (r) =
∫ tf

tn
T (t)σ(t)p(t) dt with

T (t) = exp
(

−
∫ t

tn
σ(s) ds

)

[36], based on the near and

far bounds of the ray tn and tf respectively.

NeRD overview. In comparison to NeRF, NeRD architec-

ture mainly differs in the second finer network. NeRD uses

decomposition network as a finer network which stores the

lighting independent reflectance parameters instead of the

direct view-dependent color. Also, the sampling network in

NeRD differs from NeRF as we learn illumination depen-

dent colors as NeRD can work with differently illuminated

input images. An overview of both networks is shown in

Fig. 2. The parameters of the networks and the SGs are

optimized by backpropagation informed by comparing the

output of a differentiable rendering step to each input image
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Ij for individual rays across the 3D volume.

Sampling network. The sampling network directly esti-

mates a view-independent but illumination dependent color

cj at each point, which is optimized by a MSE: 1
s

∑s
(ĉjr −

cjr)
2. The sampling network’s main goal is to establish a

useful sampling pattern for the decomposition network. The

sample network structure is visualised in Fig. 2a. Compared

to NeRF, our training images can have varying illumina-

tions. Therefore, the network needs to consider the illumi-

nation Γ
j to create the illumination dependent color cj that

should match image Ij . The density σ is not dependent on

the illumination, which is why we extract it directly as the

side-output of Nθ1 . Here, we follow a concept from NeRF-

w [34] that combines an embedding of the estimated illu-

mination with the latent color vector produced by Nθ1 . As

the dimensionality of the SGs can be large, we add a com-

paction network (Nθ2 ), which encodes the 24 × 7 dimen-

sional SGs to 16 dimensions. The compacted SG’s embed-

ding is then appended to the output of the last layer of Nθ1

and jointly passed to the final estimation network Nθ3 that

outputs color values. Without the illumination dependent

color prediction, several floaters would appear in the vol-

ume estimate, introducing wrong semi-transparent geome-

try to paint in highlights for individual views (see Fig. 3b).

By introducing the illumination-dependent branch, the re-

sulting 3D volume is sparser and more consistent.

Decomposition network. After a ray has sampled the sam-

pling network, additional m samples are placed based on

the density σ. This is visualized in Fig. 2b as the ad-

ditional green points on the ray. The decomposition net-

work is trained with the same loss as the sampling network.

However, we introduce an explicit decomposition step and

a rendering step in-between. Our decomposition step es-

timates view and illumination independent BRDF param-

eters b and a surface normal n at each point. The popu-

lar Cook-Torrance analytical BRDF model [14] is used for

rendering. Here, we choose the Disney BRDF Basecolor-

Metallic parametrization [11] instead of independently pre-

dicting the diffuse and specular color, as it enforces physical

correctness. The illumination Γ
j , in the form of spherical

Gaussians (SG), is also jointly optimized. After rendering

the decomposed parameters, the final output is a view and

illumination dependent color cjωor
.

By keeping the rendering differentiable, the loss from

the input color ĉjr can be backpropagated to the BRDF

b, the normal n, and the illumination Γ
j . Our ren-

dering step approximates the general rendering equation

Lo(x,ωo) =
∫

Ω
fr(x,ωi,ωo)Li(x,ωi)(ωi · n)dωi us-

ing a sum of 24 SG evaluations. The ωi and ωo de-

fines the incoming and outgoing ray direction, respectively.

The reflectance due to diffuse and specular lobes is sepa-

rately evaluated by functions ρd and ρs, respectively [51].

Overall, our image formation is defined as: Lo(x,ωo) ≈

∑24
m=1 ρd(ωo,Γm,n, b)+ρs(ωo,Γm,n, b). Our differen-

tiable rendering implementation follows Boss et al. [10].

The overall network architecture is shown in Fig. 2b.

Especially in the early stages of the estimation, joint op-

timization of BRDF and shape proved difficult. Therefore,

we estimate the density σ and, in the beginning, a view-

independent color d for each point in Nφ1
. The direct color

prediction d is compared with the input image, and the loss

is faded out over time when the rough shape is established.

To compute the shading, the surface normal is required.

One approach could be to simply learn the normal as an-

other output [6]. However, this typically leads to inconsis-

tent normals that do not necessarily fit the object’s shape

(Fig. 3c). Specific reflections can be created by shifting the

normal instead of altering the BRDF. Coupling the surface

normal to the actual shape can resolve some of this ambi-

guity [10]. In coordinate-based volume representations like

NeRF [36], we can establish this link by defining the nor-

mal as the normalized negative gradient of the density field:

n = −
∇xσ

∥∇xσ∥
. While the density field defines the surface

implicitly, the density in the 3D volume changes drastically

at the boundary between non-opaque air to the opaque ob-

ject. Thus, the gradient at a surface will be perpendicular

to the implicitly represented surface. This is a similar to the

normal reconstruction from SDFs of Yariv et al. [56].

By calculating the gradient inside the optimization and

allowing the photometric loss from the differentiable ren-

dering to optimize the normal, we optimize the σ parameter

in the second order. Therefore, the neighborhood of sur-

rounding points in the volume is smoothed and made more

coherent with the photometric observations. As a more

densely defined implicit volume allows for a smoother nor-

mal, we additionally jitter the ray samples during training.

Each ray is now cast in a subpixel direction, and the target

color is obtained by bilinear interpolation.

For the BRDF estimation, we use the property that often

real-world objects consist of a few highly similar BRDFs

which might be spatially separated. To account for this we

introduce an additional network Nφ2
which receives the la-

tent vector output of Nφ1
. This autoencoder creates a severe

bottleneck, a two-dimensional latent space, which encodes

all possible BRDFs in this scene. As the embedding space

enforces a compression, similar BRDFs will share the same

embedding. This step couples the BRDF estimation of mul-

tiple surface points, increasing the robustness. The assign-

ment to various BRDFs is visualized Fig. 3a, which can be

utilized for material-based segmentation.

The approach will converge to a globally consistent state,

as the underlying shape and BRDF is assumed to be the

same for all input images. The SGs are estimated for each

input image, but we can force them to be the same or a

rotated version of a single SG in case of static illumination.

Dynamic range, tonemapping and whitebalancing. As
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Input Material Map

Figure 3a: Compressed BRDF Space. In-

stead of directly estimating the BRDF, we

learn a 2D embedding per scene which clus-

ters similar materials. As several points

jointly estimate BRDFs, this stabilizes the de-

composition and improves quality. Notice

how similar materials are identified across the

surface in the resulting material map.

Direct color prediction Considering illumination

Figure 3b: SGs dependent Sampling Network.

Nθ1 can to some extent model view-dependence by

composition along the ray. This, however, is too

weak to deal with varying illumination. Apparent

highlights introduce spurious geometry that mimics

the effect for individual views. We can obtain better

shape by estimating the illumination dependent radi-

ance with Spherical Gaussians (SG).

Directly Predicted ∇σ-based

Figure 3c: Surface Normal Esti-

mation. Instead of directly pre-

dicting the normal as another out-

put of the Nθ1 , the normal in our

approach is calculated from the

gradient of the density ∇σ. Photo-

metric information thus influences

both n and σ during training.

most online image collections consist of Low Dynamic

Range (LDR) images with at least an sRGB curve and white

balancing applied, we have to ensure that our rendering

setup’s linear output recreates these mapping steps before

computing a loss. However, rendering can produce a large

value range depending on the incident light and the object’s

specularity. Real-world cameras also face this problem and

tackle it by changes in aperture, shutter speed, and ISO.

Based on the meta-data information encoded in JPEG files,

we can reconstruct the input image’s exposure value and

apply this to our re-rendering. NeRD is then forced to al-

ways work with physically plausible ranges. For synthetic

examples, we calculate these exposure values based on Sat-

uration Based Sensitivity auto exposure calculation [1] and

also apply an sRGB curve.

Cameras also apply a white balancing based on the illu-

mination, or it is set by hand afterward. This can reduce

some ambiguity between illumination and material color

and, in particular, fixes the overall intensity of the illumi-

nation. For synthetic data, we evaluate a small spot of ma-

terial with 80% gray value in the environment. We assume a

perfect white balancing and exposure on real-world data, at

least for one of the input images. The RGB color (w) of the

white point is stored. After each training step a single-pixel

with a rough 80% gray material is rendered in the estimated

illumination and a factor f = w

b
is calculated. This fac-

tor is then applied to the corresponding SG. As the training

will adopt the BRDF to the normalized SG, a single white-

balanced input can implicitly update and correct all other

views. In practice, the calculated factor f could change the

SGs abruptly in one step causing unstable training. There-

fore, we clip the range of f to [0.99; 1.01] to spread the

update over multiple training iterations.

Mesh extraction. The ability to extract a consistent tex-

tured mesh from NeRD after training is one of the key ad-

vantages of the decomposition approach and enables real-

time rendering and relighting. This is not possible with

NeRF-based approaches where the view-dependent appear-

ance is directly baked into the volume. The basic process

generates a point cloud, computes a mesh, including a tex-

ture atlas, and then fills the texture atlas with BRDF param-

eters. More details are given in the supplementary material.

Training and losses. The estimation is driven by a Mean

Squared Error (MSE) loss between the input image and the

results of evaluating randomly generated rays. For the sam-

pling network this loss is applied to the RGB prediction and

for the decomposition network to the re-rendered result cj

and the direct color prediction d. The loss for the color

prediction based on d is exponentially faded out. Addi-

tionally, we leverage the foreground/background mask as

a supervision signal, where all values along the ray in back-

ground regions are forced to 0. This loss is exponentially

faded in throughout the training to reduce optimization in-

stabilities. By gradually increasing this loss, the network

is forced to provide a more accurate silhouette, which pre-

vents the smearing of information at the end of the training.

The networks are trained for 300K steps with the Adam op-

timizer [25] with a learning rate of 5e−4. On 4 NVIDIA

2080 Ti, the training takes about 1.5 days. The final mesh

extraction takes approximately 90 minutes.

4. Results

The proposed method recovers shape, appearance, and

illumination for relighting in unconstrained settings. Our

reconstruction and relighting performance on synthetic sets

is measured against ground truth images and known BRDF

parameters. For real-world examples, we present novel, re-

lit views and compare the renderings with validation images

excluded from training. If the environment map for the val-

idation image is known, we directly use this for relighting.
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Figure 4: Decomposition on Synthetic Examples. Two scenes are highlighted to show the decomposition performance of

our method. Notice the accurate performance in relighting with unseen illuminations.

Base Color Metalness Roughness Normal GT Re-render - Illum 0 Illum 1 View + Illum 1 View + Illum 2 View + Illum 0

GT Re-render - Illum 0 Illum 1 View + Illum 1 View + Illum 0 GT Re-render - Illum 0 Illum 1 View + Illum 1 View + Illum 0

Figure 5: Real World BRDF Decomposition and Relighting. The decomposition produces plausible BRDFs, and re-

rendered images are close to the ground truth input images. Note that the estimated parameters are hardly affected by the

shadows visible in the input of the gnome scene. When relit with the estimated SG of a validation view, the appearance

is well reproduced. Even in a different perspective or under completely novel, artificial illumination the recovered BRDF

parameters result in convincing images.

Otherwise, we recover the unseen illumination by optimiz-

ing the SGs through the frozen network in 1000 steps using

stochastic gradient descent with a learning rate of 0.1. One-

to-one comparisons with previous methods are challenging,

as most methods use different capturing setups. We can,

however, compare to the outcome of NeRF when trained on

a similar scene. NeRF cannot relight the object under novel

illumination, and even NeRF-w and our simplified NeRF-A

baseline can only interpolate between seen illuminations.

We also perform an ablation study to study the influence

of our novel training techniques. We refer to the supplemen-

tary material for additional results and the extracted textured

meshes for different scenes.

Datasets. We use three synthetic scenes to showcase the

quality of the estimated BRDF parameters. We use three

textured models (Globe [50], Wreck [12], Chair [13]) and

render each model with a varying environment illumination

per image. For a fixed illumination synthetic dataset, we

use the Lego, Chair and Ship scenes from NeRF [36].

We also evaluate using two real-world scenes from the

British Museum’s photogrammetry dataset: an Ethiopian

Head [39] and a Gold Cape [40]. These scenes feature an

object in a fixed environment with either a rotating object

or a camera. Additionally, we captured our own scenes un-

der varying illumination at various times of day (Gnome,

MotherChild).

BRDF decomposition results. Fig. 4 shows exemplary

views and decomposition results of the synthetic Car Wreck

and Chair scenes. In all cases, we observe the estimated re-

renderings to be very similar to GT. The estimated BRDF

parameters may not match perfectly in some places com-

pared to the GT, but given the purely passive unknown illu-
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Method [PSNR↑] Diffuse Specular Roughness

Li et al. 1.06 — 17.18

Li et al. + NeRF 1.15 — 17.28

Ours 18.24 25.70 15.00

Table 1: BRDF estimation. Comparison with a recent

state-of-the-art method in BRDF decomposition under envi-

ronment illumination [32]. Li et al.: directly on test images,

Li et al. + NeRF: NeRF trained on BRDFs from [32].

Fixed Illumination Varying Illumination

Method PSNR↑ SSIM↑ PSNR↑ SSIM↑

S
y
n
.

NeRF 34.24 0.97 21.05 0.89

NeRF-A 32.44 0.97 28.53 0.92

Ours 30.07 0.95 27.96 0.95

R
ea

l

NeRF 23.34 0.85 20.11 0.87

NeRF-A 22.87 0.83 26.36 0.94

Ours 23.86 0.88 25.81 0.95

Table 2: Novel view synthesis. Comparison with NeRF and

NeRF-A on novel view synthesis (with relighting in varying

illumination). Notice NeRF and NeRF-A is not capable of

relighing in any unseen illuminations, nor is an extraction

of a textured mesh from the network easily possible.

mination setup, they still reproduce the GT images. Causes

for deviations are the inherent ambiguity of the decomposi-

tion problem as well as the differences in shading based on

SG vs. the high-resolution GT environment map.

Several sub-tasks of the unconstrained shape and BRDF

decomposition problem have been addressed by earlier

works. Unfortunately, trying to recover parameters sepa-

rately or sequentially, e.g. geometry, BRDF, or illumination,

often fails in challenging scenes. We show that COLMAP

fails to reconstruct a plausible geometry for some of our

data sets in the supplementary material . If the following

stages rely on accurate geometry, the pipeline cannot re-

cover meaningful material properties from the inaccurate

shape. We also tried recovering the BRDF parameters (dif-

fuse and roughness) for each image separately using the

work of Li et al. [32] followed by NeRF to handle the view

interpolation. To run on view independent BRDF param-

eters, we adapted NeRF accordingly. However, NeRF fails

to create a coherent geometry, as each image results in dras-

tically different BRDF parameter maps.

We, therefore, conclude that joint optimization of shape

and SVBRDF is essential for this extremely ambiguous

problem. Quantitative comparisons with Li et al. are shown

in Table 1. These are average PSNR results over our syn-

thetic datasets (Globe, Wreck, and Chair). We decompose

our basecolor into diffuse and specular to enable compar-

ison with Li et al., which uses a diffuse and roughness pa-

rameterization. It is worth noting that Li et al. here is a weak

baseline, but the closest available, as their method expects

a flash light in conjunction to the environment illumination.

However, as most scenes are captured with an outside en-

vironment illumination, the flash will be barely noticeable

due to the strong sun light.

Relighting and novel view synthesis. In Fig. 5, novel

views and plausible relighting in unseen environments are

shown for our real-world data sets. The relighted images

are visually close to the held-out validation images. Fur-

thermore, a novel view can be relighted with the lighting

from a different view. Note that some fine details are miss-

ing in the reconstructions of the Gold Cape, which is caused

by small inaccuracies in the camera registration. Also the

MotherChild model is missing some highlights especially

at grazing angles, which can be attributed to the limitations

of the SG based rendering model.

While no ground truth BRDF exists, the estimated pa-

rameters for the Gnome (Fig. 5) seems plausible. The mate-

rial is correctly classified as non-metallic (black metalness

map), has a higher roughness, and the normal also aligns

well with the shape. In the central valley, where dirt is col-

lected, the BRDF parameters increase in roughness com-

pared to the clean, smooth concrete pillow surface. The

color is also captured well, and in re-rendering, the similar-

ity to the ground-truth is evident.

Frame 3 Frame 6 Frame 9 Relighting

N
eR

F Not

Available

N
eR

F
-A Not

Available

O
u

rs

Figure 6: Novel View Comparison with NeRF and NeRF-

A on real-world Ethiopian Head. Notice the improved

consistency in our method. NeRF introduces highlights as

floaters in the radiance volume that inconsistently occlude

the scene geometry in other views. Additionally, we show-

case the quality in relighting the head with our method.

Another evaluation focuses on the use of our method

purely for novel view synthesis, with implicit relighting. In

this setting, our method can be compared with NeRF [36]

and also an extension to NeRF, called NeRF-A, which in-

spired from [34]. NeRF-A models the appearance change

per image in a 48 dimensional latent vector. It is worth

noting that NeRF-A is a strong baseline as the task is sim-

pler compared to NeRD and it is only capable of relighting
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within known scenes. On fixed illumination scenes, NeRF-

A is not capable of relighting. Table 2 shows the quanti-

tative results over multiple datasets, real-world (Real) and

synthetic (Syn.), on the test views wherein the “Fixed Illu-

mination” case only novel view synthesis is performed, and

in the “Varying Illumination” case, novel view synthesis

and relighting. Here, “Varying Illumination” also refers to

case where the object is rotating w.r.t the camera and there-

fore the relative illumination is varying. The correspond-

ing datasets for the fixed and synthetic case are from NeRF

(Ship, Lego, Chair), and for varying, we use ours (Globe,

Wreck, Chair). For the real-world comparison, Cape pro-

vide fixed illumination, and the Gnome, Head and Mother-

Child scenes are recorded in varying environments. PSNR

and SSIM results show that NeRF performs quite poorly in

varying illumination cases. NeRF-A on the other hand is a

strong baseline in the varying illumination case which we

mostly match or surpass while solving a more challenging

problem which allows for more flexible relighting use cases.

Fig. 6 shows the novel view synthesis results of NeRF,

NeRF-A and NeRD (Ours) on the Ethiopian Head real-

world scene. The object rotates in front of the camera.

We, therefore, compose the Head on a white background

in Fig. 6 as NeRF cannot handle a static background with

a fixed camera. During training, both models recreate the

input quite closely. However, in the test views, NeRF added

spurious geometry to mimic highlights for specific camera

locations, which are not seen by other cameras in the train-

ing set. NeRF-A can expess the relative illumination change

in the appearance embedding and can improve the recon-

struction quality compared to NeRF. However, as only a

single illumination type is seen NeRF-A is still not capa-

ble of relighting under arbitrary illumination. Due to our

physically motivated setup with the explicit decomposition

of shape, reflectance, and illumination, these issues are al-

most completely removed. Our method creates convincing

object shapes and reflection properties, which, in addition,

allow for relighting in novel settings.

Overall, it is evident that NeRF will not work with vary-

ing illuminations, clearly demonstrating the advantage of

our more flexible decomposition. It is also worth noting

that even if an appearance embedding as in NeRF-w [34]

our our simplified NeRF-A baseline is used, the method can

only interpolate between seen illuminations. Our model is

capable of relighting even if the scene was only captured in

a single fixed illumination.

Ablation study. In Table 3, we ablate the gradient-based

normal estimation, the BRDF interpolation in a compressed

space, and incorporating the white balancing in the opti-

mization. We perform this study on the Globe scene as it

contains reflective, metallic, and diffuse materials and fine

geometry. One of the largest improvements stems from

the addition of gradient-based normals. The coupling of

Method Base Color Metalness Roughness Normal Re-Render

w/o Grad. Normal 0.1264 0.1203 0.3192 0.1664 0.0893

w/o Com. BRDF 0.1828 0.2496 0.2827 0.0089 0.0759

w/o WB 0.1059 0.0870 0.2754 0.0087 0.0655

Full Model 0.0796 0.0784 0.2724 0.0084 0.0592

Table 3: Ablation Study. The MSE loss on 10 test views

with ablation of gradient (grad.) normals, compressed

(Com.) BRDF and white balancing (WB) on the globe

dataset.

shape and normals improves the BRDF and illumination

separation. Normals cannot be rotated freely to mimic spe-

cific reflections. The compressed BRDF space also im-

proves the result, especially in the metalness parameter es-

timation. This indicates that the joint optimization of the

encoder/decoder network Nφ2
effectively optimizes simi-

lar materials across different surface samples. The white

balancing fixes the absolute intensity and color of the SGs,

which indirectly forces the BRDF parameters into the cor-

rect range.

5. Conclusion

In this work, we tackle an extremely challenging prob-

lem of decomposing shape, illumination, and reflectance by

augmenting coordinate-based radiance fields with explicit

representations for the BRDF and the illumination. This

decomposition renders our approach significantly more ro-

bust than simple appearance-based representations, or other

multi-view stereo approaches w.r.t. changes in the illumina-

tion, cast shadows, or glossy reflections. Additionally, we

propose a method to link the surface normal to the object’s

actual shape during optimization. This link allows a pho-

tometric loss to alter the shape by backpropagation through

differentiable rendering. Our method enables realistic real-

time rendering and relighting under arbitrary unseen illumi-

nations via explicit mesh extraction from the neural volume.

While the results from the method are convincing, there

exists several limitations. Currently, no explicit shadow-

ing is modeled while the object is optimized. Especially

in scenes with a static environment illumination and deep

crevices, a shadow will be baked into the diffuse albedo.

Additionally, the chosen SGs environment model helps in a

stable and fast shading evaluation but is often limiting when

high-frequency light effects are present in a scene. A differ-

ent, maybe implicit environment representation might pro-

duce better results, but it would need to support efficient

BRDF evaluation.
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