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Abstract

Study Objectives: Millions suffer from sleep disorders that often accompany severe illnesses such as major depression; a
leading psychiatric disorder characterized by appetite and rapid eye movement sleep (REMS) abnormalities. Melanin-
concentrating hormone (MCH) and nesfatin-1/NUCB2 (nesfatin) are strongly co - expressed in the hypothalamus and are
involved both in food intake regulation and depression. Since MCH was recognized earlier as a hypnogenic factor, we
analyzed the potential role of nesfatin on vigilance.

Design: We subjected rats to a 72 h-long REMS deprivation using the classic flower pot method, followed by a 3 h-long
‘rebound sleep’. Nesfatin mRNA and protein expressions as well as neuronal activity (Fos) were measured by quantitative in

situ hybridization technique, ELISA and immunohistochemistry, respectively, in ‘deprived’ and ‘rebound’ groups, relative to
controls sacrificed at the same time. We also analyzed electroencephalogram of rats treated by intracerebroventricularly
administered nesfatin-1, or saline.

Results: REMS deprivation downregulated the expression of nesfatin (mRNA and protein), however, enhanced REMS during
‘rebound’ reversed this to control levels. Additionally, increased transcriptional activity (Fos) was demonstrated in nesfatin
neurons during ‘rebound’. Centrally administered nesfatin-1 at light on reduced REMS and intermediate stage of sleep,
while increased passive wake for several hours and also caused a short-term increase in light slow wave sleep.

Conclusions: The data designate nesfatin as a potential new factor in sleep regulation, which fact can also be relevant in the
better understanding of the role of nesfatin in the pathomechanism of depression.
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Introduction

Nesfatin-1, the N-terminal fragment of the nucleobindin2

protein (NUCB2) is a potent anorexigen decreasing nocturnal

food intake in rodents in a dose-dependent manner [1]. Higher

plasma nesfatin-1/NUCB2 (nesfatin) levels in overweight patients

point to its role in food intake regulation also in humans [2]. In

addition, nesfatin has been associated with further functions too,

like processing emotional states, such as anxiety and stress [3,4].

Since depression, a major cause of morbidity worldwide is also

characterized by marked alterations in emotional states and

feeding, initial research on the role of nesfatin regarding this field

may have high relevance. As already has been established, patients

with major depressive disorder possess high plasma level of

nesfatin [5]. For plasma and cerebrospinal fluid nesfatin levels

positively correlate, CNS problems related to alterations in

nesfatin expression may underlie this elevation [2]. This is also

supported by the fact that nesfatin mRNA content is elevated in

the Edinger-Westphal nucleus of depressed male suicide victims

[6]. Besides emotional and feeding disturbances, sleep-wake

regulation is another function typically affected in depression

[7]. Impaired sleep continuity, decreased rapid eye movement

sleep (REMS) latency and elevated time spent in REMS are

characteristic sleep-EEG changes in depressed patients [8,9]

moreover, antidepressant medication also alters sleep. As a

consequence, the existence of a relationship between nesfatin

and sleep regulation can be assumed [10].

The largest population of nesfatin neurons in the CNS can be

found in the perifornical and lateral hypothalamic (LH) areas that

belong to the dorsolateral hypothalamus (DLH) and in the zona

incerta (ZI) [11,12]. These areas are closely associated with sleep-

wake regulation [13], and are also related to both control of
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feeding and depression [14–17]. Two main types of neurons

forming intermingled, but separate populations were identified in

this region before; the orexin and the melanin-concentrating

hormone (MCH) producing cell groups, both increasing food

intake, but acting oppositely on vigilance [18,19]. Nesfatin is

highly co - expressed with MCH, although a smaller portion of

nesfatin neurons is MCH - negative [10]. Since MCH increases

REMS [20], but unlike nesfatin, it is an orexigenic peptide, the

possible role of nesfatin-1 in the regulation of sleep has a special

interest.

Based on the facts above, in this study, we aimed to investigate

the effect of intracerebroventricularly (icv) administered nesfatin-1

on vigilance stages, like wakefulness, REMS and non-REMS. We

also raised the questions, whether selective REMS pressure

impacts expression of nesfatin, and alters activation of the nesfatin

- immunoreactive neurons in the DLH and the ZI.

To elucidate this, we performed REMS deprivation using the

classic flower pot method [20], followed or not by rebound sleep,

and determined nesfatin protein and mRNA expressions by

ELISA and quantitative in situ hybridization (ISH) method.

Finally, we analyzed the activation pattern of MCH - positive

and - negative nesfatin cell populations under the different

experimental conditions using Fos/nesfatin/MCH triple immu-

nostainings.

Materials and Methods

Ethics Statement
Experiments were performed according to the European

Communities Council Directive of 24 November 1986 (86/609/

EEC) and the National Institutes of Health ‘‘Principles of

Laboratory Animal Care’’ (NIH Publications No. 85-23, revised

1985), as well as specific national laws (the Hungarian Govern-

mental Regulations on animal studies, December 31, 1998). All

experiments were approved by the National Scientific Ethical

Committee on Animal Experimentation, and permitted by the

governement (Food Chain Safety and Animal Health Directorate

of the Central Agricultural Office, Permit Number: 22.1/1375/7/

2010). All surgery was performed under anesthesia, and all efforts

were made to minimize suffering.

Animals. Male Wistar rats (Semmelweis University, Buda-

pest, Hungary) weighing 300–350 g were used for the studies.

Animals were kept with light-dark cycle of 12:12 h (light on at

10:00 and off at 22:00, daylight type fluorescent tubes, 18 W,

approximately 300 lx) at room temperature (2161uC), and had

free access to standard rodent chow and tap water. Animals were

habituated to the conditions in the experimental room at least for

two weeks.

Experiment 1. Effects of REMS Deprivation and the
‘Rebound Sleep’ on the Expression of Nesfatin mRNA and
Protein

REMS deprivation. REMS deprivation was performed using

the flower pot method, as described earlier [20,21]. Briefly,

animals were placed on round platforms situated in the middle of a

round water tank with a surface 0.5 cm above the water level at

lights on (10:00) for 72 h. The diameter of the platforms was either

small (6.5 cm) or large (13 cm). As muscle atony is typical for

REMS, animals on the small pots fall into the water immediately

after entering REMS. Contrarily, rats on the large pots fit better

on the surface and may sleep REMS, therefore they are used as

stress controls. According to this, animals were randomly divided

into six groups. The 1st group; small (SP), and the 2nd group; large

pot (LP) kept rats, that were sacrificed after spent 72 h on the

platforms. The 3rd group; SP plus rebound (SPR), and the 4th

group; LP plus rebound (LPR) rats that, after spending 72 h on SP

or LP platforms, respectively, were transferred to their home cages

at lights on for 3h rebound sleep after which they were killed. The

5th group; home cage (HC) and the 6th group; HCR animals were

controls, kept undisturbed in their home cages, and killed at the

end of the experiment either at lights on (HC) or 3 h later (HCR),

respectively. Rats were sacrificed by decapitation (n= 7 for ELISA,

n= 9 for ISH) or perfused with 4% paraformaldehyde in 0.1 M

phosphate buffered saline, pH=7.4 (PBS) for immunohistochem-

istry (n = 5). The brains were removed and frozen on dry ice. Fixed

tissue was cryoprotected in 20% sucrose overnight before freezing.

Rats on the platforms were fed ad libitum without restriction

using a waterproof food supplier unit at a distance easy to

approach. Body weight change and food intake of rats during the

time spent on the platforms were measured.

In situ hybridization technique. The rat nesfatin-1 cDNA

(246 bp) was purchased from Invitrogen (Budapest, Hungary,

GenBank Acc: DY314804 ), cloned into a pBC KS+ vector and

verified by sequencing. The rat corticotropin - releasing hormone

(CRH) cDNA (468 bp) was kindly provided by W.S. Young 3rd,

and used as earlier described [22]. The [35S]UTP-labeled sense

and antisense riboprobes were prepared by in vitro transcription

(Maxiscript KIT), according to the manufacturer’s protocol.

Hypothalamic regions of fresh frozen brains were cut into

12 mm thick serial coronal sections in a cryostat (Leica Micro-

systems GmbH, Wetzlar, Germany). The sections were thaw-

mounted and air-dried at 37uC onto positively charged Superfrost

Plus slides (Thermo Scientific, Budapest, Hungary). Slides were

stored at 280uC until used. Hybridizations were performed

overnight in humid chambers at 55uC with 106 cpm/slide of the

[35S]UTP-labeled probes, as described earlier [4]. After this step,

sections were apposed to a BAS-MS imaging plate (Fuji Photo

Film Co., LTD., Kanagawa, Japan, NJ) for 3 days, and then data

were read out by a Fujifilm FLA-8000 Image Analyzer. Expression

levels were evaluated from the images recorded on the phosphor

imager. Mean grey values of the area of interest were measured by

using the Image J 1.32j software (Wayne Rasband; NIH, Bethesda,

MD, USA) on both sides of 4–6 sections in each animal.

Background values measured in parallel were subtracted. The

average/animal data were used for statistical evaluation.

ELISA measurements. Hypothalamic regions of fresh fro-

zen brains were cut into 300 mm thick serial coronal sections in a

cryostat (Leica). DLH with ZI was dissected by micropunch

technique [23], using a special punching needle (inner diameter of

500 mm). Tissue pellets were stored at 280uC until further

processing. Samples were homogenized in 200 ml of 0.1 M HCl/

0.3 mM aprotinin solution (Sigma-Aldrich, Budapest, Hungary) by

ultrasound sonication for 3615 seconds on ice. Then, samples

were centrifuged for 20 min at 15,300 rpm at 4uC. The

supernatants were divided into two portions and dried by a

vacuum concentrator (Savant Instruments Inc, Holbrook, NY,

USA). The first portion was reconstituted in 40 ml 0.1 M Tris

buffer (pH=8.0) and the total protein concentration was

determined by using a Lowry-based assay. The second portion

was reconstituted in 400 ml 1x sample buffer provided in the

ELISA kit and used for determining nesfatin protein concentra-

tions, by a commercially available ELISA kit (Phonix Europe

GmbH, Karlsruhe, Germany) according to the manufacturer’s

protocol.

Immunohistochemistry. Hypothalami were cut into 50 mm

thick serial coronal sections on a frigomobil (Frigomobil, Reichter-

Jung, Vienna, Austria). Immunostaining started with blocking the

endogenous peroxidase activity, using a 3% H2O2 solution

Nesfatin Is Involved in Sleep Regulation
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(Sigma-Aldrich) for 15 min. Then, sections were blocked in 1%

BSA and 0.5% TritonX-100/PBS all from Sigma-Aldrich for 1 h.

The same solution was used to dilute the antibodies. Incubations

were made for 2 days at 4uC in primary antibodies and for 1 h at

room temperature, in secondary or tertiary antibodies. Sections

were washed 3 times for 5 min in PBS following each incubation

step. To block peroxidase enzyme used for visualization previous-

ly, and to prevent species cross-reactions caused by primary

antibodies raised in the same hosts, sections were microwave-

treated in 0.1 M citric-acid (pH=6.0) for 5 min after each

immunostaining [24].

Fos immunostaining was performed using rabbit anti-Fos

primary antibody (1:30,000, Santa Cruz Biotechnology, Inc.,

Santa Cruz, CA, USA) and anti-rabbit IgG polymer-HRP

(Millipore, Budapest, Hungary) secondary antibody. The immu-

nostaining was visualized by FITC-conjugated tyramide (Invitro-

gen, Budapest, Hungary). Next, sections were incubated in rabbit

anti-nesfatin (1:24,000, Phoenix Pharmaceuticals, Inc., Burlin-

game, CA, USA) and again in anti-rabbit IgG polymer-HRP

(Millipore). The second immunostaining was developed by

tyramide-conjugated Alexa Fluor 568 (Invitrogen). In case of

triple immunostainings, rabbit anti-MCH was applied (1:10,000,

Phoenix Europe GmbH), followed by incubation in biotinylated

anti-rabbit IgG as secondary antibody (1:1,000, Vector Labora-

tories, Inc., Burlingame, CA, USA) and in extravidine-peroxidase

(1:1,000, Sigma). The MCH antigen was visualized by tyramide-

conjugated biotin (Invitrogen) and Streptavidin-Cy5 (1:1000,

Jackson ImmunoResearch Europe Ltd, Newmarket, Suffolk,

UK). Sections were mounted on non-coated slides, air - dried

and coverslipped with DPX (Sigma).

Image analysis. Nesfatin - positive cell populations were

analyzed in three areas: 1) ZI, 2) LH, 3) perifornical area,

including the perifornical nucleus itself [25]. Images were captured

bilaterally using a 20X objective (S Fluor 20X/0.75, ‘/0.17,

WD1.0) on 3–5 sections per animal by a Nicon Eclipse E800

microscope attached to a Bio-Rad Radiance 2100 Rainbow

confocal scanning system by sequential scanning. Cell counts and

determination of co - localization were made using the AnalySIS

Pro 3.2 program (Olympus, Soft Imaging Solutions GmbH,

Münster, Germany), by simultaneous examination of the greyscale

images of the separated channels and the colored overlay picture.

To identify neurons in the pictures, a numbered grid of the same

size was placed over the overlay picture and the greyscale pictures

of the separated channels. Only neurons with visible cell nuclei

were counted. Percentages of nesfatin/MCH double labeled

neurons among the nesfatin positive ones, the percentages of

Fos/nesfatin within the single nesfatin and Fos/nesfatin/MCH

within the nesfatin/MCH double positive subpopulations were

calculated per animal. Data are presented as the average of the

results from 5 animals per group.

Experiment 2. Effects of Exogenously Administered
Nesfatin-1 on Vigilance

EEG measurements. Rats (n = 6) were equipped with

electroencephalographic (EEG) and electromyographic (EMG)

electrodes for EEG recordings, as described earlier [26,27].

Stereotaxic surgery was performed under 2% halothane anesthesia

(using Fluotec 3 halothane vaporizer). All efforts were made to

minimize suffering of the animals. Briefly, stainless steel screw

electrodes were implanted epidurally over the left frontal motor

cortex (coordinates: anterior-posterior (A-P): 2.0 mm from breg-

ma, lateral (L): 2.0 mm to the midline, [25] the left parietal cortex

(A-P: 2.0 mm from lambda, L: 2.0 mm) for fronto-parietal EEG

recordings, and a ground electrode was placed over the

cerebellum. In addition, EMG electrodes (stainless steel spring

electrodes embedded in silicon rubber, Plastics One Inc.,

Roanoke, VA, USA) were placed into the muscles of the neck.

At the same time, a plastic cannula was implanted into the right

lateral ventricle (coordinates: A-P: 20.8 mm to the bregma level,

L: 2.0 mm, and ventral: 4.0 mm below the skull surface). The

cannula and the EEG electrodes were anchored to the skull with

dental cement (SpofaDental a.s., Markova, Czeh Republic). A

stainless steel obturator was inserted into the guide cannula and

was kept patent until use. After surgery, rats were kept in single

cages in the recording chamber, and were allowed to recover for 7

days. Animals were then habituated to the recording conditions for

five days before experiment started by attaching them to the

polygraph using a flexible recording cable and an electric swivel,

fixed above the cages, permitting free movements. During the

recovery and the habituation period to the recording conditions,

animals were also handled daily to minimize future experimental

stress, as described earlier [28]. On the day of the experiment,

25 pmol/5 ml of nesfatin-1 dissolved in physiological saline was

injected into the lateral ventricle of rats at light onset [29]. Control

rats received 5 ml physiological saline icv. After injections, animals

returned to their home cages and vigilance was recorded for 24 h.

The placement of the cannula was verified at the end of the study

by injecting 10 nM/3 ml of angiotensin II icv. Only animals

reacting with an intensive drinking response were included in the

study.

Sleep scoring. The vigilance states were classified by Sleep-

Sign for Animal sleep analysis software (Kissei Comtec America,

Inc., USA) for 4 sec periods using conventional criteria [27,30]

followed by visual supervision of an expert scorer who was blind to

experimental treatment.

The differentiated vigilance states were the following: 1)

wakefulness; EEG is characterized by low amplitude activity at

beta (14–30 Hz), alpha (8–13 Hz) and theta (5–9 Hz) frequencies

accompanied by high or low EMG and motor activity, 2) REMS;

low amplitude and high frequency EEG activity with regular theta

waves (5–9 Hz) accompanied by silent EMG and motor activity

with occasional twitching, 3) intermediate stage of sleep (IS); a

brief stage just prior to REMS and sometimes just after it,

characterized by unusual association of high amplitude spindles

(mean 12.5 Hz) and low-frequency (mean 5.4 Hz) theta rhythm; 4)

non-REMS; slow cortical waves (0.5–4 Hz) accompanied by

reduced EMG and motor activity [27]. In sleep analysis after icv

nesfatin-1 treatment, the following vigilance parameters were

calculated: time spent in active (AW) and passive (PW) wake,

REMS, IS, as well as in light slow wave sleep (SWS1) and deep

slow wave sleep (SWS2), per hour. Additionally, specific param-

eters were calculated, namely, the number and the average

duration of episodes in REMS, IS, SWS1 and SWS2. An episode

of any vigilance stages was defined as an item lasting at least 4 sec

and not interrupted by any other vigilance stages for longer than

4 sec. Sleep fragmentation was defined as the number of wake

epochs (AW, PW) after a sleep stage (SWS1, SWS2, REM, IS).

Since despite the habituation procedure that minimized stress, the

process of icv administration disturbed daily rhythm of the

animals, the 1st h of all EEG recordings had been omitted from the

evaluation and sleep scoring, and the analysis was performed from

the beginning of the 2nd h to the end of the 6th h of passive phase.

Statistics. We used STATISTICA 7.0 program (Statsoft

Inc., Tulsa, OK, USA) to statistical analysis. Two-Way ANOVA

followed by all pairwise comparisons with Student-Newman-Keuls

Method was used for determining significance in nesfatin-

1 mRNA and protein expressions and CRH mRNA expression.

One Way ANOVA and One Way ANOVA on Ranks followed by

Nesfatin Is Involved in Sleep Regulation
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all pairwise comparisons with Tukey or Dunn’s Method was

applied to analyze morphological data as well as cumulative food

intake and body weight change. Sleep data of different vigilance

stages, summarized hourly, were evaluated by Two Way ANOVA

for repeated measures (repeated factor: time). In case of

inhomogeneous variances of the experimental groups, repeated

measures ANOVA on Ranks was performed. For post hoc analysis,

all pairwise comparisons with Tukey HSD were used. The results

are presented as mean 6 standard error of mean (SEM).

Results

Changes in Nesfatin mRNA and Protein Levels after REMS
Deprivation and Rebound
The DLH with the ZI hosts the most prominent nesfatin -

expressing cell population in the hypothalamus regarding the

number of the cells and the expression level of the peptide (Fig. 1A).

Nesfatin mRNA and protein expressions have responded for the

experimental paradigms with parallel changes. There was no

difference between HC and HCR groups, indicating that there is

little or no spontaneous switch in nesfatin expression within three

hours after the lights on (Fig. 1B,C). Nevertheless, a significant

interaction was seen between the type of the platform and level of

the rebound (nesfatin mRNA and protein measurements, pot x

rebound interaction: F(2,39)=4.90, p,0.05 and F(2,28)=4.10,

p,0.05, respectively). Both nesfatin mRNA and protein levels

decreased exclusively in REMS - deprived small pot kept animals,

followed by a relative increase after the three hour rebound sleep

(Fig. 1B,C). Large pot conditions (with or without rebound) did not

affect nesfatin expression (Fig. 1B,C).

Stress - Related Changes in Rats following REMS
Deprivation
CRH mRNA level in the hypothalamic paraventricular nucleus,

the centre of the stress response in the central nervous system, as

well as body weight changes and cumulative food intake, during

the 72 h spent on the platforms, were measured. Both SP and LP

kept animals showed elevated CRH mRNA levels and a negative

energy balance, compared to HC controls, indicating stress evoked

by the experimental conditions. However, there was no significant

difference between the LP and SP kept rats regarding these

parameters (Fig. 2A,B). Cumulative food intake did not change

between the groups (Fig. 2C), confirming that negative energy

balance observed was not caused by fasting on platforms.

However, animals on either type of platform spent considerable

amount of time with swimming (unpublished data), thus fur of the

animals are often wet, and this fact can also contribute to the

increased energy expenditure of LP and SP kept rats.

Activation of Nesfatin - Positive Neuronal Cell Population
Since REMS deprivation evoked very specific changes in

nesfatin level demonstrated by ISH and ELISA measurements,

morphological studies were performed on hypothalamic sections of

HC, SP and SPR animals. Rebound evoked a robust activation in

nesfatin - positive cells in each investigated area (Fig. 3). In order

to further characterize the nesfatin - producing cell population, we

used triple fluorescent immunostaining for the visualization of

nesfatin, MCH and Fos.
Co - localization of MHC and nesfatin. In home cage

controls, most of the nesfatin-immunoreactive cells co - localized

with MCH, with slight differences in the investigated areas (rate of

MCH/nesfatin co - localization: ZI: 81.961.7%, perifornical area:

66.264.8%, LH: 75.462.1%, n= 5). The experimental conditions

did not affect the percentage of nesfatin/MCH co - localization.

Neuronal activation due to the experimental

conditions. Fos positivity in the HC and SP groups did not

differ significantly from each other in any areas, although there

was a difference between the MCH - negative and positive nesfatin

populations. Nesfatin/MCH double positive neurons exhibited

minimal activation (less than 0.5%). MCH - negative nesfatin

neurons showed a substantial activity in the perifornical area,

Figure 1. Nesfatin-1/NUCB2 expression as controlled by rapid
eye movement sleep stage. A. Autoradiographic images of coronal
sections through the middle portion of the hypothalamus showing the
area of interest hybridized against nesfatin-1/NUCB2 mRNA in control
animals. The upper and the lower panels show two different rostro -
caudal levels. Distance from the bregma is indicated at bottom left in
millimeters. Asterix: fornix, LH: lateral hypothalamic area, ZI: zona
incerta, scale: 1 mm. B,C. Nesfatin-1/NUCB2 mRNA and protein levels in
the different experimental groups determined by quantitative ISH and
ELISA measurements, respectively. HC: home cage control, sacrificed
with the animals kept on platforms, HCR: home cage control ‘‘rebound’’,
sacrificed at the same time as rebound groups, SP: small pot, SPR: small
pot plus sleep rebound, LP: large pot, LPR: large pot plus sleep rebound
groups. p*,0.05 vs. all other groups, p#,0.05 vs. SP group, n = 5–9 for
B and n=4–7 for C.
doi:10.1371/journal.pone.0059809.g001
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(24.468.1% and 39.467.4% in HC and SP groups, respectively),

while in the ZI and the LH, the activity of the MCH - negative

nesfatin neurons was less than 20% in both groups.

Sleep rebound strongly activated the nesfatin/MCH double

positive neurons regardless of the area examined (ZI: 86.962.9%,

perifornical area: 78.362.7%, LH: 79.061.8%, Fig. 4). MCH -

negative nesfatin neurons were not activated by rebound sleep in

the ZI and the perifornical area, however, some activation was

detected in the LH (Fig. 4C arrowhead), (SPR: 37.664.8%,

p,0.01 vs. HC: 6.062.4% and SP: 15.063.1% groups, n= 5).

Effects of icv Administered Nesfatin-1 on Vigilance from
the 2nd to the End of the 6th Hours of Passive Phase
According to our results, icv administered nesfatin-1 signifi-

cantly increased sleep fragmentation (F(1,10)=5.1046, p,0.05) and

caused a trend-level decrease in total sleep time (p= 0.0587)

during the five investigated hours of passive phase. Regarding the

different sleep stages, nesfatin-1 markedly diminished the time

spent in REMS (F(1,10)=18.99, p,0.001), compared to controls.

This decrease was ca. 60% in the 2nd h, however, in the next three

hours of sleep, the fall in REMS time approached an approximate

value of 90%, while in the 6th h it was ca. 70% (Fig. 5A). Similarly,

the amount of IS showed a significant decrease being the lowest in

the 3rd h (F(1,10)=11.04, p,0.01, Fig. 5B). The REMS and IS -

declining effect in sleep time was also apparent in the number and

the average duration of the episodes both in REMS

(F(1,10)=10.45, p,0.01 and F(1,10)=12.81, p,0.01, respectively,

Fig. 5C,E) and IS (F(1,10)=7.18, p,0.05 and F(1,10)=6.99,

p,0.05, respectively, Fig. 5D,F). Considering the time spent in

NREM sleep, a significant time 6 treatment interaction

(F(2,20)=4.092, p,0.05) was revealed in SWS1, when repeated

measure ANOVA was performed including the 2nd, 3rd and 4th

hours only. The following post hoc test resulted in significant

increase of SWS1 regarding the 3rd and 4th h (Fig. 6A). The time

spent in SWS2 showed no alteration in any investigated hours

(Fig. 6B).

The amount of PW elevated markedly (F(1,10)=8.955, p,0.05,

Fig. 6C), in contrast to AW, which was unchanged (data not

shown). Noteworthy, that the increase of SWS1 and PW was

parallel to the elevation of episode-numbers generally

(F(1,10)=9.87, p,0.05, Fig. 6D and (F(1,10)=6.46, p,0.05,

Fig. 6F, respectively), although average episode-durations of these

stages were unaffected. However, SWS2 showed no alteration

despite an increase in the number of episodes in the 4th h (Fig. 6E).

Discussion

In this study we provide evidence for the implication of the

recently identified anorexigenic molecule, nesfatin in the regula-

tion of sleep of rat. According to our results, abolishment of REMS

decreased nesfatin mRNA and protein expression in the DLH, a

prominent site of nesfatin expression implicated in vigilance,

feeding and depression [13,18,31,32], while the subsequent REMS

rebound restored these levels. We found that central administra-

tion of nesfatin-1 diminished the time spent in REMS and IS,

while increased PW and SWS1, further reinforcing its impact in

the regulation of vigilance. Very recently Jego et al. have also

established the effect of icv nesfatin-1 on sleep architecture,

although demonstrating different results [33]. The discrepancy

may be explained by the different doses they used as well as the

different timing of the icv nesfatin administration.

To abolish REMS completely, rats were kept on single

platforms surrounded by water for 72 h [20,21]. As muscle atony

is typical of REMS, animals fall into the water and awake as they

switch to REMS. Classic (one rat per cage on a single pot) and

modified (several rats per cage on multiple pots) platform methods

are widely used to abolish REMS [20,21,34,35]. Multiple

platforms were originally introduced as an alternate of single

one to reduce stress caused by mobile restriction and social

isolation [35–37]. However, even if rats are kept together from an

early age to establish social stability and avoid stress caused by

rearrangement of the social hierarchy when placed on multiple

platforms, they show the same adrenocorticotropic hormone

(ACTH), and just minimally higher corticosterone levels than rats

on single platforms [38]. Because of these reasons, and since

unique activity of MCH neurons during REMS recovery was

demonstrated firstly with the classical flowerpot method [20], we

adopted this technique.

To isolate effects of stress, LP kept animals were used as

controls. The likewise elevated CRH levels in the hypothalamic

paraventricular nucleus, the similar plasma ACTH and cortico-

sterone concentrations [35] and the negative energy balance in

both groups confirm that LP and SP animals are exposed to the

same stress conditions with comparable activity of the hypotha-

lamo - pituitary - adrenal axis. Another aspect of importance is

thermogenesis due to wet fur. SP animals get wet when fall asleep,

but LP animals also spend considerable amount of time in the

water with swimming during the deprivation procedure. Thus,

differences either in thermoregulation due to the wet fur and in the

amount of the restraint stress, are not considered as major factors

regarding the results detected only in SP animals. Furthermore,

Figure 2. Stress-related changes and energy balance of the
experimental animals. Data show significantly increased levels of
CRH mRNA in the hypothalamic paraventricular nucleus (A) and
decreased body weights (B) both in the SP and LP kept animals,
compared to HC, without difference between the above mentioned
groups. C. Cumulative food intake shows no alterations. HC: home cage
control, sacrificed with the animals kept on platforms, HCR: home cage
control ‘‘rebound’’, sacrificed at the same time as rebound groups, SP:
small pot, SPR: small pot plus sleep rebound, LP: large pot, LPR: large
pot plus sleep rebound groups. Data are shown as mean 6 SEM,
n = 10–11, p*,0.05, p**,0.01 vs. HC.
doi:10.1371/journal.pone.0059809.g002
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changes in the sleep architecture also designate large pot kept

animals as useful controls. Both LP and SP rats have been reported

to reduce SWS [37] in line with our paradigm, as some degree of

SWS1 rebound was also observed in these groups [21]. The

existence of REMS rebound in LPR animals and data of Machado

et al. [21,37] suggest that LP animals were subjected to REMS

deprivation due to stress [39], but in the SP rats, REMS ceased

totally, creating an elemental difference between LP and SP

conditions [37]. This substantial contrast is reflected in the marked

alterations of REMS architecture and connected Fos activity in the

DLH of LPR rats, compared to SPR ones [21,40]. As a

consequence, any small pot - specific observation is likely due to

the lack of REMS.

Our data suggest a striking link between nesfatin expression and

REMS. Animals in the SP group reacted with an exclusive and

remarkable decrease in nesfatin mRNA and protein levels to the

lack of REMS, while nesfatin expression of animals in the HC and

LP groups was alike. On the other hand, a significantly higher

amount of REMS rebound with longer average duration of

episodes compared to LPR and HCR groups [21] returned these

Figure 3. Effect of rebound sleep on the activity of nesfatin1/NUCB2 (nesfatin) - positive cell population. Fos (green) and nesfatin (red)
double fluorescent immunostainings showing the three investigated areas arranged in columns (left: zona incerta, middle: perifornical area, right:
lateral hypothalamic area) in rapid eye movement sleep (REMS) - deprived - sleep rebound (A–C), REMS - deprived without rebound (D–F) and home
cage kept (G–I) animals. c: capsula interna, f: fornix, scale: 100 mm.
doi:10.1371/journal.pone.0059809.g003
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values to the control levels. There was no difference between the

HC and HCR groups indicating that circadian rhythm does not

influence nesfatin expression in the first three hours of sleep after

lights on.

Since nesfatin is an anorexigen and decrease of nesfatin mRNA

level in certain hypothalamic nuclei, like the paraventricular and

the supraoptic nuclei (but not in the DLH - unpublished

observations), was established after fasting [41,42], it is important

to clarify whether negative energy balance of animals may, or may

not be responsible for the reduction of nesfatin expression. It is

noteworthy to mention that animals were not food - deprived

during the 72 h on platforms. The cumulative food intake of rats

was identical in all groups. In spite of this, both SP and LP animals

had a decreased body weight, indicating elevated energy

expenditure. However, they did not differ significantly in this

respect, and there was no change in nesfatin mRNA expression in

LP rats. Therefore, we can exclude the idea that the changes in the

nesfatin expression in the SP animals may be related to the

disturbed energy homeostasis.

To characterize both neurochemically and neuromorphologi-

cally the nesfatin - positive cell population responsible for the

observed results, we applied multiple immunostainings. Majority

of the nesfatin - expressing neurons co - expressed MCH, and

practically all MCH cells co - expressed nesfatin, in agreement

with earlier findings [10]. REMS rebound evoked Fos expression

in large percent of nesfatin neurons. Most of these nesfatin neurons

were MCH - positive confirming previous reports [20,40],

revealing a strong activation in all investigated areas. MCH -

negative nesfatin cells showed little activation in the LH and no

activation in both the ZI and the perifornical area. Since Fos is a

transcription factor, indicating ongoing transcriptional activity

[43], the appearance of Fos signal in the nesfatin - immunoreactive

neurons is also in line with our findings showing an elevation of

nesfatin mRNA and protein levels during REM rebound. The

potential role of nesfatin in REMS regulation was further

examined by analyzing the effect of the peptide administered

centrally on vigilance stages in control rats. The applied 25 pmol

dose was established according to previous studies [1,4,44]. As

animals were presumably disturbed by the icv procedure, despite

Figure 4. Participation of melanin-concentrating hormone (MCH)-positive and MCH - negative nesfatin-1/NUCB2 (nesfatin) neurons
in the sleep - wake cycle. A–C. Illustrative pictures of the lateral hypothalamic area demonstrating the results of the triple fluorescent
immunostainings for nesfatin (red), MCH (blue) and Fos (green) in a home cage kept (A), a rapid eye movement sleep (REMS) - deprived (B) and a
REMS - deprived - sleep rebound (C) animal. Nesfatin/MCH double-positive neurons are pink (arrows), MCH - negative nesfatin neurons are red
(arrowheads). Activated nesfatin/MCH neurons show white nuclei, activated nesfatin - positive, but MCH - negative neurons show yellow nuclei. Note
that majority of the MCH - positive nesfatin neurons are activated (Fos - positive, arrows) by rebound, while only a few of the MCH - negative neurons
showed Fos - positivity (arrowhead). Scale bar: 100 mm. D. Distribution of MCH - positive (N+/M+) and MCH - negative (N+/M

¯
) neurons within the

nesfatin producing cell population and percentage of activated (Fos - positive) cells after REMS deprivation followed by rebound. Data are shown as
mean 6 SEM, n = 5.
doi:10.1371/journal.pone.0059809.g004
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previous habituation [4,21], moreover, increased plasma ACTH

and corticosterone levels have been reported after icv nesfatin-1

injection in the first 30 and 60 min, respectively [4,45], we omitted

the first hour and evaluated vigilance from the beginning of the 2nd

to the end of the 6th hours of passive phase.

Centrally injected nesfatin-1 had an IS-REMS decreasing effect

lasting 5–6 hours following administration. Decrease in the

number of REMS and IS as well as the average duration of

REMS episodes seem to be involved in this effect, suggesting that

neurons both in onset and maintenance of IS-REMS may be

affected. The decline of REMS and IS was presumably

compensated by a short-lived elevation of SWS1, and we also

found a parallel increase in the amount of passive wake, and it was

prolonged. There was a tendency for decrease of total sleep time.

The mechanism of nesfatin-1’s action on vigilance stages needs

to be clarified in the future. Increase in the activity of the

ascending arousal system and/or decrease in midbrain reticular

arousal threshold by nesfatin-1 directly or indirectly, may be one

explanation. Indeed, Yoshida et al. have reported that centrally

administered nesfatin-1 induced Fos expression in noradrenergic

neurons of the locus coeruleus and serotonergic cells of the dorsal

and median raphe nuclei [45], structures known to be parts of the

brainstem arousal system [46]. However, we should not ignore

that icv nesfatin-1 has been demonstrated to cause Fos expression

also in the PVN, the nucleus of the solitary tract and the nucleus

supraopticus [45], all being related to stress and therefore, may

potentially alter sleep architecture [39,47,48].

In relationship with MCH, it is interesting to notice a

consequent opposite effect of nesfatin-1. Unlike nesfatin-1, MCH

has been shown to induce a dose-dependent increase of REMS

when centrally injected [20]. Ahnaou et al. have demonstrated

that MCH1 receptor antagonist compounds decreased REMS, IS

and SWS2, while wake stages increased [49]. Moreover, on food

intake and energy expenditure, MCH and nesfatin act also

oppositely [1,15,44]. Co - localization of MCH with other

neuropeptides having opposite effect is not unique. A high percent

of orexigenic MCH neurons co - localize with the anorexigenic

cocaine and amphetamine regulated transcript [50].

Additionally, as for synaptic action of MCH, it has a

predominantly inhibitory effect pre- and postsynaptically and

attenuates the activation of N-, L- and P/Q-type calcium

channels, while nesfatin-1 has been found to rise intracellular

Ca2+ concentrations, by stimulating Ca2+ entry via N-, L- and P/

Q-type calcium channels [12,51]. At the same time, the receptor

or receptors for nesfatin-1 have not been identified yet; therefore

the precise mechanism of nesfatin’s action remains to be

elucidated.

In summary, we revealed a close association between REMS

architecture and nesfatin expression in the DLH and the ZI, as

well as a possible negative feedback effect of nesfatin-1 on REMS,

inasmuch as there is a disinhibition of nesfatin expression by

Figure 5. Effects of intracerebroventricularly administered
nesfatin-1 on rapid eye movement sleep (REMS) and interme-
diate stage of sleep (IS). A,B. The time spent in REMS and IS per
hour, respectively in the 2nd–6th hours of passive (light) phase. C,D. The
number and -E,F- the average duration of REMS and IS episodes per
hour, respectively. Data are presented as mean 6 SEM, n = 6 per group,
p*,0.05, p**,0.01.
doi:10.1371/journal.pone.0059809.g005

Figure 6. Effects of intracerebroventricularly administered
nesfatin-1 on slow wave sleep and passive wake (PW) vigilance
stages. The time spent and the number of episodes in light slow wave
sleep (SWS1, A and D, respectively), deep slow wave sleep (SWS2, B
and E, respectively) as well as in PW (C and F, respectively), per hour in
the 2nd–6th hours of passive (light) phase. Data are presented as mean
6 SEM, n= 6 per group, p*,0.05, p**,0.01.
doi:10.1371/journal.pone.0059809.g006
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REMS rebound in the DLH and ZI, and an inhibition of REMS

by icv nesfatin-1. Further data are needed about the role of other

nesfatin - expressing brain areas in this process that theoretically

can be related to the sleep-wake regulation. Our results confirm

earlier findings implicating the integrative role of the DLH and ZI

in the control of a wide variety of functions, like energy

homeostasis, vigilance, regulation of motor activity and reward,

as well as more recently, in mood and depression [13,14,52,53].

Sleep architecture of humans is strongly affected by several

illnesses, like narcolepsy, anorexia and depression [7,54–56].

Hence, the present findings may be relevant not only in sleep

research, but also in other studies regarding sleep related disorders.

Depression and anorexia are among those affecting the population

worldwide. Thus, the possibility that nesfatin, the anorexigenic

peptide, recently been related also to depression [5,6] may emerge

as a potential new link between these diseases and sleep

disturbances, calls for further investigation.
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