
Proceedings of the 1989 Winter Simulation Conference
E.A. MacNair, K.J. Musselman, P. Heidelberger (eds.)

NEST; A NETWORK SIMULATION
& PROTOTYPING TESTBED*

A. Dupuy, J. Schwartz, Y. Yemini
450 Compute r Science, Columbia Univers i ty NY, N Y 10028

D. Bacon
IBM, T.J. Watson Research Center

A B S T R A C T

This paper describes Nest, a graphical environment for
distributed networked systems simulation and rapid-prototyping.
Nest users can develop and test distributed systems and
protocols (from crude models to actual system code) within
simulated network scenarios• Nest represents an
environment-based approach to simulation. Users view Nest as
an extension of their standard Unix TM environment. Nest offers
the generality of language-based simulation techniques and the
efficiencies of model-based techniques. Users interact with Nest
through standardized graphical interfaces. Nest permits the users
to modify and reconfigure the simulation during execution.
Thus, it is possible to study the dynamic response of a
distributed system to failures or burst-loads. Nest is organized
as a simulation server, responsible for execution of complex
simulation scenarios, and client monitors responsible for
simulation control. The chent/server model permits dismbutmn
of Nest over a network environment. This permits migration of
simulations to powerful remote computational servers as well as
development of a shared multi-site simulation/integration
testbed. Nest is portable and extensible. It has been ported to
virtually all UnixT~ariants and distributed since 1987 to over 150
sites worldwide• It has been used in scores of studies ranging
from communication protocols, to distributed databases and
operating systems as well as distributed manufacturing systems.

1. I N T R O D U C T I O N

Nest (Network Simulation Testbed) is a graphical environment
for simulation and rapid-prototyping of distributed networked
systems and protocols. Designers of distributed networked
systems require the ability to study the systems operations under
a variety of simulated network scenarios. Thus, for example, a
designer of a routing protocol needs to study the steady-state
performance features of the mechanism as well as its dynamic
response to failure of links or switching nodes. Similarly,
designers of a distributed transaction processing system need to
study the performance of the system under a variety of load
models as well as its response to failure conditions. Nest
provides a complete environment for modeling, execution and
monitoring of distributed systems of arbitrary complexity.

Nest is embedded within a standard Unix environment. A user
develops a simulation model of a communication network using
a set of graphical tools provided by the Nest generic monitor
tools. Node functions (e.g., routing protocol) as well as
communication link behaviors (e.g., packet loss or delay
features) are typically coded by the user in C; in theory any
high-level block-structured language could be supported. These
procedures provided by the user are linked with the simulated
network model and executed efficiently by the Nest simulation
server. The user can reconfigure the simulation scenario either
through graphical interaction or through program control. The
results of an execution can be graphically monitored through
user's custom monitors developed using Nest graphical tools.

* Research supported by DARPA contract #F-29601-87-C-0074
and by the NY State CAT contract #NYSSTFCAT(89)-5

"~ UNIX is a trademark of AT&T.

Nest may thus be used to conduct simulation studies of
arbitrarily distributed networked system. However, unlike pure
simulation tools, Nest may also be used as an environment for
rapid-prototyping of distributed systems and protocols. The
actual code of the systems so developed can be used at any
development stage as the node-functions under study. The
behavior of the system may be examined under a variety of
simulated scenarios. For example, in the development of a
routing protocol for a mobile packet radio network, it is possible
to examine the speed with which the routing protocol responds
to changes in the topology, the probability and expected duration
of a routing loop. The actual code of the routing protocol may be
embedded as node functions within Nest. The only
modifications of the code will involve use of Nest calls upon the
simulated network to send, receive or broadcast a message.

Traditional approaches to simulation are either language-based or
model-based. Language-based approaches (e.g., SIMULA,
SIMSCRIPT) provide user with specialized programming
language constructs to support modeling and simulation.
Model-based approaches (e.g., queuing-network simulators
such as IBM's RESQ [11]) provide users with extensive
collection of tools that support a particular simulation modeling
technique. The key advantage of model-based approaches is the
efficiency with which they may handle large-scale simulations
by utilizing model-specific techniques (e.g., fast algorithms to
solve complex queuing network models). Their key
disadvantage is a narrower scope of applications and questions
that they may answer. For example, it is not possible within a
pure queuing-network model to model and analyze complex
transient behaviors (e.g., formation of roudng loops in a mobile
packet radio network). An additional important disadvantage is
requiring the users to develop in-depth understanding of the
modeling techniques. Designers of distributed database
transaction systems are often unfamiliar with queuing models.

The key advantage of language-based approaches is the ability to
model arbitrary systems and scenarios. A key disadvantage of
both approaches is that they separate the task of
modeling/simulation from those of design/development. A
designer of a network protocol is required to develop the code
in one environment using one language, while simultaneously
developing a consistent simulation model. The distinctions
between the simulation model and the actual system may be
significant enough to reduce the effectiveness of simulation.
This is particularly true for complex systems involving a long
design cycle and significant changes.

Nest pursues a different approach to simulation studies:
extending a networked operating system environment to support
simulation modeling and efficient execution. This
environment-based approach to simulation shares with
language-based approaches the generality of its modeling power.
Nest may be used to model arbitrary distributed interacting
systems. Nest also shares with the language-based approach an
internal execution architecture (see below) that accomplishes
very efficient scheduling of a large number of processes.
However, unlike language-based approaches, Nest does not
require the user to master or use a new/separate simulation
language facility and the processes of design/development and

1058

simulation are integrated. The user can study the behavior of the
actual system being developed (at any level of detail) under
arbitrary simulated scenarios. The routing protocol designer, for
example, can attach the very routing protocol designed (actual
code with minor adjustmen0 to a Nest simulation and pursue
study of the actual system behavior. As the system changes
through the design process, new simulation studies may be
conducted by attaching the new code to the same simulation
models. Nest can thus be used as an integral part of the design
process unified with other tools (e.g., for debugging).

In similarity to model-based approaches, Nest is specifically
targeted towards a limited scope of applications: distributed
networked systems. Nest supports a built-in customizable
communication network model. However, this scope has been
sufficiently broad to support studies ranging from low-level
communication protocols to distributed transaction processing
systems, avionic systems and even manufacturing processes.

Fieure 1: Overall architecture of Nest

D E S I G N N O D E B E H A V I O R

0
Node Function

The environment-based approach to simulation offers a few
important attractions to users:

1. simulation is integrated with the range of tools supported by
the environment
• the user can utilize graphics, statistical packages,

debuggers and other standard tools of choice in the
simulation study

• the user can integrate simulation as an integral part of a
standard development process

2. users need-not develop extensive new skills or knowledge
to pursue simulation studies

3. standard features of the environment can be used to enhance
the range of applicability
• Nest simulation is configured as a network server with

monitors as clients. The client/server model permits
multiple remote accesses to a shared testbed. This can be
ver.y important in supporting a large scale multi-site
project.

In what follows we describe the architecture of Nest (section 2),
illustrate its use through a simple example (section 3), describe
some aspects of Nest implementation (section 4) and provide a
few examples of Nest applications.

D E S I G N L I N K B E H A V I O R

O

I

r~

II
Communicat ion

N e t w o r k

DESIGN NETWORK SIS

0
c

> n e s t
>cd usr/nest/x [

Generic Client
Monitor

M O N I T O R B E H A V I O R

Custom Client Monitor

1059

2. A R C H I T E C T U R E O F N E S T

2.1 OVERALL SERVER/CLIENT STRUCTURE

The overall architecture of Nest is depicted in the figure (1)
above. Nest consists of a simulation server and client monitors.
The simulation server is responsible for the execution of a
simulation run. The generic client monitors are used to
(re)configure a simulation model and control its execution. The
custom clients are used to monitor a simulation behavior and
display the results. Clients can (and typically will) reside on
separate machines from the server.This allows dedication of a
computing server to execute a cycle-consuming simulation while
delegating presentation and control functions to remote
workstations.

The client-server communications require relatively low
communication bandwidth. This permits the server to serve
remote clients over a wide-area network. Thus, it may be
necessary sometime to utilize the power of a remote
supercomputer to execute a complex simulation study.
Similarly, it may be useful to retain a shared simulation testbed
for integration of systems developed by a multi-site project. For
example, in the design of a complex communication network
different sites may be responsible for different protocols and
subsystems. A shared testbed permits both simplified integration
of these subsystems as well as testing of individual subsystems
in relations to each other under standardized scenarios.

The interaction of users with Nest are depicted via the shaded
arrows. Users provide node and link functions which are linked
with the simulation server to form a simulation testbed. These
functions are coded in C and include calls upon the Nest library.
Node functions are used to model distributed communicating
processes running at network nodes (e.g., protocols, database
transactions, manufacturing cells). Nest executes the node
processes and their communications calls using Nest-provided
primitives for sending, broadcasting or receiving packets.

A simulated link has an associated stack of link functions. The
motion of a packet over the link is simulated by passing it
through the link functions, which act as a stack of filters. Link
functions are used to model the behavior of communication
links (e.g., packet loss, link jamming, support of a standard
protocol stack). Link functions are also used to monitor and
collect performance statistics of link traffic (e.g., number of
control packets, link delay).

The simulation server integrates the node and link functions to
form a single simulation process. The simulation process
schedules the execution of the node and link processes to meet
the specifications of delay and timing set by the users. The user
can control the timing of events and the delays associated with
communications through a collection of Nest-supported timing
control functions. These functions simulate standard Unix
timing control (e.g., sleep) and support full user control over
simulation time.

2.2 NEST USER INTERFACES

Nest users control and manage a simulation through graphical
monitoring tools. Nest provides two kinds of monitors: generic
monitor and custom monitors. The genetic monitor provides a
complete environment to create edit and (re)configure simulation
scenarios. A typical genetic monitor screen is depicted in figure
(2) below. The user creates and modifies a network description
using a mouse to draw it; clicking on the mouse generates nodes;
dragging the mouse between nodes creates links. Node and link
pop-menus offer a range of editing features to configure the
re.spective simulated objects. Simulation parameters may be set
via respective panels at the top. Once the user defined a
simulation scenario, it is sent to the simulation server where it is
loaded and executed.

2.3

One of Nest's key features is the ability to reconfigure a scenario
during the simulation run. This is particularly important for
studies of complex dynamic system behaviors: how does the
system respond to a node/link crash? how will it handle addition
of new nodes or links? what transient behaviors occur as a result
of such critical changes? how long will certain transients last?
how probable are they? These type of questions are typically
difficult to answer through analytical studies or model-based
simulation and require significant experimentation. Nest support
such experimentation with varying scenarios. Users may
delete/add nodes/links or change their features while the
simulation is running. The impact of these changes on the
system behavior trmy be instantly observed and interpreted.

Nest's custom monitors offer tools to display the results of a
simulation. A user may view the status and data associated with
different nodes or performance statistics of interest. The custom
monitors may be used to animate the dynamics of the simulation
behavior and represent the evolution of local partial views of the
system state. This is particularly useful in the study of complex
dynamical behaviors of distributed systems.

THE SIMULATION SERVER AS AN EFFICIENT
LIGHT-WEIGHT PROCESS MODEL &
SCHEDULER

Nest supports an efficient light-weight process model to facilitate
simulation of complex distributed systems. A process typically
models the behavior of a node. A process is provided with an
appropriate context including configurationai information (e.g.,
respective node and incident links), simulation scheduling
information (e.g., pending messages) and execution information
(i.e., pointer to its run-time stack). Nest simulation server
manages the appropriate scheduling of processes execution and
the context switching. Multiple threads of execution are
supported from within a single Unix process. The overhead
associated with context-switching is thus significantly reduced.
Therefore, Nest can support large simulations (scores to
hundreds of nodes) in a workstation environment and hundreds
to thousands of nodes within a more powerful server
environment.

Scheduling of simulation events is made complex by the mixture
of real and simulated events. It is necessary for Nest to manage
simulated time that is, in-part, controlled by real events.
Simulated events requiring synchronization with the simulation
clock include attempts by a processes to receive a message (i,e.,
it is necessary to suspend the process until all messages that
should have been delivered by its simulation time are available)
or explicit requests by processes to control their timing (e.g., a
request to be suspended for certain simulation time).

Nest permits the simulation clock to be controlled by internal and
external events occurring in real-time. Thus, since a user may
wish to study the execution of a real code (for node processes)
the actual execution time of a particular segment of a process
may be used to evaluate the respective simulated time and
synchronize with the simulation clock. Furthermore, the users
too can be a source of real-time events that are mapped to
simulated time. Users can interact with the simulation directly
(e.g., changing the network configuration during a run). A
change by the user redirects the evolution of the simulation. It is
thus necessary to assure that the user real-time interaction is
properly managed in simulation time. This implies that a user
event can only take place after all simulated processes have been
synchronized to an appropriate simulation time. (Otherwise it
would be possible for some processes to continue and execute in
the past relative to the changes introduced by the user).

1060

Fi_gure 2: The generic monitox

,,st 2 . 5 Displa]

Host: localhost

I Max Nodes: 25

I Sim. P a s s : 0

Sire. Time: 0.01

• _~ Connected ~ Paused

• .~ Labeled ~ Unlocked

Graph File: example

U [] B r o a d c a s t [] P o i n t t o Po in t I I Pass Time: 1.00

,," °nitor: OOser onitor llWakoup Tim°: i00

\
4

Node ID: 3

Status: Done CPU Time:

Function: ~Server

[~'Repeat [] Halt [] Start

0.00

Edge Weight:

~ - ~ Top Channel Function: ~Reliable
Channel Stack: (Reliable)

Delete Node

Start Node-~
Hal% Node
Reset Node
Repeat Node
Clear Flags
Show Node Data

Set Node Data

These complex mappings of real-time into simulated time are
managed by Nest through a simple adjustable scheduling policy.
Nest passes through all its processes using a round-robin
scheduling. During each pass all processes are provided with a
quantum of simulation time to be executed. Processes that are
suspended (e.g., for reception of messages that have not yet
been delivered or through direct requests) only require a simple
advance of their clocks and potential reactivation if the respective
time is arrived at. Changes of configuration through user
interaction or program control can only be executed between
passes.

The user can adjust the temporal duration of a Nest pass. In the
limit when the pass duration is very long, the simulation
schedule is entirely controlled by simulated events (e.g.,
communications), as real-time interactions are not permitted.
Processes will be permitted to execute until they reach a
synchronizing event when they are suspended. The simulation
clock will be advanced at a maximum rate possible as it is not
necessary to anticipate external interactions and advance the
clock in locked-step. If significant level of external control is
desired, a shorter duration for the pass can be selected leading to
finer locked-step execution of the simulated processes.

3. A N E X A M P L E O F N E S T A P P L I C A T I O N S

Having looked at the structure of Nest, we will turn to the
programmer interface, i.e., what someone writing a simulation,
or prototyping a distributed system, needs to know in order to
use Nest). In the classic Unix tradition, we will use a variant of
the famous "hello, world" program to demonstrate the basic
features and usage of Nest.

The program in Figure 3 is a complete Nest program in C. It
can be compiled and linked with the Nest library to create a Nest
simulation program. The first thing you may notice is the
absence of a main() routine. While the programmer can supply a
main() routine for the emulation program if desired, the Nest
library contains a generic main routine which initializes the
simulation with node main() as the main routine for each
simulated node. This n~ain routine for each node takes a single
argument, the node id assigned to it by Nest. Node ids are used
by Nest to uniquely identify each node, and are used whenever a
node needs to be specified for a Nest function.

1061

An important part of a network simulation is communications
between nodes. An example of this can be seen at the beginning
of the node main() routine. The first thing the routine does is to
broadcast a-message to all its neighbors. A message in Nest
consists of two parts, usually called the key and the data pointer.
While these are both just 32 bit quantities, they are
conventionally used in different ways. The key is typically used
to identify messages, either by type or by number. The data
pointer is usually a pointer to the data of the message, in some
format determined by the type of the message. In the example,
the key is the defined constant HELLO, and the data pointer is
just a pointer to the null-terminated string "hello, world". This
simple message structure of key and data pointer is extremely
flexible, since the data pointer can point to any sort o f data, from
character strings to complex linked data structures, such as trees
and lists.

After communication, the next most important thing in a
simulation is the passage of time. Since all the processes in a
simulation are running in a single Unix process, and since the
passage of time within the simulation is largely independent of
real time, system calls such as sleep() and time() will not have
the desired effect. Instead Nest provides alternate routines, such
as slumber(), which is the next function called in the example.
After a node broadcasts the hello message, it would like to
receive messages from its neighbors. But it may take a certain
amount of time for the messages to arrive. So slumber is called
to suspend the node (in this case, for five seconds) to allow
messages to arrive. The SLUMBER NOWAKE parameter is a
defined constant which tells Nest not to interrupt the slumber if
messages arrive.

Once the node has waited a certain amount of time, it calls
any_messagesO to see if any messages are available to be
received. This prevents the node from blocking indefinitely on a
receive if there are no more messages which have been sent to it.
While there are messages to be received, the node calls recvrnO
to receive the message. It passes three pointers to variables,
which are set to the original destination, key and data pointer of
the message. The original destination stored in dest is just the
node id of the receiving node, or 0 (which is not a valid node id)
if the message was broadcast. The nodeid of the sender of the
message is returned by recvmO.

Once the message has been received, the example prints a
diagnostic message describing the message which has been
received. Before it does, it calls the hold() function to prevent
Nest from interrupting the printf call and giving control to
another node. This ensures that the messages from different
nodes will not be mixed together, as well as preventing any
problems caused by non-reentrant implementations of the stdio
library. The release() function is called afterward, indicating that
the critical region has ended. The parameter to release indicates
the number of nested ho/d0 calls to be released.

Finally, the node replies to each received HELLO message with
an acknowledgment. Since the acknowledgment is directed to
the node which sent us the HELLO, sendmO is called instead of
broadcast(). The first parameter to sendm is a destination node
id; otherwise it is identical to broadcast.

4.

Fieure 3: Nest "Helo. World" Program

#include <nest.b>

#define HELLO l
#define ACK 2

struct timeval five_seconds = { 5, 0 };

node_main (nodeid)
ident nodeid;
{

char *message;
ident dest, sender;
int msgtype;

broadcast (HELLO, "hello, world");

slumber (&five_seconds, SLUMBER_NOWAKE);

while (anymessages ()) {

sender = recvm (&dest, &msgtype, &message);

hold ();

printf ("%d received V'%sV' from %d via %s~",
nodeid, message, sender,
dest == 0 ? "broadcast" : "sendm");

release (1);

if (msgtype == HELLO)
sendm (sender, ACK, "isn't that a bit cliched?");

I

I M P L E M E N T A T I O N O F N E S T

The key goals o f Nest implementation are: efficiency, portability
and extensibility. Efficiency of simulation is of great importance
in the study of large scale complex distributed systems. Certain
phenomena occurring in such systems cannot be extrapolated
from the study of small scale simplified versions. However, a
simulation study of complex large scale systems may require
significant computing resources and consume too long a time.
Nest accomplishes significant efficiency through the use of
single process multi-threaded execution model and through the
use o f an optimized scheduler. The single-process execution
model involves a minimal amount of context switching
overhead, significantly less that the overheads associated with
multi-tasking implementation. Sharing memory among the
different process threads permits the simulation to accomplish
significant efficiency (e.g., passing pointers instead of full
messages). Finally, the scheduler, considered above permits the
user to fine tune the execution runs to maximize efficiency or
real-time reconfiguration and experimentation. Typically, a user
will set the initial granularity of the round-robin passes to
facilitate high degree of interaction and change. Once the
scenario of interest has been defined, the user can reset the pass
duration to allow for efficient uninterrupted execution of the
simulation.

1062

Nest has proved very efficient in studies of both large scale and
complex distributed systems. Exact comparative benchnaarks of
simulation tools are yet to be developed. Nest has been used in
simulation studies (utilizing a Sun server) involving networks of
hundreds nodes executing a standard routing protocol model.
Similarly, Nest was applied in the development of a complex
distributed transaction processing model where node functions
involved over 20k lines of codes. In all cases the response time
was very fast.

Portability has been accomplished by minimizing and localizing
dependencies of Nest on specific hardware or even Unix variant
characteristics. A typical port of the simulation server can be
accomplished in a matter of a short few days. The client
software depended initially on Sun window systems. A recent
porting to the X-window environment can be expected to ease
the portability of the user interfaces. Nest has been ported into a
large number of workstations environments and exported to over
150 users sites worldwide.

Extensibility and customization by users are key elements of
Nest's design, From a user's perspective Nest is perceived as an
extension of the standard Unix environment. Nest simulation
server and clients are simply Unix libraries of functions. The
user can modify any of these functions or augment them with
her/his own. A user simulation consists of expansion of the Nest
libraries with user-provided node and link functions. This
process of extension permits the user to adapt Nest and develop
it into a custom environment for specific simulation studies of
interest. Researchers at Northrop Corporation [10] pursued this
approach to develop a simulation testbed for protocol research.
Similarly, researchers at UC Berkeley [8] extended Nest into a
complete environment to study and test TCP]IP internetwork
designs (e.g., gateway routing techniques). In both cases Nest
was equipped with node functions modeling in details the
respective protocol environments.

Incremental expandability is a key element in long term
development of simulation studies. Typical simulation studies
are designed as throw-away software and the enormous
investment in their development is lost when the object of the
study is completed. Nest simulations can be construed to retain a
significant part of the investment through incremental expansion.
Thus, a TCP/IP internet testbed may be used to support a
significant number of relevant studies sharing the same testbed
software. Users can share and port the respective libraries
among different sites leading to important savings and
cross-fertilization.

Finally, customization and expandability is also supported in the
design of the Nest client monitor tools. All menus provide
handles for simple adaptations and expansions to support
user-defined options. This completes the range of flexibilities
offered to users in developing testbed simulation studies.

5. S A M P L E A P P L I C A T I O N S O F N E S T

5.1 IPLS - a Distributed Incremental Position Location
Sys tem

Nest was initially developed as a tool to experiment with the
design of a distributed position location system. Consider a
network of packet-switched mobile radio units. Two radios
within range of each other can measure the propagation delay
between them and extract an estimation of their mutual distance
from each other. Given these distributed observations of
distances it is required to compute the location coordinates of the
radio units. IPLS involves a few distributed algorithms that aim
to address the range of problems arising from mobility, partial
distributed measurements and possible errors. Nest became a
key tool in the development of IPLS and in the the performance
studies of these algorithms under varied dynamic scenarios.

5.2 Topology Recognition, ARPAnet and Internet
Routing

Broadcasting connectivity tables is an important technique to
accomplish topology recognition by nodes of a dynamic
network. Topology recognition protocols are used within a
number of communication networks. It is difficult to establish
the dynamic behavior of such algorithms. Examples of
instabilities and long response time (to failures) have been
discussed in the literature [3]. However, the theoretical
understanding of these dynamics is in its embryonic stages.
Simulation studies are the only practical tool at this time in
developing better understanding of these dynamics. Traditional
queuing-network simulators typically address equilibrium
behaviors. Nest became an important tool in the study of
dynamic response behaviors. A few studies of topology
recognition algorithms were conducted. Similarly, the response
of the ARPAnet routing algorithm [3] to node and link failures
was studied extensively [12].

In the examples above the respective protocols were coded
directly as part of the study. In contrast, another Nest study
attached parts of actual BSD code (with minor modifications) for
IP gateway routing to a simulated network environment and
demonstrated the occurence of loops, instabilities and long
response time to topology changes [9].

5.3 Dynamic Load-Balancing, Distributed Transaction
Processing

Other work [7] has used Nest to develop simulations of complex
distributed systems. Microeconomic models of supply and
demand, with bidding and auctions, were used to develop a
dynamic load-balancing system. Processes were given a certain
amount of "money", and would bid for communcations and
CPU resources. This bidding behavior was implemented on the
nodes in a Nest simulation and analyzed to find the relative
performance of various bidding strategies and auction methods,
and to compare them with traditional load-balancing methods.

A more complex simulation used the microeconomic models to
manage a distributed transaction processing system with
replicated data. This simulation had upwards of 20,000 lines of
C code running on each node, showing the ability of Nest to
model complex behaviors.

5.4 Distributed Multiprocessor Operating Systems

Nest has also been used to simulate the behavior of an
experimental multiprocessor operating system [1]. In this study,
operating system code was run using Nest to see how various
performance measures would be affected by adding additional
processors. The results generated with Nest were later verified
on real hardware and found to differ by only a few percent.

6. C O N C L U S I O N S

The study of Nest and its applications established a few
important results:

Environment-based simulation tools can offer important
attractions over language-or model-based approaches. The users
do not require sophisticated expertise in the use of complex
modelling tools or specialized languages. The simulation tools
can be entirely integrated within the user standard development
environment and offer a unified set of tools. While Nest was
developed to support C, the extension to support other standard
languages (e.g., Pascal, Fortran) is straightforward. Simulation
can be conducted as an integral part of the design and
implementation cycle. The actual code of the system developed
(or a modification of it) may be used to model its behavior.

1063

The environment can support simple modeling of arbitrary
simulation scenarios and execute the actual system within the
resulting simulation testbed.

It is often important to study through simulation the dynamic
response of the system to changes. These changes may be
introduced through user or program control. It is therefore
useful to separate scenario modeling and control functions from
the simulation code. The scenario may then be passed to the
simulation as a parameter, allowing the simulation to adapt to
new scenarios and respond to the respective changes.

Separation of scenario display and control from the simulation
execution in terms of simulation server and monitoring clients
can offer additional attractions. The simulation may be executed
over a remote computational server permitting optimum
utilization of the server cycles and faster response. The client
monitors may provide effective remote (re)configuration and
scenario controls. This permits users to access over a network
substantial more computing capabilities than may be available to
them locally and conduct extensive simulations studies.
Additionally, as is often the case, the development of a complex
distributed system often involves work by multiple sites. A
common simulation testbed can support sharing of software and
efforts as well as improved studies of the interactions between
the different subsystems. Furthermore, it serves as an important
factor in improving the integration processas it enforces certain
standards over the disparate development efforts.

Finally, extensibility, customizability and portability enable
users to extend and adapt Nest to become a total design
environment for their systems. The word-of-mouth ad-hoc
distribution of Nest to over 150 sites and its successful
applications in scores of different projects provide a measure of
success in accomplishing the results reported in this paper. The
authors would be pleased to share Nest software and
experiences with other interested sites and users. Please use the
address above to pursue this further.

REFERENCES
[1] A. Barak, International Computer Science Institute,

Berkeley, private communication, 1989.

[2] D. Bacon, A. Dupuy, J Schwartz, Y. Yemini, "Nest: A
Network Simulation and Prototyping Tool", Proceedings
of the Winter USENIX conference, February 1988.

[3] D. Bensekas, "Data Networks", Prentice-Hall, 1987.

[4] A. Demers, S. Keshav, S. Shenker, "Analysis and
Simulation of a Fair Queueing Algorithm", Submitted for
Sigrnetrics 89, September 1988.

[5] A. Dupuy, "Nest User Interface Manual", Columbia
University, March 1988.

[6] A. Dupuy, "Nest User's Guide", Columbia University,
March 1988.

[7] D. Ferguson, "The Application of Microeconomics to the
Design of Resource Allocation and Control Algorithms",
Ph.D Thesis, Columbia University, 1989.

[8] S. Keshav, "REAL: A Network Simulator", Technical
Report No. UCB/CSD 88/472, University of California
at Berkeley, December 1988.

[9] C. Malo, Project Report, Columbia University, 1988.

[10] M. Rose, "The Nest Simulation facility at NRTC",
Technical Report, Northrop Research and Technology
Center, 1987.

[11]

[12]

C. H. Sauer, E. A. McNair, J. F. Kurose, "The
Research Queueing Package: past, present and future",
Proceedings of the National Computer Conference,
Arlington, VA, 1982.

B. Swinyer, Project Report, Columbia University,
1988.

1064

