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A B S T R A C T  

This paper describes Nest, a graphical environment for 
distributed networked systems simulation and rapid-prototyping. 
Nest users can develop and test distributed systems and 
protocols (from crude models to actual system code) within 
simulated network scenarios• Nest represents an 
environment-based approach to simulation. Users view Nest as 
an extension of their standard Unix TM environment. Nest offers 
the generality of language-based simulation techniques and the 
efficiencies of model-based techniques. Users interact with Nest 
through standardized graphical interfaces. Nest permits the users 
to modify and reconfigure the simulation during execution. 
Thus, it is possible to study the dynamic response of a 
distributed system to failures or burst-loads. Nest is organized 
as a simulation server, responsible for execution of complex 
simulation scenarios, and client monitors responsible for 
simulation control. The chent/server model permits dismbutmn 
of Nest over a network environment. This permits migration of 
simulations to powerful remote computational servers as well as 
development of a shared multi-site simulation/integration 
testbed. Nest is portable and extensible. It has been ported to 
virtually all UnixT~ariants and distributed since 1987 to over 150 
sites worldwide• It has been used in scores of studies ranging 
from communication protocols, to distributed databases and 
operating systems as well as distributed manufacturing systems. 

1. I N T R O D U C T I O N  

Nest (Network Simulation Testbed) is a graphical environment 
for simulation and rapid-prototyping of distributed networked 
systems and protocols. Designers of distributed networked 
systems require the ability to study the systems operations under 
a variety of simulated network scenarios. Thus, for example, a 
designer of a routing protocol needs to study the steady-state 
performance features of the mechanism as well as its dynamic 
response to failure of links or switching nodes. Similarly, 
designers of a distributed transaction processing system need to 
study the performance of the system under a variety of load 
models as well as its response to failure conditions. Nest 
provides a complete environment for modeling, execution and 
monitoring of distributed systems of arbitrary complexity. 

Nest is embedded within a standard Unix environment. A user 
develops a simulation model of a communication network using 
a set of graphical tools provided by the Nest generic monitor 
tools. Node functions (e.g., routing protocol) as well as 
communication link behaviors (e.g., packet loss or delay 
features) are typically coded by the user in C; in theory any 
high-level block-structured language could be supported. These 
procedures provided by the user are linked with the simulated 
network model and executed efficiently by the Nest simulation 
server. The user can reconfigure the simulation scenario either 
through graphical interaction or through program control. The 
results of an execution can be graphically monitored through 
user's custom monitors developed using Nest graphical tools. 
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Nest may thus be used to conduct simulation studies of 
arbitrarily distributed networked system. However, unlike pure 
simulation tools, Nest may also be used as an environment for 
rapid-prototyping of distributed systems and protocols. The 
actual code of the systems so developed can be used at any 
development stage as the node-functions under study. The 
behavior of the system may be examined under a variety of 
simulated scenarios. For example, in the development of a 
routing protocol for a mobile packet radio network, it is possible 
to examine the speed with which the routing protocol responds 
to changes in the topology, the probability and expected duration 
of a routing loop. The actual code of the routing protocol may be 
embedded as node functions within Nest. The only 
modifications of the code will involve use of Nest calls upon the 
simulated network to send, receive or broadcast a message. 

Traditional approaches to simulation are either language-based or 
model-based. Language-based approaches (e.g., SIMULA, 
SIMSCRIPT) provide user with specialized programming 
language constructs to support modeling and simulation. 
Model-based approaches (e.g., queuing-network simulators 
such as IBM's RESQ [11]) provide users with extensive 
collection of tools that support a particular simulation modeling 
technique. The key advantage of model-based approaches is the 
efficiency with which they may handle large-scale simulations 
by utilizing model-specific techniques (e.g., fast algorithms to 
solve complex queuing network models). Their key 
disadvantage is a narrower scope of applications and questions 
that they may answer. For example, it is not possible within a 
pure queuing-network model to model and analyze complex 
transient behaviors (e.g., formation of roudng loops in a mobile 
packet radio network). An additional important disadvantage is 
requiring the users to develop in-depth understanding of the 
modeling techniques. Designers of distributed database 
transaction systems are often unfamiliar with queuing models. 

The key advantage of language-based approaches is the ability to 
model arbitrary systems and scenarios. A key disadvantage of 
both approaches is that they separate the task of 
modeling/simulation from those of design/development. A 
designer of a network protocol is required to develop the code 
in one environment using one language, while simultaneously 
developing a consistent simulation model. The distinctions 
between the simulation model and the actual system may be 
significant enough to reduce the effectiveness of simulation. 
This is particularly true for complex systems involving a long 
design cycle and significant changes. 

Nest pursues a different approach to simulation studies: 
extending a networked operating system environment to support 
simulation modeling and efficient execution. This 
environment-based approach to simulation shares with 
language-based approaches the generality of its modeling power. 
Nest may be used to model arbitrary distributed interacting 
systems. Nest also shares with the language-based approach an 
internal execution architecture (see below) that accomplishes 
very efficient scheduling of a large number of processes. 
However, unlike language-based approaches, Nest does not 
require the user to master or use a new/separate simulation 
language facility and the processes of design/development and 
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simulation are integrated. The user can study the behavior of the 
actual system being developed (at any level of detail) under 
arbitrary simulated scenarios. The routing protocol designer, for 
example, can attach the very routing protocol designed (actual 
code with minor adjustmen0 to a Nest simulation and pursue 
study of the actual system behavior. As the system changes 
through the design process, new simulation studies may be 
conducted by attaching the new code to the same simulation 
models. Nest can thus be used as an integral part of the design 
process unified with other tools (e.g., for debugging). 

In similarity to model-based approaches, Nest is specifically 
targeted towards a limited scope of applications: distributed 
networked systems. Nest supports a built-in customizable 
communication network model. However, this scope has been 
sufficiently broad to support studies ranging from low-level 
communication protocols to distributed transaction processing 
systems, avionic systems and even manufacturing processes. 

Fieure 1: Overall architecture of Nest 
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The environment-based approach to simulation offers a few 
important attractions to users: 

1. simulation is integrated with the range of tools supported by 
the environment 
• the user can utilize graphics, statistical packages, 
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simulation study 

• the user can integrate simulation as an integral part of a 
standard development process 

2. users need-not develop extensive new skills or knowledge 
to pursue simulation studies 

3. standard features of the environment can be used to enhance 
the range of applicability 
• Nest simulation is configured as a network server with 

monitors as clients. The client/server model permits 
multiple remote accesses to a shared testbed. This can be 
ver.y important in supporting a large scale multi-site 
project. 

In what follows we describe the architecture of Nest (section 2), 
illustrate its use through a simple example (section 3), describe 
some aspects of Nest implementation (section 4) and provide a 
few examples of Nest applications. 
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2. A R C H I T E C T U R E  O F  N E S T  

2.1 OVERALL SERVER/CLIENT STRUCTURE 

The overall architecture of Nest is depicted in the figure (1) 
above. Nest consists of a simulation server and client monitors. 
The simulation server is responsible for the execution of a 
simulation run. The generic client monitors are used to 
(re)configure a simulation model and control its execution. The 
custom clients are used to monitor a simulation behavior and 
display the results. Clients can (and typically will) reside on 
separate machines from the server.This allows dedication of a 
computing server to execute a cycle-consuming simulation while 
delegating presentation and control functions to remote 
workstations. 

The client-server communications require relatively low 
communication bandwidth. This permits the server to serve 
remote clients over a wide-area network. Thus, it may be 
necessary sometime to utilize the power of a remote 
supercomputer to execute a complex simulation study. 
Similarly, it may be useful to retain a shared simulation testbed 
for integration of systems developed by a multi-site project. For 
example, in the design of a complex communication network 
different sites may be responsible for different protocols and 
subsystems. A shared testbed permits both simplified integration 
of these subsystems as well as testing of individual subsystems 
in relations to each other under standardized scenarios. 

The interaction of users with Nest are depicted via the shaded 
arrows. Users provide node and link functions which are linked 
with the simulation server to form a simulation testbed. These 
functions are coded in C and include calls upon the Nest library. 
Node functions are used to model distributed communicating 
processes running at network nodes (e.g., protocols, database 
transactions, manufacturing cells). Nest executes the node 
processes and their communications calls using Nest-provided 
primitives for sending, broadcasting or receiving packets. 

A simulated link has an associated stack of link functions. The 
motion of a packet over the link is simulated by passing it 
through the link functions, which act as a stack of filters. Link 
functions are used to model the behavior of communication 
links (e.g., packet loss, link jamming, support of a standard 
protocol stack). Link functions are also used to monitor and 
collect performance statistics of link traffic (e.g., number of 
control packets, link delay). 

The simulation server integrates the node and link functions to 
form a single simulation process. The simulation process 
schedules the execution of the node and link processes to meet 
the specifications of delay and timing set by the users. The user 
can control the timing of events and the delays associated with 
communications through a collection of Nest-supported timing 
control functions. These functions simulate standard Unix 
timing control (e.g., sleep) and support full user control over 
simulation time. 

2.2 NEST USER INTERFACES 

Nest users control and manage a simulation through graphical 
monitoring tools. Nest provides two kinds of monitors: generic 
monitor and custom monitors. The genetic monitor provides a 
complete environment to create edit and (re)configure simulation 
scenarios. A typical genetic monitor screen is depicted in figure 
(2) below. The user creates and modifies a network description 
using a mouse to draw it; clicking on the mouse generates nodes; 
dragging the mouse between nodes creates links. Node and link 
pop-menus offer a range of editing features to configure the 
re.spective simulated objects. Simulation parameters may be set 
via respective panels at the top. Once the user defined a 
simulation scenario, it is sent to the simulation server where it is 
loaded and executed. 

2.3 

One of Nest's key features is the ability to reconfigure a scenario 
during the simulation run. This is particularly important for 
studies of complex dynamic system behaviors: how does the 
system respond to a node/link crash? how will it handle addition 
of new nodes or links? what transient behaviors occur as a result 
of such critical changes? how long will certain transients last? 
how probable are they? These type of questions are typically 
difficult to answer through analytical studies or model-based 
simulation and require significant experimentation. Nest support 
such experimentation with varying scenarios. Users may 
delete/add nodes/links or change their features while the 
simulation is running. The impact of these changes on the 
system behavior trmy be instantly observed and interpreted. 

Nest's custom monitors offer tools to display the results of a 
simulation. A user may view the status and data associated with 
different nodes or performance statistics of interest. The custom 
monitors may be used to animate the dynamics of the simulation 
behavior and represent the evolution of local partial views of the 
system state. This is particularly useful in the study of complex 
dynamical behaviors of distributed systems. 

THE SIMULATION SERVER AS AN EFFICIENT 
LIGHT-WEIGHT PROCESS MODEL & 
SCHEDULER 

Nest supports an efficient light-weight process model to facilitate 
simulation of complex distributed systems. A process typically 
models the behavior of a node. A process is provided with an 
appropriate context including configurationai information (e.g., 
respective node and incident links), simulation scheduling 
information (e.g., pending messages) and execution information 
(i.e., pointer to its run-time stack). Nest simulation server 
manages the appropriate scheduling of processes execution and 
the context switching. Multiple threads of execution are 
supported from within a single Unix process. The overhead 
associated with context-switching is thus significantly reduced. 
Therefore, Nest can support large simulations (scores to 
hundreds of nodes) in a workstation environment and hundreds 
to thousands of  nodes within a more powerful server 
environment. 

Scheduling of simulation events is made complex by the mixture 
of real and simulated events. It is necessary for Nest to manage 
simulated time that is, in-part, controlled by real events. 
Simulated events requiring synchronization with the simulation 
clock include attempts by a processes to receive a message (i,e., 
it is necessary to suspend the process until all messages that 
should have been delivered by its simulation time are available) 
or explicit requests by processes to control their timing (e.g., a 
request to be suspended for certain simulation time). 

Nest permits the simulation clock to be controlled by internal and 
external events occurring in real-time. Thus, since a user may 
wish to study the execution of a real code (for node processes) 
the actual execution time of a particular segment of a process 
may be used to evaluate the respective simulated time and 
synchronize with the simulation clock. Furthermore, the users 
too can be a source of real-time events that are mapped to 
simulated time. Users can interact with the simulation directly 
(e.g., changing the network configuration during a run). A 
change by the user redirects the evolution of the simulation. It is 
thus necessary to assure that the user real-time interaction is 
properly managed in simulation time. This implies that a user 
event can only take place after all simulated processes have been 
synchronized to an appropriate simulation time. (Otherwise it 
would be possible for some processes to continue and execute in 
the past relative to the changes introduced by the user). 
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Fi_gure 2: The generic monitox 
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These complex mappings of real-time into simulated time are 
managed by Nest through a simple adjustable scheduling policy. 
Nest passes through all its processes using a round-robin 
scheduling. During each pass all processes are provided with a 
quantum of simulation time to be executed. Processes that are 
suspended (e.g., for reception of messages that have not yet 
been delivered or through direct requests) only require a simple 
advance of their clocks and potential reactivation if the respective 
time is arrived at. Changes of configuration through user 
interaction or program control can only be executed between 
passes. 

The user can adjust the temporal duration of a Nest pass. In the 
limit when the pass duration is very long, the simulation 
schedule is entirely controlled by simulated events (e.g., 
communications), as real-time interactions are not permitted. 
Processes will be permitted to execute until they reach a 
synchronizing event when they are suspended. The simulation 
clock will be advanced at a maximum rate possible as it is not 
necessary to anticipate external interactions and advance the 
clock in locked-step. If significant level of external control is 
desired, a shorter duration for the pass can be selected leading to 
finer locked-step execution of the simulated processes. 

3. A N  E X A M P L E  O F  N E S T  A P P L I C A T I O N S  

Having looked at the structure of Nest, we will turn to the 
programmer interface, i.e., what someone writing a simulation, 
or prototyping a distributed system, needs to know in order to 
use Nest). In the classic Unix tradition, we will use a variant of 
the famous "hello, world" program to demonstrate the basic 
features and usage of Nest. 

The program in Figure 3 is a complete Nest program in C. It 
can be compiled and linked with the Nest library to create a Nest 
simulation program. The first thing you may notice is the 
absence of a main() routine. While the programmer can supply a 
main() routine for the emulation program if desired, the Nest 
library contains a generic main routine which initializes the 
simulation with node main() as the main routine for each 
simulated node. This n~ain routine for each node takes a single 
argument, the node id assigned to it by Nest. Node ids are used 
by Nest to uniquely identify each node, and are used whenever a 
node needs to be specified for a Nest function. 
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An important part of  a network simulation is communications 
between nodes. An example of  this can be seen at the beginning 
of  the node main() routine. The first thing the routine does is to 
broadcast a-message to all its neighbors. A message in Nest 
consists of  two parts, usually called the key and the data pointer. 
While  these are both just  32 bit quantities,  they are 
conventionally used in different ways. The key is typically used 
to identify messages,  either by type or by number. The data 
pointer is usually a pointer to the data of  the message, in some 
format determined by the type of  the message. In the example, 
the key is the defined constant HELLO, and the data pointer is 
just a pointer to the null-terminated string "hello, world". This 
simple message structure of  key and data pointer is extremely 
flexible, since the data pointer can point to any sort o f  data, from 
character strings to complex linked data structures, such as trees 
and lists. 

After communication,  the next most important thing in a 
simulation is the passage of  time. Since all the processes in a 
simulation are running in a single Unix process, and since the 
passage of  time within the simulation is largely independent of  
real time, system calls such as sleep() and time() will not have 
the desired effect. Instead Nest provides alternate routines, such 
as slumber(), which is the next function called in the example. 
After a node broadcasts the hello message, it would like to 
receive messages from its neighbors. But it may take a certain 
amount of  time for the messages to arrive. So slumber is called 
to suspend the node (in this case, for five seconds) to allow 
messages to arrive. The SLUMBER NOWAKE parameter is a 
defined constant which tells Nest not to interrupt the slumber if 
messages arrive. 

Once the node has waited a certain amount of  time, it calls 
any_messagesO to see if any messages are available to be 
received. This prevents the node from blocking indefinitely on a 
receive if there are no more messages which have been sent to it. 
While there are messages to be received, the node calls recvrnO 
to receive the message. It passes three pointers to variables, 
which are set to the original destination, key and data pointer of 
the message. The original destination stored in dest is just the 
node id of  the receiving node, or 0 (which is not a valid node id) 
if  the message was broadcast. The nodeid of  the sender of  the 
message is returned by recvmO. 

Once the message has been received, the example prints a 
diagnostic message describing the message which has been 
received. Before it does, it calls the hold() function to prevent 
Nest from interrupting the printf call and giving control to 
another node. This ensures that the messages from different 
nodes will not be mixed together, as well as preventing any 
problems caused by non-reentrant implementations of  the stdio 
library. The release() function is called afterward, indicating that 
the critical region has ended. The parameter to release indicates 
the number of nested ho/d0 calls to be released. 

Finally, the node replies to each received HELLO message with 
an acknowledgment. Since the acknowledgment is directed to 
the node which sent us the HELLO, sendmO is called instead of  
broadcast(). The first parameter to sendm is a destination node 
id; otherwise it is identical to broadcast. 

4.  

Fieure 3: Nest  "Helo.  World" Program 

#include <nest.b> 

#define HELLO l 
#define ACK 2 

struct timeval five_seconds = { 5, 0 }; 

node_main (nodeid) 
ident nodeid; 
{ 

char *message; 
ident dest, sender; 
int msgtype; 

broadcast (HELLO, "hello, world"); 

slumber (&five_seconds, SLUMBER_NOWAKE); 

while ( anymessages ( ) ) { 

sender = recvm (&dest, &msgtype, &message); 

hold ( ); 

printf ("%d received V'%sV' from %d via %s~", 
nodeid, message, sender, 
dest == 0 ? "broadcast" : "sendm" ); 

release (1); 

if (msgtype == HELLO) 
sendm (sender, ACK, "isn't that a bit cliched?"); 

I 

I M P L E M E N T A T I O N  O F  N E S T  

The key goals o f  Nest implementation are: efficiency, portability 
and extensibility. Efficiency of simulation is of  great importance 
in the study of  large scale complex distributed systems. Certain 
phenomena occurring in such systems cannot be extrapolated 
from the study of  small scale simplified versions. However, a 
simulation study of  complex large scale systems may require 
significant computing resources and consume too long a time. 
Nest accomplishes significant efficiency through the use of  
single process multi-threaded execution model and through the 
use o f  an optimized scheduler. The single-process execution 
model  involves a minimal amount of  context  switching 
overhead, significantly less that the overheads associated with 
multi-tasking implementation. Sharing memory among the 
different process threads permits the simulation to accomplish 
significant efficiency (e.g., passing pointers instead of  full 
messages). Finally, the scheduler, considered above permits the 
user to fine tune the execution runs to maximize efficiency or 
real-time reconfiguration and experimentation. Typically, a user 
will set the initial granularity of  the round-robin passes to 
facilitate high degree of  interaction and change. Once the 
scenario of  interest has been defined, the user can reset the pass 
duration to allow for efficient uninterrupted execution of  the 
simulation. 
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Nest has proved very efficient in studies of both large scale and 
complex distributed systems. Exact comparative benchnaarks of 
simulation tools are yet to be developed. Nest has been used in 
simulation studies (utilizing a Sun server) involving networks of 
hundreds nodes executing a standard routing protocol model. 
Similarly, Nest was applied in the development of a complex 
distributed transaction processing model where node functions 
involved over 20k lines of codes. In all cases the response time 
was very fast. 

Portability has been accomplished by minimizing and localizing 
dependencies of Nest on specific hardware or even Unix variant 
characteristics. A typical port of the simulation server can be 
accomplished in a matter of a short few days. The client 
software depended initially on Sun window systems. A recent 
porting to the X-window environment can be expected to ease 
the portability of the user interfaces. Nest has been ported into a 
large number of workstations environments and exported to over 
150 users sites worldwide. 

Extensibility and customization by users are key elements of 
Nest's design, From a user's perspective Nest is perceived as an 
extension of the standard Unix environment. Nest simulation 
server and clients are simply Unix libraries of functions. The 
user can modify any of these functions or augment them with 
her/his own. A user simulation consists of expansion of the Nest 
libraries with user-provided node and link functions. This 
process of extension permits the user to adapt Nest and develop 
it into a custom environment for specific simulation studies of 
interest. Researchers at Northrop Corporation [ 10] pursued this 
approach to develop a simulation testbed for protocol research. 
Similarly, researchers at UC Berkeley [8] extended Nest into a 
complete environment to study and test TCP]IP internetwork 
designs (e.g., gateway routing techniques). In both cases Nest 
was equipped with node functions modeling in details the 
respective protocol environments. 

Incremental expandability is a key element in long term 
development of simulation studies. Typical simulation studies 
are designed as throw-away software and the enormous 
investment in their development is lost when the object of the 
study is completed. Nest simulations can be construed to retain a 
significant part of the investment through incremental expansion. 
Thus, a TCP/IP internet testbed may be used to support a 
significant number of relevant studies sharing the same testbed 
software. Users can share and port the respective libraries 
among different sites leading to important savings and 
cross-fertilization. 

Finally, customization and expandability is also supported in the 
design of the Nest client monitor tools. All menus provide 
handles for simple adaptations and expansions to support 
user-defined options. This completes the range of flexibilities 
offered to users in developing testbed simulation studies. 

5. S A M P L E  A P P L I C A T I O N S  O F  N E S T  

5.1 IPLS - a Distributed Incremental Position Location 
Sys tem 

Nest was initially developed as a tool to experiment with the 
design of a distributed position location system. Consider a 
network of packet-switched mobile radio units. Two radios 
within range of each other can measure the propagation delay 
between them and extract an estimation of their mutual distance 
from each other. Given these distributed observations of 
distances it is required to compute the location coordinates of the 
radio units. IPLS involves a few distributed algorithms that aim 
to address the range of problems arising from mobility, partial 
distributed measurements and possible errors. Nest became a 
key tool in the development of IPLS and in the the performance 
studies of these algorithms under varied dynamic scenarios. 

5.2 Topology Recognition, ARPAnet and Internet 
Routing 

Broadcasting connectivity tables is an important technique to 
accomplish topology recognition by nodes of a dynamic 
network. Topology recognition protocols are used within a 
number of communication networks. It is difficult to establish 
the dynamic behavior of such algorithms. Examples of 
instabilities and long response time (to failures) have been 
discussed in the literature [3]. However, the theoretical 
understanding of these dynamics is in its embryonic stages. 
Simulation studies are the only practical tool at this time in 
developing better understanding of these dynamics. Traditional 
queuing-network simulators typically address equilibrium 
behaviors. Nest became an important tool in the study of 
dynamic response behaviors. A few studies of topology 
recognition algorithms were conducted. Similarly, the response 
of the ARPAnet routing algorithm [3] to node and link failures 
was studied extensively [12]. 

In the examples above the respective protocols were coded 
directly as part of the study. In contrast, another Nest study 
attached parts of actual BSD code (with minor modifications) for 
IP gateway routing to a simulated network environment and 
demonstrated the occurence of loops, instabilities and long 
response time to topology changes [9]. 

5.3 Dynamic Load-Balancing, Distributed Transaction 
Processing 

Other work [7] has used Nest to develop simulations of complex 
distributed systems. Microeconomic models of supply and 
demand, with bidding and auctions, were used to develop a 
dynamic load-balancing system. Processes were given a certain 
amount of "money", and would bid for communcations and 
CPU resources. This bidding behavior was implemented on the 
nodes in a Nest simulation and analyzed to find the relative 
performance of various bidding strategies and auction methods, 
and to compare them with traditional load-balancing methods. 

A more complex simulation used the microeconomic models to 
manage a distributed transaction processing system with 
replicated data. This simulation had upwards of 20,000 lines of 
C code running on each node, showing the ability of Nest to 
model complex behaviors. 

5.4 Distributed Multiprocessor Operating Systems 

Nest has also been used to simulate the behavior of an 
experimental multiprocessor operating system [1]. In this study, 
operating system code was run using Nest to see how various 
performance measures would be affected by adding additional 
processors. The results generated with Nest were later verified 
on real hardware and found to differ by only a few percent. 

6. C O N C L U S I O N S  

The study of Nest and its applications established a few 
important results: 

Environment-based simulation tools can offer important 
attractions over language-or model-based approaches. The users 
do not require sophisticated expertise in the use of complex 
modelling tools or specialized languages. The simulation tools 
can be entirely integrated within the user standard development 
environment and offer a unified set of tools. While Nest was 
developed to support C, the extension to support other standard 
languages (e.g., Pascal, Fortran) is straightforward. Simulation 
can be conducted as an integral part of the design and 
implementation cycle. The actual code of the system developed 
(or a modification of it) may be used to model its behavior. 
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The environment can support simple modeling of arbitrary 
simulation scenarios and execute the actual system within the 
resulting simulation testbed. 

It is often important to study through simulation the dynamic 
response of the system to changes. These changes may be 
introduced through user or program control. It is therefore 
useful to separate scenario modeling and control functions from 
the simulation code. The scenario may then be passed to the 
simulation as a parameter, allowing the simulation to adapt to 
new scenarios and respond to the respective changes. 

Separation of scenario display and control from the simulation 
execution in terms of simulation server and monitoring clients 
can offer additional attractions. The simulation may be executed 
over a remote computational server permitting optimum 
utilization of the server cycles and faster response. The client 
monitors may provide effective remote (re)configuration and 
scenario controls. This permits users to access over a network 
substantial more computing capabilities than may be available to 
them locally and conduct extensive simulations studies. 
Additionally, as is often the case, the development of a complex 
distributed system often involves work by multiple sites. A 
common simulation testbed can support sharing of software and 
efforts as well as improved studies of the interactions between 
the different subsystems. Furthermore, it serves as an important 
factor in improving the integration processas it enforces certain 
standards over the disparate development efforts. 

Finally, extensibility, customizability and portability enable 
users to extend and adapt Nest to become a total design 
environment for their systems. The word-of-mouth ad-hoc 
distribution of Nest to over 150 sites and its successful 
applications in scores of different projects provide a measure of 
success in accomplishing the results reported in this paper. The 
authors would be pleased to share Nest software and 
experiences with other interested sites and users. Please use the 
address above to pursue this further. 
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