

#### **NESTA:**

a fast and accurate first-order method for sparse recovery

S. Becker, J. Bobin, E. Candès Applied and Computational Mathematics 2009

Presented by Federico Pierucci

LJK Grenoble, April 24, 2014





## Introduction

- Algorithm NESTA
- Optimization based on Nesterov's method
- Compressed sensing applications (e.g. sparse recovery, Total Variation minimization)
- Accurate retrieval of the signal
- Large scale e.g.  $x \in \mathbb{R}^n$  with, n = 262144

(BP<sub>\epsilon</sub>) minimize 
$$||x||_{\ell_1}$$
  
subject to  $||b - Ax||_{\ell_2} \le \epsilon$ ,

A consequence of these properties is that NESTA may be interest of researchers working on signal recovery or undersampled data

# Optimization

#### Problem to solve with NESTA:

$$\begin{array}{ll} (\mathrm{BP}_\epsilon) & \quad \mathrm{minimize} & \quad \|x\|_{\ell_1} \\ & \quad \mathrm{subject\ to} & \quad \|b - Ax\|_{\ell_2} \leq \epsilon, \end{array}$$

## Equivalent formulation:

$$(\mathrm{QP}_{\lambda}) \quad \text{minimize} \quad \lambda \|x\|_{\ell_1} + \frac{1}{2} \|b - Ax\|_{\ell_2}^2,$$

 $\left\|\cdot\right\|_{\ell_1} o$  a sparse solution;  $\epsilon^2 =$  estimated bound on noise

#### where

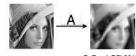
 $b = Ax^0 + z$ : collected data

 $x^0$ : signal to recover

A: sampling matrix

z : noise





source: G. Peyré OSL2013

## Nesterov's method

$$\min_{x\in\mathcal{Q}_p}f(x)$$

f: smooth, i.e. differentiable with Lipschitz gradient  $\mathcal{Q}_{\mathcal{P}}$ : convex set

Lipschitz gradient of f, with lipschitz constatant L:

$$\forall x, y \in \mathcal{Q}_{p} \quad \|\nabla f(y) - \nabla f(x)\|_{\ell_{2}} \leq L \|y - x\|_{\ell_{2}}$$

[ Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program. (2005)]

# Nesterov's method

**Initialize**  $x_0$ . For  $k \geq 0$ ,

- 1. Compute  $\nabla f(x_k)$ .
- 2. Compute  $y_k$ :

$$y_k = \operatorname{argmin}_{x \in Q_p} \frac{L}{2} ||x - x_k||_{\ell_2}^2 + \langle \nabla f(x_k), x - x_k \rangle.$$

3. Compute  $z_k$ :

$$z_k = \operatorname{argmin}_{x \in Q_p} \frac{L}{\sigma_p} p_p(x) + \sum_{i=0}^k \alpha_i \langle \nabla f(x_i), x - x_i \rangle.$$

4. Update  $x_k$ :

$$x_k = \tau_k z_k + (1 - \tau_k) y_k.$$

Stop when a given criterion is valid.

 $p_{
ho}$ : continuous and strongly convex ,  $p_{
ho}(x) \geq rac{\sigma_{
ho}}{2} \left\| x - x_{
ho}^c 
ight\|^2$ 



What if f is nonsmooth?

# **Smoothing**

We can rewrite the norm as support function

$$||x||_{\ell_1} = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle,$$

where

$$\mathcal{Q}_d = \{u : ||u||_{\infty} \le 1\}.$$

The smoothed version of  $\|\cdot\|_{\ell_1}$  is

$$f_{\mu}(x) = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle - \mu \, p_d(u),$$

#### **Theorem**

If  $p_d$  is continuous and strongly convex on  $Q_d$ , then  $f_\mu$  is smooth.

Then it is possible to apply Nesterov method to  $f_{\mu}$ 

[ Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program. (2005)]

## **NESTA**

# NESTA = Nesterov method + smoothing

## Convergence of NESTA:

$$f_{\mu}(y_k) - f_{\mu}(x_{\mu}^{\star}) \le \frac{2L_{\mu} \|x_{\mu}^{\star} - x_0\|_{\ell_2}^2}{k^2},$$

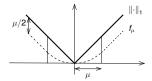
k: iteration counter

 $X_{\mu}^{\star} := \operatorname{argmin}_{x \in Q_p} f_{\mu}(x)$ 

 $L_{\mu}$ : Lipschitz constant of  $f_{\mu}$ 

#### The parameter $\mu$ controls the smoothing

$$f_{\mu}(x) = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle - \mu \, p_d(u),$$



Source: Pierucci, Harchaoui, Malick, tech. report 2014

Small  $\mu \to \text{good approximation}$ , slow convergence Large  $\mu \to \text{worst}$  approximation, faster convergence

# Why don't we start with a large $\mu$

and continue with a smaller  $\mu$  ?

#### NESTA "with continuation"

**Initialize**  $\mu_0$ ,  $x_0$  and the number of continuation steps T. For  $t \geq 1$ ,

- 1. Apply Nesterov's algorithm with  $\mu=\mu^{(t)}$  and  $x_0=x_{\mu^{(t-1)}}.$
- 2. Decrease the value of  $\mu$ :  $\mu^{(t+1)} = \gamma \mu^{(t)}$  with  $\gamma < 1$ .

**Stop** when the desired value of  $\mu_f$  is reached.

## Convergence of NESTA with continuation

Theorem 3.1. At each continuation step t,  $\lim_{k\to\infty} y_k = x_{\mu^{(t)}}^{\star}$ , and

$$f_{\mu^{(t)}}(y_k) - f_{\mu^{(t)}}(x_{\mu^{(t)}}^{\star}) \leq \frac{2L_{\mu^{(t)}} \|x_{\mu^{(t)}}^{\star} - x_{\mu^{(t-1)}}\|_{\ell_2}^2}{k^2}.$$

# **Accuracy evaluation**

## Analytical solution only for particular cases → FISTA

$$(\operatorname{QP}_{\lambda}) \quad \text{minimize} \quad \lambda \|x\|_{\ell_1} + \frac{1}{2} \|b - Ax\|_{\ell_2}^2,$$

#### Relative error on objective function

$$\frac{\|x\|_{\ell_1} - \left\|x^{\star}\right\|_{\ell_1}}{\|x^{\star}\|_{\ell_1}}$$

# Accuracy of optimal solution

$$\ell_{\infty}$$
error :=  $\|\mathbf{x} - \mathbf{x}^{\star}\|_{\ell_{\infty}}$ 

Table 4.2

NESTA's accuracy. The errors and number of function calls  $N_A$  have the same meaning as in Table 4.1.

| Method              | $\ell_1$ -norm | Rel. error $\ell_1$ -norm | $\ell_{\infty}$ error | $\mathcal{N}_A$ |
|---------------------|----------------|---------------------------|-----------------------|-----------------|
| FISTA               | 5.71539e+7     |                           |                       |                 |
| NESTA $\mu = 0.2$   | 5.71614e+7     | 1.3e-4                    | 3.8                   | 659             |
| NESTA $\mu = 0.02$  | 5.71547e+7     | 1.4e-5                    | 0.96                  | 1055            |
| NESTA $\mu = 0.002$ | 5.71540e+7     | 1.6e-6                    | 0.64                  | 1537            |

 $x^*$ : optimal solution for BP<sub> $\epsilon$ </sub>



#### Results

Table 5.2 Number of function calls  $N_A$  averaged over 10 independent runs. The sparsity level s=m/5 and the stopping rule is Crit. 2 (5.2).

| Method      | 20 dB       | 40 dB       | 60 dB          | 80 dB          | 100 dB            |
|-------------|-------------|-------------|----------------|----------------|-------------------|
| NESTA       | 446 351/491 | 880 719/951 | 1701 1581/1777 | 4528 4031/4749 | 14647 7729/15991  |
| NESTA + Ct  | 479 475/485 | 551 539/559 | 605 589/619    | 658 635/679    | 685 657/705       |
| GPSR        | 59 44/64    | 736 678/790 | 5316 4814/5630 | DNC            | DNC               |
| GPSR + Ct   | 305 293/311 | 251 245/257 | 511 467/543    | 1837 1323/2091 | 9127 7251/10789   |
| SpaRSA      | 345 327/373 | 455 435/469 | 541 509/579    | 600 561/629    | 706 667/819       |
| SPGL1       | 55 37/61    | 138 113/152 | 217 196/233    | 358 300/576    | 470 383/568       |
| FISTA       | 65 63/66    | 288 279/297 | 932 882/966    | 3407 2961/3591 | 13160 11955/13908 |
| FPC AS      | 176 169/183 | 236 157/263 | 218 215/239    | 344 247/459    | 330 319/339       |
| FPC AS (CG) | 357 343/371 | 475 301/538 | 434 423/481    | 622 435/814    | 588 573/599       |
| FPC         | 416 398/438 | 435 418/446 | 577 558/600    | 899 788/962    | 3866 1938/4648    |
| FPC-BB      | 149 140/154 | 172 164/174 | 217 208/254    | 262 248/286    | 512 308/790       |
| Bregman-BB  | 211 203/225 | 270 257/295 | 364 355/393    | 470 429/501    | 572 521/657       |

Dynamic range of a signal x is  $\log_{10} \left( \frac{x_{max}}{x_{min}} \right)$ , measured in becibel

# Conclusion

$$\begin{array}{ccc} (\mathrm{BP}_\epsilon) & & \mathrm{minimize} & & \|x\|_{\ell_1} \\ & & \mathrm{subject\ to} & & \|b-Ax\|_{\ell_2} \leq \epsilon, \end{array}$$

- Nesterov's method
- NESTA
- NESTA with continuation
- Comparison with FISTA
- Compressed sensing applications
- Accurate retrieval of the signal
- Large scale

Thank you for your attention

#### Observation on NESTA with continuation:

#### Convergence

Theorem 3.1. At each continuation step t,  $\lim_{k\to\infty} y_k = x_{\mu^{(t)}}^{\star}$ , and

$$f_{\mu^{(t)}}(y_k) - f_{\mu^{(t)}}(x_{\mu^{(t)}}^\star) \leq \frac{2L_{\mu^{(t)}} \|x_{\mu^{(t)}}^\star - x_{\mu^{(t-1)}}\|_{\ell_2}^2}{k^2}.$$

 $\gamma < 1$   $L_{\mu}$  is proportional to  $\frac{1}{\mu}$ .

If we take  $\mu_{(t)}=\gamma^t\mu_0$  we have  $\frac{L_{\mu(t)}}{k^2}\propto\frac{1}{\gamma^tk^2}$ . Then the Lipschitz constant grows faster than  $k^2$ . If t(k)=k there is no evident convergence. We conclude that the convergence proof is valid only if the decreasing value of  $\mu$  is lower bounded.