

NESTA:

a fast and accurate first-order method for sparse recovery

S. Becker, J. Bobin, E. Candès Applied and Computational Mathematics 2009

Presented by Federico Pierucci

LJK Grenoble, April 24, 2014

Introduction

- Algorithm NESTA
- Optimization based on Nesterov's method
- Compressed sensing applications (e.g. sparse recovery, Total Variation minimization)
- Accurate retrieval of the signal
- Large scale e.g. $x \in \mathbb{R}^n$ with, n = 262144

(BP_{\epsilon}) minimize
$$||x||_{\ell_1}$$

subject to $||b - Ax||_{\ell_2} \le \epsilon$,

A consequence of these properties is that NESTA may be interest of researchers working on signal recovery or undersampled data

Optimization

Problem to solve with NESTA:

$$\begin{array}{ll} (\mathrm{BP}_\epsilon) & \quad \mathrm{minimize} & \quad \|x\|_{\ell_1} \\ & \quad \mathrm{subject\ to} & \quad \|b - Ax\|_{\ell_2} \leq \epsilon, \end{array}$$

Equivalent formulation:

$$(\mathrm{QP}_{\lambda}) \quad \text{minimize} \quad \lambda \|x\|_{\ell_1} + \frac{1}{2} \|b - Ax\|_{\ell_2}^2,$$

 $\left\|\cdot\right\|_{\ell_1} o$ a sparse solution; $\epsilon^2 =$ estimated bound on noise

where

 $b = Ax^0 + z$: collected data

 x^0 : signal to recover

A: sampling matrix

z : noise

source: G. Peyré OSL2013

Nesterov's method

$$\min_{x\in\mathcal{Q}_p}f(x)$$

f: smooth, i.e. differentiable with Lipschitz gradient $\mathcal{Q}_{\mathcal{P}}$: convex set

Lipschitz gradient of f, with lipschitz constatant L:

$$\forall x, y \in \mathcal{Q}_{p} \quad \|\nabla f(y) - \nabla f(x)\|_{\ell_{2}} \leq L \|y - x\|_{\ell_{2}}$$

[Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program. (2005)]

Nesterov's method

Initialize x_0 . For $k \geq 0$,

- 1. Compute $\nabla f(x_k)$.
- 2. Compute y_k :

$$y_k = \operatorname{argmin}_{x \in Q_p} \frac{L}{2} ||x - x_k||_{\ell_2}^2 + \langle \nabla f(x_k), x - x_k \rangle.$$

3. Compute z_k :

$$z_k = \operatorname{argmin}_{x \in Q_p} \frac{L}{\sigma_p} p_p(x) + \sum_{i=0}^k \alpha_i \langle \nabla f(x_i), x - x_i \rangle.$$

4. Update x_k :

$$x_k = \tau_k z_k + (1 - \tau_k) y_k.$$

Stop when a given criterion is valid.

 $p_{
ho}$: continuous and strongly convex , $p_{
ho}(x) \geq rac{\sigma_{
ho}}{2} \left\| x - x_{
ho}^c
ight\|^2$

What if f is nonsmooth?

Smoothing

We can rewrite the norm as support function

$$||x||_{\ell_1} = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle,$$

where

$$\mathcal{Q}_d = \{u : ||u||_{\infty} \le 1\}.$$

The smoothed version of $\|\cdot\|_{\ell_1}$ is

$$f_{\mu}(x) = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle - \mu \, p_d(u),$$

Theorem

If p_d is continuous and strongly convex on Q_d , then f_μ is smooth.

Then it is possible to apply Nesterov method to f_{μ}

[Y. NESTEROV, Smooth minimization of nonsmooth functions, Math. Program. (2005)]

NESTA

NESTA = Nesterov method + smoothing

Convergence of NESTA:

$$f_{\mu}(y_k) - f_{\mu}(x_{\mu}^{\star}) \le \frac{2L_{\mu} \|x_{\mu}^{\star} - x_0\|_{\ell_2}^2}{k^2},$$

k: iteration counter

 $X_{\mu}^{\star} := \operatorname{argmin}_{x \in Q_p} f_{\mu}(x)$

 L_{μ} : Lipschitz constant of f_{μ}

The parameter μ controls the smoothing

$$f_{\mu}(x) = \max_{u \in \mathcal{Q}_d} \langle u, x \rangle - \mu \, p_d(u),$$

Source: Pierucci, Harchaoui, Malick, tech. report 2014

Small $\mu \to \text{good approximation}$, slow convergence Large $\mu \to \text{worst}$ approximation, faster convergence

Why don't we start with a large μ

and continue with a smaller μ ?

NESTA "with continuation"

Initialize μ_0 , x_0 and the number of continuation steps T. For $t \geq 1$,

- 1. Apply Nesterov's algorithm with $\mu=\mu^{(t)}$ and $x_0=x_{\mu^{(t-1)}}.$
- 2. Decrease the value of μ : $\mu^{(t+1)} = \gamma \mu^{(t)}$ with $\gamma < 1$.

Stop when the desired value of μ_f is reached.

Convergence of NESTA with continuation

Theorem 3.1. At each continuation step t, $\lim_{k\to\infty} y_k = x_{\mu^{(t)}}^{\star}$, and

$$f_{\mu^{(t)}}(y_k) - f_{\mu^{(t)}}(x_{\mu^{(t)}}^{\star}) \leq \frac{2L_{\mu^{(t)}} \|x_{\mu^{(t)}}^{\star} - x_{\mu^{(t-1)}}\|_{\ell_2}^2}{k^2}.$$

Accuracy evaluation

Analytical solution only for particular cases → FISTA

$$(\operatorname{QP}_{\lambda}) \quad \text{minimize} \quad \lambda \|x\|_{\ell_1} + \frac{1}{2} \|b - Ax\|_{\ell_2}^2,$$

Relative error on objective function

$$\frac{\|x\|_{\ell_1} - \left\|x^{\star}\right\|_{\ell_1}}{\|x^{\star}\|_{\ell_1}}$$

Accuracy of optimal solution

$$\ell_{\infty}$$
error := $\|\mathbf{x} - \mathbf{x}^{\star}\|_{\ell_{\infty}}$

Table 4.2

NESTA's accuracy. The errors and number of function calls N_A have the same meaning as in Table 4.1.

Method	ℓ_1 -norm	Rel. error ℓ_1 -norm	ℓ_{∞} error	\mathcal{N}_A
FISTA	5.71539e+7			
NESTA $\mu = 0.2$	5.71614e+7	1.3e-4	3.8	659
NESTA $\mu = 0.02$	5.71547e+7	1.4e-5	0.96	1055
NESTA $\mu = 0.002$	5.71540e+7	1.6e-6	0.64	1537

 x^* : optimal solution for BP_{ϵ}

Results

Table 5.2 Number of function calls N_A averaged over 10 independent runs. The sparsity level s=m/5 and the stopping rule is Crit. 2 (5.2).

Method	20 dB	40 dB	60 dB	80 dB	100 dB
NESTA	446 351/491	880 719/951	1701 1581/1777	4528 4031/4749	14647 7729/15991
NESTA + Ct	479 475/485	551 539/559	605 589/619	658 635/679	685 657/705
GPSR	59 44/64	736 678/790	5316 4814/5630	DNC	DNC
GPSR + Ct	305 293/311	251 245/257	511 467/543	1837 1323/2091	9127 7251/10789
SpaRSA	345 327/373	455 435/469	541 509/579	600 561/629	706 667/819
SPGL1	55 37/61	138 113/152	217 196/233	358 300/576	470 383/568
FISTA	65 63/66	288 279/297	932 882/966	3407 2961/3591	13160 11955/13908
FPC AS	176 169/183	236 157/263	218 215/239	344 247/459	330 319/339
FPC AS (CG)	357 343/371	475 301/538	434 423/481	622 435/814	588 573/599
FPC	416 398/438	435 418/446	577 558/600	899 788/962	3866 1938/4648
FPC-BB	149 140/154	172 164/174	217 208/254	262 248/286	512 308/790
Bregman-BB	211 203/225	270 257/295	364 355/393	470 429/501	572 521/657

Dynamic range of a signal x is $\log_{10} \left(\frac{x_{max}}{x_{min}} \right)$, measured in becibel

Conclusion

$$\begin{array}{ccc} (\mathrm{BP}_\epsilon) & & \mathrm{minimize} & & \|x\|_{\ell_1} \\ & & \mathrm{subject\ to} & & \|b-Ax\|_{\ell_2} \leq \epsilon, \end{array}$$

- Nesterov's method
- NESTA
- NESTA with continuation
- Comparison with FISTA
- Compressed sensing applications
- Accurate retrieval of the signal
- Large scale

Thank you for your attention

Observation on NESTA with continuation:

Convergence

Theorem 3.1. At each continuation step t, $\lim_{k\to\infty} y_k = x_{\mu^{(t)}}^{\star}$, and

$$f_{\mu^{(t)}}(y_k) - f_{\mu^{(t)}}(x_{\mu^{(t)}}^\star) \leq \frac{2L_{\mu^{(t)}} \|x_{\mu^{(t)}}^\star - x_{\mu^{(t-1)}}\|_{\ell_2}^2}{k^2}.$$

 $\gamma < 1$ L_{μ} is proportional to $\frac{1}{\mu}$.

If we take $\mu_{(t)}=\gamma^t\mu_0$ we have $\frac{L_{\mu(t)}}{k^2}\propto\frac{1}{\gamma^tk^2}$. Then the Lipschitz constant grows faster than k^2 . If t(k)=k there is no evident convergence. We conclude that the convergence proof is valid only if the decreasing value of μ is lower bounded.