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Abstract—Computer experiments can emulate the physical
systems, help computational investigations, and yield analytic
solutions. They have been widely employed with many engineer-
ing applications (e.g., aerospace, automotive, energy systems).
Conventional Bayesian optimization did not incorporate the
nested structures in computer experiments. This paper proposes a
novel nested Bayesian optimization method for complex computer
experiments with multi-step or hierarchical characteristics. We
prove the theoretical properties of nested outputs given that the
distribution of nested outputs is Gaussian or non-Gaussian. The
closed forms of nested expected improvement are derived. We
also propose the computational algorithms for nested Bayesian
optimization. Three numerical studies show that the proposed
nested Bayesian optimization method outperforms the five bench-
mark Bayesian optimization methods that ignore the intermediate
outputs of the inner computer code. The case study shows that
the nested Bayesian optimization can efficiently minimize the
residual stress during composite structures assembly and avoid
convergence to local optima.

Index Terms—Nested Computer Experiment, Bayesian Op-
timization, Gaussian Process, Surrogate Modeling, Multistage
Manufacturing

I. INTRODUCTION

COMPUTER experiments have become increasingly used
in engineering simulations due to the development of

information technology and computing power. Especially for
the scenarios where physical experiments are difficult, ex-
pensive, or impossible to implement, computer experiments
can serve as proxy surrogates for and adjuncts to physical
experiments [1]. In advanced manufacturing and mechatron-
ics, typical computer experiments may rely on Finite Ele-
ment Analysis (FEA), Computational Fluid Dynamics (CFD),
multiphysics simulation, variation propagation analysis, etc.
Widely used engineering simulation software includes AN-
SYS, Matlab/Simulink, COMSOL Multiphysics, Solidworks,
3DCS. Sophisticated computer codes can model the multi-
step or multi-physics processes accurately, thereby improving
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the efficiency of engineering design, system optimization, and
quality control.

A. Nested Computer Experiments

Firstly, we will illustrate what is nested computer experi-
ment, and why the nested effect is very critical for engineering
simulations, in particular for advanced manufacturing. If one
model or system contains the outputs of the other model or
system, we call them nested. Nested property usually comes
from the hierarchical structures of systems and multiphysics
phenomena. In practice, one system often contains a few
subsystems; the output of one subsystem could be the input
for the sequential subsystem. Nested structures are ubiquitous
in engineering simulation. Suppose one computer experiment
includes multi-layer sequential operations/codes, and outputs
from one computer code may serve as the inputs for the
other level of computer code. In that case, we call it a nested
computer experiment. The nested computer experiment codes
are also called System of Solvers in engineering.

Most computer simulations and digital twins for multistage
manufacturing processes (MMP) are nested, because of the
natural multi-step structure and inherent hierarchy in advanced
manufacturing systems. In MMP, multiple operations/stations
are involved to produce one product [2], [3], as shown in
Fig. 1. The product quality variations can propagate from
one station to its downstream station. Stream of Variation
methodologies have been developed to model and reduce
the variation and improve the quality control [2], [4]. When
simulating the MMP in Fig. 1, the inputs for stage k include
two types: input quality features qk−1 from the upstream stage
k−1, and the new process-induced deviations and noise at the
current stage. Similarly, the outputted quality features qk of
Stage k will also serve as inputs for downstream stage k+ 1.
Wen et al. developed a computer simulation for composite
aircraft assembly process [5], [6], where the simulation needs
multiple steps even for a single-stage assembly, as shown in
Fig. 9. Therefore, the omnipresent nested structure needs to
be incorporated when modeling computer experiments.

B. Literature Review

In this section, we conduct the literature review from three
fields: mechatronics, advanced statistics, and manufacturing
systems.

In the mechatronics field, Rodriguez et al. developed one
hybrid control scheme with two nested loops for twisted string
actuators [7]. Nested design techniques have been used for co-
design of controlled systems [8]. Zeng et al. proposed a nested



ACCEPTED BY IEEE/ASME TRANS 2

Fig. 1. Variation Propagation in Multistage Manufacturing Systems.

optimization strategy to guarantee cost control for a motor
driving system [9]. The performance-based nested Kriging
model was constructed to interpolate the Antenna charac-
teristics data [10]. Nested long-short term memory (LSTM)
networks were incorporated into deep learning architecture
for multivariate air quality prediction [11]. A nested tensor
product model transformation was used to analyze the Takagi-
Sugeno fuzzy system for system control design [12]. These
approaches make full use of the nested structure for various
objectives (control, design, prediction, etc.) and achieve excel-
lent performance.

In the advanced statistics field, researchers investigated
nested effects in computer experiments. Nested space-filling
designs were constructed for computer experiments with two
levels of simulation accuracy [13]. Next, nested Latin hyper-
cube designs with sliced structures were proposed for experi-
mental data collection [14]. Hung et al. developed the optimal
Latin hypercube designs and kriging methods incorporating
nested factors and branching factors [15]. Marque-Pucheu
et al. proposed an efficient dimension reduction method for
Gaussian process emulation of two nested codes [16]. Keogh
and White investigated nested case-control and case-cohort
study on exposure-disease association [17]. These methods
significantly improve the efficiency and effectiveness of data
collection, model emulation, and association analysis in ad-
vanced statistics.

In the advanced manufacturing field, nested systems have
also been investigated. Gibson et al. used multivariate nested
distributions to model semiconductor process variability [18].
Similarly, Tian et al. analyzed the nested variation pattern in
the batch processes of semiconductor manufacturing, and pro-
posed a two-level nested control chart for process monitoring
[19]. Jin and Shi developed a reconfigured piecewise linear re-
gression tree to model the nested structure for process control
in multistage manufacturing [20]. Savin and Vorochaeva de-
veloped a quadratic programming based controller with nested
structure, and it achieved excellent performance in planar
pipeline robots [21]. Wang et al. proposed multiresolution and
multisensor fusion network for fault diagnosis, with integration
of multiple network structures [22]. These methods enhanced
variability modeling, process control, and quality assurance by
accommodating the nested structure.

C. Novelty and Contributions

Although numerous techniques have been investigated in
studying and using nested effect, as mentioned in the literature

review above, global optimization for nested computer experi-
ments still lacks a systematic science base. This paper focuses
on the global optimization of nested computer experiments.
We mainly use two-layer nested computer models as one
example for nested computer experiments. The first-layer code
is denoted as the inner computer model, and the second one
as the outer computer model. The nested structure indicates
that the outputs of the inner computer model are part of inputs
of the outer computer model. The inner computer model and
outer computer model are very complex and they are assumed
to be black-box.

Bayesian optimization is an efficient approach to obtain
the global optimal solution for complex computer experiments
given specific objectives. This approach has proven to be suc-
cessful in many real-world engineering optimization problems,
such as the robust parameter design [23], image detection [24],
the multi-objective optimization problems [25]–[27], the con-
strained optimization problems [28]. The main steps of a stan-
dard Bayesian optimization method include: (i) Build a sta-
tistical surrogate model based on previous computer outputs;
(ii) Choose an acquisition function and sequentially query the
objective function at points which maximize the acquisition.
For step (i), the most popular stochastic surrogate model is
the Gaussian Process (GP) model [1] or its variants [29].
For step (ii), commonly used acquisition functions include
the Expected Improvement (EI) [30], [31], the Lower/Upper
Confidence Bound (LCB) [32], and the Expected Quantile
Improvement (EQI) acquisition functions [33]. Despite the
wide applications of Bayesian optimization methods, these
existing methods ignored the outputs of the inner computer
model and treated all the inputs characterizing the system
of interest as a single input vector. When trying to find the
global optimal solution of nested computer experiments, these
existing Bayesian optimization methods are less efficient, since
the nested structure information is ignored in the optimization.
Astudillo and Frazier [34] considered Bayesian optimization
of composite functions and took the outputs of the inner part
of a composite function into account. This method performs
excellent when the outer part of a composite function is a
known, cheap-to-evaluated, and real-valued function. It does
not work well for the complex black-box functions with nested
structure, which is more common in engineering computer
experiments.

In this work, we proposed a novel and systematic Bayesian
optimization method for nested computer experiments. We
assume that both the inner and outer computer models are
deterministic, but expensive-to-evaluate. Our contributions can
be summarized as follows:
• The nested Bayesian optimization method is proposed to

incorporate the nested structures in complex computer
experiments. This method can learn the global optimum
more efficiently and avoid convergence to the local opti-
mum.

• We investigated the theoretical properties of the nested
Gaussian process for two cases: 1) it can be approximated
by a Gaussian process and 2) it cannot be approximated
by a Gaussian process. Furthermore, we derive the closed
forms of nested expected improvement and propose a
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computational algorithm for nested Bayesian optimiza-
tion.

• Based on the composite structures assembly case study,
we show that nested Bayesian optimization can minimize
the residual stress after assembly. We also show the
proposed nested Bayesian optimization performs better
than five benchmark methods via numerical studies.

The outline of this paper is as follows: Section II introduces
the optimization problem of two-nested computer experiments.
Section III proposes the nested Bayesian optimization method.
Section IV and Section V compare the proposed method with
the standard Bayesian optimization method by using three
numerical studies and a real case study. Concluding remarks
are given in Section VI. Appendices contain detailed proofs
of the theorems and selection of correlation functions.

II. PROBLEM SETTING

In this section, we use mathematical models to describe the
problem setting. Denote f : X → R to be a nested computer
model, which is defined as

f(x̃) = g(hT (x), x′); x̃ = (x, x′)T ∈ X ⊂ Rd, (1)

where h(x) = (h1(x), . . . , hp(x))
T
, p ≥ 1 is a vector of

inner computer model outputs. g(·) is the outer computer
model whose inputs include outputs of the inner computer
model h(x) and the additional control variable x′. There is a
serial relationship between the inner computer model and outer
computer model. Intermediate outputs h(x) and x′ are parallel
inputs. Fig. 2 shows the framework of nested computer
experiments:

Fig. 2. Nested computer experiments.

Suppose these two computer models are black-box, deter-
ministic, expensive-to-evaluate, and the gradient information
is not available. With the help of a limited number of outputs
from both computer models, we consider the problem of
finding a minimizer of the entire response surface of the nested
computer model f :

x̃∗ = argmin
x̃∈X

f(x̃). (2)

Specifically, suppose the nested computer experiments are
conducted at the points X̃n = (x̃1, . . . , x̃n)T , which con-
tains the collections of {x1, . . . ,xn} and {x̃1, . . . , x̃n}.
The first-layer computer model generates intermediate
outputs Hn = (h(x1), . . . ,h(xn))T , and the second-
layer computer model generates the outputs Yn =

(
g(hT (x1), x′1), . . . , g(hT (xn), x′n)

)T
. These computer ex-

periments yield data Dn = {X̃n, Hn, Yn}. The goal of this
work is to query x̃∗ by making full use of the dataset Dn.

As discussed above, the standard Bayesian optimization
method can be used to solve the optimization problem (2).
This approach can query the optimal point of f sequentially by
optimizing an acquisition function. In this work, we focus on
the EI criterion [1], [30]. Detailed comparisons are conducted
between EI, LCB, and EQI-based approaches in Section IV
and Section V.

The main idea of EI is to sample the point offering the
greatest expected improvement over the current best sampled
point. Let f∗n = minni=1{yi} be the current best objective
value, given data {X̃n, Yn}, the EI function becomes:

EIn(x̃) = Ef |X̃n,Yn
(f∗n − f(x̃))+, (3)

where (f∗n−f(x̃))+ = max{f∗n−f(x̃), 0} is the improvement
utility function.

It can be known that the evaluation of EI depends on the
posterior distribution f |X̃n, Yn. Since the posterior distribution
f |X̃n, Yn in standard Bayesian optimization method ignores
the outputs of the inner computer model, it leads to low
optimization efficiency or even getting stuck in a local op-
timum when the number of samples is limited. To overcome
this limitation, we will develop a new Bayesian optimization
method to incorporate the nested structure and identify the
optimal solution for complex computer experiments.

III. NESTED BAYESIAN OPTIMIZATION

Nested computer experiments are ubiquitous when running
engineering simulations, digital twin or finite element analysis.
Conventional Bayesian optimization approaches consider the
entire system as a whole and try to identify the global optimum
for black-box functions. They are less efficient in complex
systems optimization when nested structures exist. The nested
structures usually can be determined according to the system
configurations or engineering knowledge. By incorporating the
nested structures of complex systems, we can make full use of
more information in Bayesian optimization, intuitively avoid
getting stuck in some local optima, and have the potential to
improve optimization efficiency. In this section, we propose a
novel method, named as Nested Bayesian Optimization (NBO),
to query the global optimal solution of nested computer
experiments. To approximate the outputs of nested computer
experiments, we first introduce nested Gaussian Process (NGP)
models in Section III-A. Next, we derive the closed forms
of the expected improvement acquisition function for nested
computer experiments in Section III-B, under the cases that
the NGP models are Gaussian and non-Gaussian. Section III-C
provides a detailed algorithm of the NBO method.

A. Nested Gaussian Process models

In this work, Gaussian Process (GP) models [1] are used to
mimic the inner and the outer computer models. Suppose h
and g are realizations of two Gaussian Processes. Given data
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Dn, the posterior distribution of the inner computer model at
an unobserved input x is

h(x)|Dn ∼ N(ĥn(x), s2
h(x)), (4)

where ĥn(x) is a p × 1 mean vector, and s2
h(x) is a p ×

p covariance matrix. The posterior distribution of the outer
computer model at an unobserved input xout = (hT , x′) is

g(xout)|Dn ∼ N(ĝn(xout), s2
g(x

out)). (5)

Formulations of the posterior mean and posterior variance
function are given by (18) and (19), respectively, in Appendix
A. More Details can be found in Appendix A.

The nested Gaussian Process (NGP) model is expressed as

f(x̃)|Dn = ĝn(ΨT (x), x′) + sg(Ψ
T (x), x′)ξg. (6)

where Ψ(x) = h(x)|Dn, ξg is a standard normal random
variable. From the posterior distribution of the inner computer
model (4), Ψ(x) can be represented as Ψ(x) = ĥn(x) +
sh(x)ξh, where ξh is a p × 1 random vector that follows
the normal distribution and it is independent from ξg . By
numerical calculations, we have that, the posterior variance
of f(x̃)|Dn is zero for any i = 1, . . . , n, and the posterior
mean is interpolating the observed data values (X̃n, Yn).

From (6), we can see that Ψ(x) follows a normal distribution
when sh(x) 6= 0. As a function of Ψ(x), the posterior
distribution of f(x̃)|Dn may not be normal. Therefore, we
will investigate two cases, Gaussian and non-Gaussian in the
following part.

Theorem 1 focuses on the Gaussian case, while Theorem 2
analyzes the non-Gaussian case.

Theorem 1: Denote µZ(x̃) = ĝn(ĥTn (x), x′) and s2
Z(x̃) =

s2
g(ĥ

T
n (x), x′). The NGP model (6) is the following GP model

GP (µZ(x̃), s2
Z(x̃)), (7)

if and only if for all x̃ ∈ X , there is sh(x) = 01×p.
For ease of understanding, here we give the brief proof

of Theorem 1. First, sh(x) = 01×p indicates that the sur-
rogate of inner computer model is deterministic. By plugging
Ψ(x) = ĥn(x) into (6), we can derive that f(x̃)|Dn follows
a normal distribution for fixed x̃. In addition, the NGP model
is gaussian, implying that at least one of the following two
conditions holds:
• The outer computer model is independent on the inner

computer outputs, i.e., the NGP model (6) can be ex-
pressed as ĝn(x′)+sg(x

′)ξg . Due to the nested structure,
both ĝn and sg depend on Ψ. This condition is not true.

• Ψ(x) = ĥn(x). It indicates that sh(x) equals to zero and
the surrogate of inner computer model is deterministic.

Theorem 1 states that for a nested computer model, the NGP
is a GP model if and only if the surrogate of inner computer
model is deterministic. This condition is hard to achieve or
even unattainable in some cases. Indeed, from Corollary 1 ,
when sh is close to 0, i.e., the inner GP model can achieve
satisfactory prediction accuracy, the GP model (7) can be used
to mimic the nested computer experiments.

Theorem 2: Denote cTh (x̃) = ∂ĝn
∂h (ĥTn (x), x′)sh(x),

cg(x̃) = sg(ĥ
T
n (x), x′), and cTh,g(x̃) =

∂sg
∂h (ĥTn (x), x′)sh(x).

Assume that the second order derivatives of ĝn and sg with
respect to h are uniformly bounded. The NGP model (6) is
a non-Gaussian Process model if and only if there is x̃ ∈ X ,
such that sh(x) 6= 01×p. Specifically, in this case, the NGP
model (6) can be approximated by

Z(x̃) = Z1(x̃)Z2(x̃) + z0(x̃). (8)

Here, Z1(x̃) and Z2(x̃) are independent Gaussian Processes
with mean functions µ1(x̃) = cg(x̃)/

√
cTh,g(x̃)ch,g(x̃),

µ2(x̃) =
√
cTh (x̃)ch(x̃), respectively, and variance functions

σ2
1(x̃) = 1, σ2

2(x̃) = cTh,g(x̃)ch,g(x̃), respectively; z0(x̃) =
µZ(x̃) − µ1(x̃)µ2(x̃). In addition, the mean and variance
functions of Z(x̃) are

E[Z(x̃)] =µZ(x̃) = ĝn(ĥTn (x), x′),

Var[Z(x̃)] =cTh (x̃)ch(x̃) + c2g(x̃) + cTh,g(x̃)ch,g(x̃).
(9)

Remark 1: For a fixed x̃ ∈ X , Z(x̃) is a non-Gaussian
random variable. The exact probability density function of
Z(x̃) is given by (22) in Appendix B. If z0(x̃) = 0, Z(x̃)
follows a normal product (NP) distribution [35], which is in
general non-Gaussian. Especially, if Z1(x̃) ∼ N(0, 1) and
Z2(x̃) ∼ N(0, 1), then density function of Z1(x̃)Z2(x̃) is

pZ(z) =
K0(|z|)
π

,∞ < z < +∞.

Here K0 denotes the modified Bessel function of the second
kind with order 0. This density function exhibits a sharp peak
at the origin and heavy tails.

Detailed proof of Theorem 2 can be found in Appendix
B. Theorem 2 states that the NGP model can be approxi-
mated by a non-Gaussian process model Z(x̃). The global
trend of Z(x̃) is the same as the posterior mean of (6).
The variance of Z(x̃) involves three kinds of uncertainty:
cTh (x̃) = ∂ĝn

∂h (ĥTn (x), x′)sh(x) is the uncertainty due to the
inner GP model; cg(x̃) = sg(ĥ

T
n (x), x′) is the uncertainty

due to the outer GP model; cTh,g(x̃) =
∂sg
∂h (ĥTn (x), x′)sh(x)

is the uncertainty arising from the combined effect of the inner
and outer models. In addition, from Theorem 2, we have that,
there is a great difference between the NGP and composite GP
[36]. The composite GP model is an addition of two Gaussian
Processes, where the first one captures the smooth global trend
and the second one models local details. Thus the composite
GP is still a Gaussian Process. However, the NGP may no
longer be a Gaussian Process.

Corollary 1: If sh(x) converges to 01×p for all x̃ ∈ X ,
Z2(x̃) tends to be a deterministic function. In this case the
model (8) converges to the GP model (7).

Corollary 1 shows that the NGP model (6) can be ap-
proximated by the GP model (7), if sh(x) is small for all
x̃ ∈ X . It relaxes the condition for an NGP model able to be
approximated by a GP model in Theorem 1.

From Theorem 1 and Theorem 2, we can see that, the
posterior mean and variance function of the NGP model
depend only on the posterior mean and variance of the inner
and the outer GP models. Given the fact that the computational
complexity for the outer GP model is O(n3), and for the inner
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GP model is O
(
(pn)3)

)
[1], the computational complexity for

the NGP model is O
(
(pn)3)

)
.

B. Closed forms of the Nested Expected Improvement (NEI)

To distinguish from the standard Bayesian optimization
method, the EI function where NGP is used to approximate
the nested computer experiments is called Nested Expected
Improvement (NEI) function:

NEIn(x̃) = Ef |Dn
(f∗n − f(x̃))+, (10)

A new queried point x̃n+1 is selected by maximizing the
NEIn(x̃) function

x̃n+1 = argmax
x̃∈X

NEIn(x̃). (11)

We can see that values of NEIn depend on the posterior
distribution f(x̃)|Dn. Given two cases depending on whether
NGP model can be approximated by a Gaussian process,
the NEI acquisition function also has different expressions.
Specifically,

• If the NGP model can be approximated by the GP
model (7), denote v(x̃) =

f∗
n−µZ(x̃)
sZ(x̃) , the NEI acquisition

function has the closed-form expression:

(f∗n − µZ(x̃))ΦN (v(x̃)) + sZ(x̃)φN (v(x̃)) . (12)

• If the NGP model cannot be approximated by a GP
model, the NEI acquisition function can be evaluated by:∫ ∞
−∞

(f∗n − z0(x̃)− tµ2(x̃))φN (u1(t, x̃)) ΦN (u2(f∗n, t, x̃))

+ |t|σ2(x̃)φN (u1(t, x̃))φN (u2(f∗n, t, x̃)) dt.

(13)

Detailed derivation of (12) and (13) can be found in [30]
and Appendix B, respectively.

Remark 2: The NEI acquisition function (12) implicitly
encodes a tradeoff between exploration of the feasible region
and exploitation near the current best solution. The first term
in (12) encourages exploitation, by assigning larger values for
points with smaller predicted values; the second term in (12)
encourages exploration, by assigning greater values for points
with larger estimated posterior variance.

Remark 3: Markov Chain Monte Carlo (MCMC) method
can be used to estimate NEIn (13). Because φN (u1(t, x̃)) = 0
as u1(t, x̃) tends to infinity, the interval of integration t ∈
(−∞,∞) can be shrunk to t ∈ [Lt(x̃), Ut(x̃)], where Lt(x̃)
and Ut(x̃) are pre-specified, such as Lt = −10σ1(x̃) +µ1(x̃)
and Ut = 10σ1(x̃) + µ1(x̃) respectively.

Remark 4: Sampled Expected Improvement (SEI) as sug-
gested in [37] is a commonly used method to estimate EI
values when f(x̃)|Dn is non-Gaussian. SEI estimates EI
values based on a large number of posterior samples of
f(x̃)|Dn and only the prediction posterior samples that are
smaller than the current best value are taken in the calculation.
Since generating posterior samples of f(x̃)|Dn by using the
posterior density function (22) is rather time-consuming, this
method loses attraction.

C. Algorithm

In this subsection, we develop the computational algorithm
for nested Bayesian optimization. Algorithm 1 provides de-
tailed steps of the NBO method.

Algorithm 1 Nested Bayesian optimization

1: Obtain an initial design X̃n0 with n0 points, and run
the nested computer models at these points, yielding
corresponding simulator outputs Hn0

, Yn0
.

2: for iteration n = n0, · · · , N − 1 do
3: Evaluate the current best optimal point x̃∗n =

argminYn and the corresponding function value
f∗n = minYn.

4: Build GP models (4) and (5) to mimic the inner and
the outer computer models respectively.

5: Test whether the NGP model is a GP model by using
a cross-validation method.

6: if NGP model is Gaussian then
7: Identify the maximizer x̃n+1 of NEIn (12).
8: else
9: Identify the maximizer x̃n+1 of NEIn (13).

10: end if
11: Run the nested computer models at x̃n+1, augment

X̃n, Hn and Yn with x̃n+1, h(xn+1) and f(x̃n+1).
12: end for
13: Return the current best optimal point x̃∗N = argminYN

and the corresponding function value f∗N = minYN .

We can explain this algorithm as follows. Firstly, initial data
is collected based on a maximin Latin hypercube design. Here,
the number of initial points n0 is set at 10d, as recommended
in [38]. Next, Gaussian Process models are built to mimic the
inner model and the outer model by using (4) and (5). Then,
K-fold cross-validation method is used to exam whether the
NGP is a GP or not. More specifically, build GP model (7)
to approximate the nested computer outputs and then examine
the prediction accuracy of this GP model by K-fold cross-
validation method. Here, choice of K follows the criterion
below [39]

K ≈ log(n) and n/K > 3d.

Finally, query the sequential points by maximizing (12) (when
NGP is Gaussian) or by maximizing (13) (when NGP is non-
Gaussian), until the sample size budget N is reached.

IV. NUMERICAL STUDIES

In this section, we compare the proposed NEI method
with five benchmark methods. The five benchmark methods
include (1) EI-GP: the Expected Improvement (EI) method
under the one-GP model; (2) LCB-GP: the Lower Confidence
Bound (LCB) method under the one-GP model; (3) LCB-NGP:
the Lower Confidence Bound (LCB) method under the NGP
model; (4) EQI-GP: the Expected Quantile Improvement
(EQI) method under the one-GP model; and (5) EQI-NGP:
the Expected Quantile Improvement (EQI) method under the
NGP model. The tuning parameter for the LCB function is
selected following [32], [40].
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The simulation set-up is as follows. We generate the inputs
X̃n0 ,where n0 = 10d, according to a maximin Latin hyper-
cube design via the R package maximinLHS. Then, we collect
the inner computer model outputs Hn0

, and the outer computer
model outputs Yn0

on Hn0
and X̃n0

.
To obtain the NGP predictor, two GP models are built

to mimic the inner and outer computer models, respectively.
Here, the GP models are fitted using the R package DiceK-
riging [41]. The log-optimality gap is used to compare the
performance of different methods, which is defined as

log10(f∗n − f∗).

All results about the log-optimality gap are averaged over 50
replications.

A. 1-d GP model

Suppose the inner computer model and the outer computer
model are both commonly used one-dimension test functions
in the literature on GP models [1]:

h(x) = exp(−1.4x) cos(7πx/2)− 1.4x, x ∈ [0, 1],

g(h) = h sin(πh/2).

The global minimum of f(x) = g(h(x)) is at x∗ = 0.124 and
the corresponding function value is 0.

These two GP models are built to mimic the inner and outer
computer models, respectively. To illustrate the reasons we the
choose Gaussian correlation functions, a detailed comparison
of the model accuracy between the one-GP model and the
NGP model under different correlation functions is given in
Appendix C.

By the 3-fold cross-validation (CV) method, we have that,
the NGP model is a GP model. Fig. 3 compares the per-
formance of the one-GP build by using (X̃n0

, Yn0
) and the

NGP model approximated by a composite GP model. It can
be seen that, both mean functions of the one-GP model and
the NGP model match the true function accurately, but the
95% confidence intervals indicate that, the NGP predictor has
smaller variance than the one-GP predictor. The reason for
this result is that, f is a realization from a non-stationary GP.
Compared to the stationary one-GP model, the NGP model
can approximate f more accurately and can also improve the
prediction intervals, especially when the experimental design
is sparse [36].

Fig. 3. Left: predictions (red dotted line) and 95% confidence intervals of the
one-GP model build by using (X̃n0 , Yn0 ), with n0 = 10; Right: predictions
(red dotted line) and 95% confidence intervals of the NGP model.

Fig. 4 shows the log-optimality gap against the number of
samples for the six methods. From Fig. 4, we can see that,

Fig. 4. Average optimality gap over 50 replications by different methods.

the optimality gaps for NEI, LCB-NGP and LCB-GP enjoy
steady improvements as n increases, whereas the optimality
gap for the other methods stagnates for larger sample sizes.
The proposed method outperforms other methods. The NGP-
based approaches outperform the one GP-based approaches
under the same acquisition function. This is a very direct result
of the more accurate predictions for the NGP model.

B. 1-d non-GP model

Suppose the inner computer model is

h(x) = (1 + |x|)−4, x ∈ [−1, 1],

and the outer computer model is

g(h) = h sin(7πh/2).

The global minimum of this nested computer experiment is
(0,−1). Fig. 5 compares the performance of one GP model
and NGP model with n0 = 10.

Fig. 5. Left: predictions (red dotted line) and 95% confidence intervals of the
one-GP model build by using (X̃n0 , Yn0 ), with n0 = 10; Right: predictions
(red dotted line) and 95% confidence intervals of the NGP model.

Fig. 5 shows that both the one-GP model and the NGP
model perform poor in x ∈ [−0.1, 0.1]. The reason is that,
values of the true function change fast in x ∈ [−0.1, 0.1], but
the design is sparse in [−0.1, 0.1]. Except at the points that
belong to [−0.1, 0.1], the NGP model outperforms the one-
GP model. Via the 3-fold CV test, we can find that the NGP
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model is not Gaussian. Therefore, in the NBO algorithm, the
sequential point is collected by maximizing NEIn (13). Set
Lt = −10σ1(x) + µ1(x) and Ut = 10σ1(x) + µ1(x), MCMC
method is used to evaluate (13) and the EQI function. The
log-optimality gaps against the number of samples for the six
methods are shown in Fig. 6.

Fig. 6. Average optimality gap over 50 replications by different methods.

From Fig. 6, we can conclude that the optimality gaps for
NEI and EQI-NGP enjoy steady improvements as n increases.
However, the other methods fall into a local optimal point,
which is included in the initial design. This shows that the
proposed method balances the optimal point of the fitted model
with the exploration of other regions.

It is worth noting that, since the LCB depends only on the
posterior mean and variance of f(x̃), this acquisition function
lose its advantage when the posterior distribution of f(x̃) is
non-Gaussian.

C. 4-d GP model

Suppose the inner computer model includes two functions:
the three-hump camel function

h1(x) = 2x2
1 − 1.05x4

1 + x6
1/6 + x1x2 + x2

2,

and the six-hump camel function

h2(x) = (4− 2.1x2
3 + x4

3/3)x2
3 + x3x4 + (−4 + 4x2

4)x2
4,

Here, x = (x1, x2, x3, x4) ∈ [−1, 1]4. Suppose the outer
computer model is the Branin function

g(h) =
1

51.95

[
g1(h) + (10− 10

8π
) cos(h̄1)− 44.81

]
,

where g1(h) = (h̄2− 5.1h̄2
1

4π2 + 5h̄1

π −6)2, h̄1 = 5(h1−1), h̄2 =
5(h2 + 1). The global minimum of f = g(h(x)) is at x∗ =
(−0.121, 0.547, 0.915, 0.715) and the corresponding function
value is −16.644. Let n0 = 40, we still use the maximin Latin
hypercube design to collect data. Then we build GP models

Fig. 7. Left: Posterior mean of the one-GP (black circles) and NGP (red
triangles); Right: Posterior variance of the one-GP and NGP.

for inner and outer computer models. Via the 3-fold CV test,
we have that the NGP model is Gaussian.

Fig. 7 compares the prediction performance of one GP
model and NGP model at 100 un-observed locations. These
100 testing locations are sampled by the maximin Latin hy-
percube design. Left of Fig. 7 shows the comparison between
predictions of different models and the true outputs of the
nested computer experiment. We see that, predictions given
by the NGP model at these testing locations are much closer
to the true values. The 100 points (black circles) in Fig. 7 right
compare the posterior variances given by the one-GP model
and the NGP model. Because all 100 points are under the
line “y = x”, it indicates that posterior variances given by the
NGP model are smaller than posterior variances given by the
one-GP model.

Fig. 8. Average optimality gap over 50 replications by different methods.

Fig. 8 shows the log-optimality gap log10(f∗n − f∗) against
the number of samples n. Results of the log-optimality gap
are averaged over 50 replications. We can see from Fig. 8
that the proposed method outperforms other methods: the
optimality gap for the latter methods stagnates for larger
sample sizes, whereas the former enjoys steady improvements
as n increases.
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In summary, results of the numerical simulations show that
the proposed NBO method has three advantages: (i) it incorpo-
rates the nested structure information and makes full use of the
inner computer model outputs; (ii) it improves the prediction
accuracy significantly; (iii) it avoids the convergence to local
minimum and identifies the global optimum more efficiently.

V. CASE STUDY VIA COMPOSITE STRUCTURES ASSEMBLY

Composite structures have become increasingly used in
many major products (e.g., fuselages, wings, car bodies, solar
panels, spacecraft) due to their superior characteristics in-
cluding high strength-to-weight ratio, high stiffness-to-weight
ratio, potential long life, and low life-cycle cost. However,
fabrication deviations are inevitable in composite structures. It
is timely important to address the quality control in composite
structures assembly.

Fig. 9. The computer experiment mimics the composite structures assembly
process.

One digital twin simulation platform for composite struc-
tures assembly was developed to mimic the fabrication process
of carbon-fiber reinforced composites [5], [6]. This computer
simulation platform was built based on ANSYS PrepPost
Composites workbench, and it was calibrated and validated
via physical experiments. The calibration process refers to
[42]. The digital twin simulation can conduct virtual assembly
to illustrate detailed composite structures joint. As shown in
Fig. 9, the virtual assembly simulation includes multiple steps:
(i) generate composite structures with deviations, (ii) apply
Automatic Optimal Shape Control technique [43] to adjust
the dimensions; (iii) add revit joins and then release actuators’
forces; (iv) do dimensional analysis and stress analysis.

This multistep computer simulation for composite structure
assembly has nested structure. As shown in Fig. 10, the
inner computer model simulates the shape control of a single
composite structure. It can be modeled by Gaussian process
[44]. The automatic optimal shape control can adjust the
dimensional deviations of one composite fuselage and make it
align well with the other fuselage to be assembled. The outer
computer model simulates the process of composite structures
assembly, where the inputs are critical dimensions from two
parts, and the outputs are internal stress after assembly. Table
I summarizes the inputs and outputs information in computer
experiments. We will conduct nested Bayesian optimization

for this nested computer experiment to identify the optimal
assembly that can minimize the residual stress after assembly.

Fig. 10. Nested computer experiments in composite structures assembly.

TABLE I
INPUTS AND OUTPUTS FOR THE NESTED COMPUTER EXPERIMENTS

Inner computer model Name of variable Dimension

Inputs Part 1’s actuators’ forces (x) 10

Outputs Part 1’s critical dimensions (h(x)) 5

Outer computer model Name of variable Dimension

Inputs Part 1’s critical dimensions (h(x)) 5

Part 2’s critical dimensions (x′) 5

Outputs Mean of Stress 1

Let n0 = 100, we collect the inner computer model outputs
Hn0 on a maximin Latin hypercube design Xn0 , and the outer
computer model outputs Yn0 on (Hn0 , Xn0). We conduct the
2-fold CV test and find that the NGP model is non-Gaussian.
We split the initial data into 70% as training and 30% as a
testing set randomly, and use the training data to build the
GP and NGP models. The testing data is used to compare the
prediction accuracy of different models.

Fig. 11. Predictions given by the GP (left) and NGP (right) v.s. the true
outputs;.

Fig. 11 shows that the NGP model outperforms the one-GP
model. Because the dimension of the inputs is 15, it is time-
consuming to search the optimal point of EI and NEI function
in Bayesian optimization. Following [45], instead of directly
optimize the acquisition functions over X , we choose a set of
candidate point Xcand from the whole search domain and then
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find the next point in Xcand. In this work, we select Xcand on a
maximin Latin hypercube design and the sample size of Xcand
is set to be 1000. Let N = 200, Fig.12 shows the optimal
results given by different methods. From Fig.12, we have that

Fig. 12. The optimal results given by different methods.

except for the EQI method under one-GP model, the others
obtain the same minimum of residual stress with 4.885 psi.
Moreover, the proposed method identifies this residual stress
with a minimum number of sequential points, which indicates
the high effectiveness of the proposed method.

VI. SUMMARY AND DISCUSSIONS

Computer experiments and digital twins have ubiquitous
influence on engineering systems. Since the multi-step sim-
ulations or hierarchical structure of systems, many computer
experiments have nested structures. This paper proposed a
novel Bayesian optimization method for nested computer
experiments. We first derived the nested Gaussian process
models to serve as surrogates for the computer models. We
proved the distribution of nested outputs given it is Gaussian
or non-Gaussian. We also deduced the closed forms of nested
expected improvement, and proposed one new algorithm for
nested Bayesian optimization. The proposed NBO method
can make full use of the nested structure and intermediate
outputs to identify the global optimum efficiently. It avoids
convergence to the local optimum which may occur in standard
Bayesian optimization. We validated the performance of NBO
based on three numerical studies and one case study. In the
case study, the proposed NBO can minimize the residual stress
for composite structures assembly, and achieve a much better
result than the conventional Bayesian optimization methods.

The proposed method may be faced with generalizability
challenge when the system has multiple connected models.
Specifically, approximating the multiple nested computer mod-
els by a suitable surrogate model needs to estimate more
hyperparameters. More training samples will be required for
accurate parameter learning. High-dimensionality of param-
eters may result in high computational cost of Bayesian
optimization. Furthermore, the fitting multiple connected com-
puter models by a nested GP may have non-identifiability
issue. In future research, we will investigate the identifiability

conditions and new nested Bayesian optimization methods for
complex multiple connected systems.
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