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Abstract
We propose a nested dissection approach to finding a fundamen-
tal cycle basis in a planar graph. The cycle basis corresponds to a
fundamental nullspace basis of the adjacency matrix. This problem is
meant to model sparse null basis computations occurring in a variety
of settings. We achieve an O(n%/?) bound on the nullspace basis size,
and an O(nlogn) bound on the size in the special case of grid graphs.

1 Fundamental nullspace bases and graphs

Let A be an n X m matrix with m > n, and let its rank be r. An important
problem in scientific computation is to produce a basis for the nullspace of
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A. In other words, we want to compute an m x (m — r) matrix V of rank
m — r such that AV = 0. The columns of V satisfy the equation Av = 0;
such a vector v is usually called a null vector. The nullspace problem has
applications to electrical networks, optimization, and structural analysis
(see Strang [1988]).

If A is sparse (as usually happens in applications), then we might hope
to compute a nullspace basis V' that is itself sparse. This has been a topic
of recent interest in the literature; it has been addressed by Coleman and
Pothen [1988], Gilbert and Heath [1987] and Plemmons and White [1990].
In general there is no reason to believe that sparsity in A implies sparsity
in V: it is necessary require that A have some additional structure.

None of these earlier works are able to establish bounds on the number of
nonzero entries in V. In this report we propose an algorithm that computes
a nullspace basis with an asymptotic bound on the number of nonzero
entries in V. In order to establish bounds, we focus attention on a simple
model problem that captures the features of many real problems.

If V contains an embedded (m — r) x (m — r) identity matrix, the basis
is said to be fundamental. In other words, there exist permutation matrices

P and Q such that
I
PVQ = ( C).

Fundamental nullspace bases are especially useful in certain applications
because they lead to simplified algorithms. In particular, the rows of V not
in the identity matrix correspond to columns of A forming a basis of the
span of A, and the null vectors give equations that express each nonbasic
column of A in terms of the basis columns. In this report we focus on the
fundamental nullspace basis problem.

The particular model problem we have selected is the case that A is the
node-edge incidence matrix of an undirected graph. This is a matrix with
n rows, one for each vertex of the graph, and m columns, one for each edge.
Each column has two nonzero entries in the positions corresponding to the
endpoints of the edge. These two entries are one +1 and one —1 in each
column in arbitrary order. (In some applications, the graph is actually
directed in which case the signs of the entries indicate edge orientation.
However, the choice of orientation has no effect on the construction of the
nullspace basis since multiplying a column by —1 does not change its span.)



A nullspace basis for such a matrix has a natural combinatorial inter-
pretation. In particular, the nonzero entries of particular column of V
corresponds to a closed walk in the graph. A fundamental nullspace basis
for a connected graph corresponds to the identification of a spanning tree,
T, of the graph. A null vector corresponds to the unique cycle formed by
edges of T in conjunction with a single edge of G — T. See Welsh [1976] for
more information.

Thus, the problem of finding a fundamental nullspace basis with suit-
able properities is reduced to the problem of finding the right spanning
tree T of G. We propose an algorithm reminiscent of nested dissection for
finding this tree T. Nested dissection, a technique due to George [1973],
finds a separator of the graph and then recursively works with subgraphs.
Here, a separator refers to a set of nodes of a small size whose removal
disconnects the graph into pieces of size at most 2n/3 nodes. The exact
definition is contained in the next section. Unlike traditional nested dis-
section, which requires no further properties of the separator, we will also
need the separator nodes to form a cycle.

Such separators are found in planar graphs that have a bound on the
maximum face size, a result due to Miller [1986]. See the next section for
the theorem.

The existence of any kind of separator automatically means that A can
be partitioned in row block angular form (RBAF) if the rows corresponding
to separator vertices are numbered last. An example of block angular form
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In this regard, our approach is most reminiscent of Plemmons and White’s.
They work with column block angular form (CBAF) and do not attempt to
derive bounds on the number of nonzero entries in the basis.

It may seem that we are speaking of a very restricted class of matrices
by limiting attention to node-edge adjacency matrices of planar graphs, but
this is a model for the kind of matrices that occur in practice. For example,




optimization problems with flow constraints have constraint equations in
the form of a graph, and the graph is typically planar or nearly planar. As
another example, Pothen [1988] shows that for certain kinds of structural
problems, the nullspace basis of the structural equilibrium matrix A can be
entirely deduced from a cycle basis for the underlying graph.

The remainder of this paper is organized as follows. In Section 2 we give
an algorithm that achieves an O(n%?) bound on the size of the nullspace.
An added bonus of our algorithm is that the resulting basis has structure
useful for parallelism. In Section 3 we specialize our algorithm to the case
of a grid graph, achieving an O(nlogn) algorithm. Finally, in Section 4 we
discuss how to generalize our ideas to other kinds of matrices.

In many applications where A is not explicitly given in RBAF, we can
permute rows and columns so to put PAQ in RBAF. Finding the permu-
tation matrices P and @ that minimize the number of residual rows or
columns, while producing diagonal blocks of approximately the same size,
is in general a very difficult combinatorial problem to be solved exactly.
See work by Stern [1990].

2 A tree from nested simple cycle separators

In a graph G = (V,E) with |[V| = n, aset S$ C V is called an (a, 3)-
separator iff:

1. Set S contains at most 3/n vertices, and
2. Graph G-S has no connected component with more than an vertices.
For this section we need the following theorem from Miller [1986].

Theorem 1 Let G be a 2-connected planar graph with n vertices, m edges
and mazimal face size ¢. Then there is an (a,3)-SCS (simple cycle sepa-
rator) S, with a = 2/3 and B = 2,/2|¢/2|. Moreover, S can be found in
linear time.

Here, the term simple cycle separator refers to a set of vertices S that
form a separator in the sense of the previous definition and that are the
vertex set of a simple cycle in G.



For the remainder of this section we restrict attention to 2-connected
planar graphs with face size bounded by ¢. We remark that a strengthening
of the foregoing theorem appears in Gazit and Miller [1990], that allows G
to have a constant number of faces with, say, \/n vertices without disturbing
the bound.

The assumption that G is 2-connected is not actually a restriction. First,
if G is disconnected, then each component can be treated separately. Sec-
ond, if G is connected but not 2-connected, then the 2-connected com-
ponents can be identified in linear time (see Aho, Hopcroft and Ullman
[1983]). It suffices to work with 2-connected components, since any partic-
ular cycle (null vector) is contained in a unique 2-connected component of
G.

Our main goal for this section is to analyze a procedure T that finds a
spanning tree. A basic building block for T is Algorithm P that decomposes
the graph using the previous theorem. The first two steps of Algorithm P
are as follows:

P-1: Find in G an (a, §)-SCS, say S.
P-2: Transform G into G’ by contracting S into a single vertex o.

These steps are illustrated in Figure 1.

Lemma 1 Vertez o is the only articulation point of G'.

PROOF. Suppose 7 # ¢ is an articulation point (a.p.) in G'. Let G}, G),...,G}
be two of the 2-connected components of G’ articulated by o. Since o is
an a.p. in G', T belongs to exactly one G}, say G}. Let G} ,, G}, be two of
the 2-connected components of G} articulated by r. Since 7 is an a.p., o
belongs to exactly one G ;, say G ;.

Now Gj ; is a subgraph of G, because it has not affected by the con-
traction of S. But then 7 is an articulation point in G between G , and S,
which contradicts the hypothesis that G is 2-connected. §

By virtue of Lemma 1 we can define the final step of procedure P:

P-3: Separate the 2-connected components of G’ into disconnected sub-
graphs, G},G}, ..., G} with every subgraph receiving its own copy of
o, the articulation point in G’. The final graph, G!, is the disjoint
union of the subgraphs G} . (Figure 2.)
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Figure 1: Contracting a cycle to a single node.
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Figure 2: Graph G, based on Figure 1.



Lemma 2 The mazimal face size of G}, a connected subgraph of G, does
not ezceed the mazimal face size of the original graph G.

PROOF. Observe that, given an embedding of G, there is an embedding of
G} that corresponds to topologically contracting the embedded edges of S.
Focus on this embedding of G}.

Let vy, v;,...,v be the vertices in a face of G}. If vy £ o fork =1,...,1,
then the face was not changed by the contraction of S, and the lemma
follows. Now say v = 0. The list of vertices v,,...,v; in the embedding
of G} have no edges adjacent to them in the interior of the face. Since no
edge adjacent to these vertices was deleted by the contraction process, this
means that vertices vq,...,v,_; form a path in G such that there are no
edges adjacent to these vertices that are embedded on one “side” (either
left or right) of the path. Thus, this path is part of a face in G of size at
least 1.

By virtue of Lemma 2 we can recursively apply procedure P to each
of the connected subgraphs in G'. That will be the basis for procedure
T to construct the spanning tree. The parameter « below is a constant
depending on ¢ that we will specify later.

IFIV(G) < & |
T-1: Return an arbitrary spanning tree T in G.
Else
T-2: Apply procedure P to G (using the SCS S) .
In each subgraph G}, recursively use procedure T to get a tree T;.
T-3: Construct in G the spanning tree T, joining:
(a) Forests T}, the uncontracted versions of T}, and
(b) The SCS S with an arbitrary edge deleted.

This procedure is illustrated in Figure 3 for the graph used in Figure 1 and
Figure 2

Lemma 3 The graph returned by procedure T is a spanning tree.

PROOF. We will prove the theorem by induction on the number of levels
we recursively called procedure T. At the last recursive call T-1 returns a
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Figure 3: Finding a tree recursively.

spanning tree. This is the basis for our inductive argument. Now assume
that the recursive calls to T return spanning trees T; at each subgraph G!.
To complete our induction we have to prove that T is a spanning tree for
G.

Let C be cycle S with an arbitrary edge deleted, so that C is a simple
path spanning the vertices of S. We argue by contradiction that T cannot
have cycles. Suppose T has a cycle. Since each T is a forest and the various
T;’s have no common vertices, the cycle must be formed by edges of C and
a particular T:. But this is not possible because then the same cycle could
be contracted to form a cycle in T;.

Also, we claim T is connected. This is because the forests 7; and C
span all the vertices, and each tree in the forest made up of T}’s contains a
vertex of C. B

We have now demonstrated that procedure T constructs a spanning
tree. We now put an upper bound on the length of the cycle formed by
adding any edge of G—T to T. We use the term co-tree edge to refer to such
edges, and the term co-tree cycle to refer to the unique cycle induced by a
co-tree edge. The co-tree cycles correspond to the null vectors in the basis,



and the number of edges in the co-tree cycles correspond to the number of
nonzero entries of the nullspace basis.

Theorem 2 A co-tree cycle of T has length at most §\/n + k, where
§=8/(1-Ja+1/x).

PROOF. Let f(n) be the maximum number of edges in a co-tree cycle. We
will prove the theorem by induction on the number of levels we recursively
called procedure T.

If n < k, the theorem is trivial.

Otherwise, let S denote the SCS constructed at the top level of T, and
observe that a co-tree cycle must lie interior to one of the subgraphs G},
plus S. Now we can use Theorem 1 to get the recursion:

f(n) £ f(an +1) + Bv/n.

The first term accounts for the edges in G}, a graph that has at most an

[}

vertices plus the copy of o, and the second term accounts for the edges in
S. Our induction hypothesis states that

fl(an +1) < évan +1 + «.

So to prove our theorem it suffices to establish, for all x < m < n, that

6vam + 1+ By/m < §/m

523/(1—\/a+1/m>.

Since a = 2/3 < 1, we can choose x = 30 to ensure that the last denomina-
tor is positive, and given x and 3 we can choose § to satisfy the inequality
for m = k. For example, if the graph is triangulated, then Theorem 1 gives
us B = /8, and taking x = 30 we can take § = 20. §

ie.,

As a corollary to Theorem 2, we can easily put a bound on g(n), the
total length of the all co-tree cycles, i.e., the number of nonzeros in the
nullspace basis. Theorem 2 give us a bound for f(n), the length of the
longest co-tree cycle. A planar graph with n vertices has at most 3n — 6
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edges (Harary [1972]). Thus, there are at most (3n — 6) — (n — 1) co-tree
cycles, so the total co-tree length, g(n) is bounded by (2n — 5)f(n), i.e.,
O(ny/n).

Finally, let T be the tree in G constructed by algorithm T. Now we
can see that the incidence matrix of the cycles in the cycle basis can be
written in RBAF. In particular, we number the edges of G according the
2-connected components of G', with the edges of S numbered last. Then
each cycle in the nullspace basis has nonzeros in rows of V' corresponding
to edges of one particular 2-connected component, plus edges from S. We
can also nest the RBAF structure in V' according to the recursive levels of
procedure T.

3 The grid graph

For the (k — 1) x (k — 1) grid graph G(k), with n = (k — 1)? vertices and
m = (k — 1)(k — 2) edges, we can define a spanning tree T(k) that gives us
a better bound on the total length of the co-tree cycle basis.

For this section we only consider the case that k = 27, although our
results can be generalized. The k = 16 graph is illustrated in Figure 4.

Tree T'(k) is constructed recursively. In the case that k =2,ie.,a1x1
grid graph, the spanning tree is the unique node of the graph. This is the
basis of the recursion. In order to construct T(k) for k > 2, we need the
following basic building blocks:

a(k) : The central vertex of G(k), i.e., the vertex at position (k/2,k/2).
B(k) : The vertex of G(k) at position (k/2,k/4).

v(k) : The vertex of G(k) at position (k/2,3k/4).

X (k) : The edges of G(k) of the central row or column.

H(k) : The edges in X(k) plus the edges incident to 8(k) or v(k).

Graph H(k) is illustrated in Figure 5; vertices 8(k) and v(k) are shown as
squares, and vertex a(k) is shown as a bullseye.

Notice that G(k) — X (k) has four connected components, each of which
is isomorphic to G(k/2). We can recursively define T'(k) as H(k) plus a copy
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16 case.

Figure 4: The grid graph in the k

i

Figure 5: The graph H(k), with a(k), 3(k),v(k) illustrated.
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Figure 6: The graph T'(k) in the case k = 16.

of T(k/2) for each component. We omit the proof that T'(k) is indeed a
spanning tree of G(k). An example of T'(k) in the case k = 16 is illustrated
in Figure 6. This tree is similar to a graph that has occurred in the VLSI
literature known as the H-tree (see Ullman [1984]).

We consider the tree T(k) to be rooted at a(k), and define d*¥(w) as the
distance of a vertex w in T(k) to the root, ie d(w,a(k)) . We denote by
r(k) the radius of T(k), i.e., the maximal distance d*(w).

Lemma 4 The radius r(k) of T(k) i3 bounded by k .

PROOF. Recall £k = 2. We will prove the lemma by induction on j. If
J =1, then T(2) = H(2) = a and r(2) = 0. This is the basis for our
induction.

For k > 1 let us consider d*(w) for an arbitrary vertex w € T(k). If
w € X(k) then d*(w) < k/2, because each of the four branches of X(k)
has diameter k/2. If w ¢ X(k), then w belongs to one of the four copies
of T(k/2) rooted at a(k/2), and connected to H(k) through B(k) or (k).
Let us say that it is in the upper left copy of T(k/2), so that it is rooted
through 3(k). Let a(k/2) denote the root of the particular copy of T'(k/2)
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under consideration. Then we have the chain of equations:

d*(w) d(w, a(k))

d(w,a(k/2)) + d(a(k/2), a(k))

d*/*(w) + d(a(k/2), B(k)) + d(B(k), a(k))
d**(w) + k/4 + k/4

r(k/2) + k/2.

Hence r(k) < r(k/2) + k/2, and that gives the induction step for our hy-
pothesis, r(k) < k. 1

IN

Theorem 3 The total length g(k) of the co-tree cycle basis for the tree T(k)
in the (k—1)x (k—1) square grid G(k) is asymptotically bounded by 6k?log k.

PROOF. Let us first look at the co-tree cycles that have edges in X (k). We
observe that the only co-tree cycles with edges in X (k) are those generated
by co-tree edges incident to vertices of X(k). Also there are only 4k of
those edges. Let f(k) be length of a given co-tree cycle, S, intersecting
X (k). Observe that the edges of S not in X(k) must lie in one of the four
copies of T(k/2). The number of such edges, as in the previous lemma, is
at most 7(k/2) + k/4. The number of edges of S in X (k) is at most 3k/4,
because they must be in the border of one of the quadrant regions, and can
not cross 3(k). Therefore, the total number of edges in S is bounded as
follows:

f(k) < (r(k/2) + k/4) + 3k/4 < 3k/2.
Now, all the remaining co-tree cycles lie in one of the copies of T'(k/2),
and we can write
g(k) < 4g(k/2) + (4k) f(k) < 4g(k/2) + 6k.

But a recursion in the form g(k) < 4g(k/2)+ck? is known to be bounded
by ck?log(k) + O(k?). Indeed, George’s original [1973] derivation of nested
dissection on grids came up with the same expression for the fill during
Gaussian elimination. So we can limit the total length of the T(k) co-tree

cycle basis for G(k) by:
g(k) < 6k?log k + O(k?) = 6nlogn + O(n).
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4 Generalizing the construction

In this section we discuss how to generalize the results of Section 2 to
matrices other than adjacency matrices of planar graphs. We first note
that the planarity assumption was necessary only to obtain simple cycle
separators. We see that the necessary property of the separator was not
that it was a simple cycle, but rather that the subgraph induced by the
separator nodes was connected. Indeed, the separators in Section 3 were
not cycles. With this weaker hypothesis all of the results of Section 2 go
through. Recent results by Miller, Teng and Vavasis [1990] suggest that
very broad classes of graphs could have connected separators.

If we want to generalize beyond adjacency matrices of graphs, we see
that the first crucial property in our analysis was that matrix A can be
written in the form of (1). This is not enough to carry out our algorithm,;
this form is analogous to a graph G having a node separator but not neces-
sarily a connected node separator. The generalization of the “connected”
property is that matrix Sk, has full row rank. If this happens, then it can
be shown using linear algebra that it suffices to find a nullspace basis for
Sk41 and for By,. .., By, where B; denotes the matrix

(3)

In this formulation w} is a row vector with a “don’t care” entry for each
column in which S; has at least one nonzero entry. From fundamental
nullspace bases for B; and for S; we can assemble a fundamental nullspace
basis for A. This construction works only under the usual noncancellation
assumption that the nullspace basis of A can be predicted entirely from the
positions of the nonzero entries in A. See, for example, Pothen [1984].
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