
NESTED-DISSECTION ORDERINGS FOR SPARSE LU
WITH PARTIAL PIVOTING

IGOR BRAINMAN AND SIVAN TOLEDO

Abstract. We describe the implementation and performance of a
novel fill-minimization ordering technique for sparse LU factoriza-
tion with partial pivoting. The technique was proposed by Gilbert
and Schreiber in 1980 but never implemented and tested. Like
other techniques for ordering sparse matrices for LU with partial
pivoting, our new method preorders the columns of the matrix
(the row permutation is chosen by the pivoting sequence during
the numerical factorization). Also like other methods, the column
permutation Q that we select is a permutation that minimizes the
fill in the Cholesky factor of QT AT AQ. Unlike existing column-
ordering techniques, which all rely on minimum-degree heuristics,
our new method is based on a nested-dissection ordering of AT A.
Our algorithm, however, never computes a representation of AT A,
which can be expensive. We only work with a representation of A
itself. Our experiments demonstrate that the method is efficient
and that it can reduce fill significantly relative to the best existing
methods. The method reduces the LU running time on some very
large matrices (tens of millions of nonzeros in the factors) by more
than a factor of 2.

1. Introduction

Reordering the columns of sparse nonsymmetric matrices can sig-
nificantly reduce fill in sparse LU factorizations with partial pivot-
ing. Reducing fill in a factorization reduces the amount of memory
required to store the factors, the amount of work in the factorization,
and the amount of work in subsequent triangular solves. Symmet-
ric positive-definite matrices, which can be factored without pivoting,
are normally reordered to reduce fill by applying the same permuta-
tion to both the rows and columns of the matrix. Applying the same
permutation to the rows and columns preserves the symmetry of the
matrix. When partial pivoting is required for maintaining numerical
stability, however, prepermuting the rows is meaningless, since the rows

This research was supported by Israel Science Foundation founded by the Israel
Academy of Sciences and Humanities (grant number 572/00 and grant number
9060/99) and by the University Research Fund of Tel-Aviv University.

1

NESTED DISSECTION FOR NONSYMMETRIC LU 2

are exchanged again during the factorization. Therefore, we normally
preorder the columns and let numerical consideration dictate the row
ordering. Since columns are reordered before the row permutation is
known, we need to order the columns such that fill is minimized no
matter how rows are exchanged. (Some nonsymmetric factorization
codes that employ pivoting, such as umfpack/ma38 [4, 5], determine
the column permutation during the numerical factorization; such codes
do not preorder columns so the technique in this paper does not apply
to them.)

A result by George and Ng [8] suggests one effective way to preorder
the columns to reduce fill. They have shown that the fill of the LU
factors of PA is essentially contained in the fill of the Cholesky factor
of AT A for every row permutation P . (P is a permutation matrix that
permutes the rows of A and represents the actions of partial pivoting.)
Gilbert [10] later showed that this upper bound on the fill of the LU
factors is not too loose, in the sense that for a large class of matrices,
for every fill element in the Cholesky factor of AT A there is a pivoting
sequence P that causes the element to fill in the LU factors of A.
Thus, nonsymmetric direct sparse solvers often preorder the columns
of A using a permutation Q that minimizes fill in the Cholesky factor
of QT AT AQ.

The main challenge in column-ordering algorithms is to find a fill-
minimizing permutation without computing AT A or even its nonzero
structure. While computing the nonzero structure of AT A allows us to
use existing symmetric ordering algorithms and codes, it may be grossly
inefficient. For example, when an n-by-n matrix A has nonzeros only
in the first row and along the main diagonal, computing AT A takes
Ω(n2) work, but factoring it takes only O(n) work. Consider an n-by-n
matrix in which all the nonzeros are in the first row and along the main
diagonal, such as (×’s represent nonzeros)

A =

× × × × × ×
×

×
×

×
×

.

The matrix AT A is full, so computing its structure requires at least
Θ(n2) work. But since AT A is full, all its orderings are equivalent in
terms of fill. Thus, we perform Ω(n2) work and get no useful infor-
mation. If we factor this matrix without reordering its columns, no

NESTED DISSECTION FOR NONSYMMETRIC LU 3

pivoting takes place and no fill is produced, so the factorization re-
quires only Θ(n) work. To summarize, computing AT A may require
significantly more memory and work than the partial-pivoting numer-
ical factorization requires.

This challenge has been met for the class of reordering algorithms
based on the minimum-degree heuristic. Modern implementations of
minimum-degree heuristics use a clique-cover to represent the graph
GA of the matrix1 A (see [7]). A clique cover represents the edges of
the graph (the nonzeros in the matrix) as a union of cliques, or complete
subgraphs. The clique-cover representation allows us to simulate the
elimination process with a data structure that only shrinks and never
grows. There are two ways to initialize the clique-cover representation
of GAT A directly from the structure of A. Both ways create a data
structure whose size is proportional to the number of nonzeros in A,
not the number of nonzeros in AT A. From then on, the data structure
only shrinks, so it remains small even if AT A is relatively dense. In
other words, finding a minimum-degree column ordering for A requires
about the same amount of work and memory as finding a symmetric
ordering for AT + A, the symmetric completion of A.

Nested-dissection ordering methods were proposed in the early 1970’s
and have been known since then to be theoretically superior to minimum-
degree methods for important classes of sparse symmetric definite ma-
trices. Only in the last few years, however, have nested-dissection meth-
ods been shown experimentally to be more effective than minimum-
degree methods. Today’s state-of-the-art methods use fast multilevel
algorithms for finding separators and fuse nested-dissection and minimum-
degree to reduce fill below the level that either method alone produces.

In 1980 Gilbert and Schreiber proposed a method for ordering GAT A

using nested-dissection heuristics, without ever forming AT A [9, 11].
Their method uses wide separators, a term that they coined. They
have never implemented or tested their proposed method.

The main contribution of this paper is an implementation and an
experimental evaluation of the wide-separator ordering method, along
with a new presentation of the theory of wide separators. Our code
dissects GAT A without forming it. The code then uses existing tech-
niques for minimum-degree column ordering to reduce fill in LU with
partial pivoting to below that of any existing technique.

Modern symmetric ordering methods generally work as follows:

1The graph GA = (V, E) of an n-by-n matrix A has a vertex set V = {1, 2, . . . , n}
and an edge set E = {(i, j)|aij 6= 0}. We ignore numerical cancellations in this
paper.

NESTED DISSECTION FOR NONSYMMETRIC LU 4

1. The methods find a small vertex separator that separates the
graph G into two subgraphs with roughly the same size.

2. Each subgraph is dissected recursively, until each subgraph is
fairly small (typically several hundred vertices).

3. The separators are used to impose a coarse ordering. The ver-
tices in the top-level separator are ordered last, the vertices in the
second-to-top level come before them, and so on. The vertices
in the small subgraphs that are not dissected any further appear
first in the ordering. The ordering within each separator and the
ordering within each subgraph has not yet been determined.

4. A minimum-degree algorithm computes the final ordering, subject
to the coarse ordering constraints.

While there are many variants, most codes use this overall framework.
Our methods apply the same framework to the graph of AT A, but

without computing it. We find separators in ATA by finding wide sep-
arators in AT + A. We find a wide separator by finding a conventional
vertex separator and widening it by adding to it all the vertices that
are adjacent to the separator in one of the subgraphs. Such a wide
separator corresponds to a vertex separator in AT A. Just like sym-
metric methods, our methods recursively dissect the graph, but using
wide separators. When the remaining subgraphs are sufficiently small,
we compute the final ordering using a constrained column-minimum-
degree algorithm. We use existing techniques to produce a minimum-
degree ordering of AT A without computing GAT A (either the row-clique
method or the augmented-matrix method).

The (conventional) vertex-separator code that we use is part of a
library called spools [1]. Our code can use spooles’s minimum-
degree code, as well as a version of colamd [12] that we modified to
respect the coarse ordering.

Experimental results show that our method can reduce the work in
the LU factorization by up to a factor of 3 compared to state-of-the-art
column-ordering codes. The running times of our method are higher
than the running-times of strict minimum-degree codes, such as co-
lamd [12], but they are low enough to easily justify using the new
method. On many matrices, including large ones, our method signifi-
cantly reduces the work compared to all the existing column ordering
methods. On some matrices, however, constraining the ordering using
wide-separators increases fill rather than reduce it.

The rest of the paper is organized as follows. Section 2 presents the
theory of wide separators and algorithms for finding them. Our exper-
imental results are presented in Section 3. We discuss our conclusions
from this research in Section 4.

NESTED DISSECTION FOR NONSYMMETRIC LU 5

2. Wide Separators: Theory and Algorithms

Our column-ordering methods find separators in GAT A by finding a
so-called wide separator in GAT +A. We work with the graph of AT +A
and not with GA for two reasons. First, this simplifies the definitions
and proofs. Second, to the best of our knowledge all existing vertex-
separator codes work with undirected graphs, so there is no point in
developing the theory for the directed graph GA.

A vertex subset S ⊆ V of an undirected graph G = (V, E) is a
separator if the removal of S and its incident edges breaks the graph
into two components G1 = (V1, E1) and G2 = (V2, E2), such that any
path between i ∈ V1 and j ∈ V2 passes through at least one vertex in
S. A vertex set is a wide separator if every path between i ∈ V1 and
j ∈ V2 passes through a sequence of two vertices in S (one after the
other along the path).

Our first task is to show that every wide separator in GAT +A is a
separator in GAT A.

Theorem 2.1. A wide separator in GAT +A is a separator in GAT A.

Proof. Let S be a wide separator in GAT +A. Suppose for contradiction
that S is not a separator in GAT A: there exists a path in GAT A between
i ∈ V1 and j ∈ V2 that does not pass though a vertex s in S. There
must be a pair of vertices i′ and j′ along the path such that i′ ∈ V1 and
j′ ∈ V2. Thus, i′ and j′ are neighbors in GAT A, so the (i′, j′) element
in AT A is nonzero. Since (AT A)i′,j′ =

∑
k Ak,i′Ak,j′ 6= 0, there must

be some k such that Ak,i′ 6= 0 and Ak,j′ 6= 0. Hence, there is a path
i′ ↔ k ↔ j′ in GAT +A between i′ and j′ that passes through only vertex
in S, a contradiction.

The converse is not always true. There are matrices with separators in
GAT A that do not correspond to wide separators in AT + A. Consider

A =

[×
×

]

(the ×’s represent nonzeros). The empty set is a separator in the graph
of

AT A =

[×
×

] [×
×

]
=

[×
×

]

but it is not a wide separator in the graph of AT + A (it is not even
a separator). The converse of the Theorem 2.1 is true, however, when
there are no zeros on the main diagonal of A:

NESTED DISSECTION FOR NONSYMMETRIC LU 6

Theorem 2.2. If there are no zeros on the diagonal of A, then a sep-
arator in GAT A is a wide separator in GAT +A.

Proof. Let S be a separator in GAT A. Suppose for contradiction that
S is not a wide separator in GAT +A. There exists a path in GAT +A

between some i ∈ V1 and j ∈ V2 that does not pass though a sequence
of two vertices in S. This can happen in two ways. Either there are
some i′ ∈ V1 and j′ ∈ V2 that are adjacent in GAT +A(that is, S is not a
separator at all in GAT +A), or there are some i′ ∈ V1 and j′ ∈ V2 that
are separated in GAT +A but not widely: there is a path i′ ↔ s ↔ j ′ in
GAT +A. In both cases the edge (i′, j′) will be in GAT A (in the former case
due to the paths i′ ↔ i′ ↔ j′ and i′ ↔ j′ ↔ j′), a contradiction.

Given a code that finds conventional separators in an undirected graph,
finding wide separators is easy. The separator and its neighbors in
either G1 or G2 form a wide separator:

Lemma 2.3. Let S be a separator in an undirected graph G. The sets
S1 = S ∪ {i|i ∈ V1, (i, j) ∈ E for some j ∈ S} and S2 = S ∪ {i|i ∈
V2, (i, j) ∈ E for some j ∈ S} are wide separators in G.

The proof is trivial. The sizes of S1 and S2 are bounded by d|S|,
where d is the maximum degree of vertices in S. Given S, it is easy to
enumerate S1 and S2 in time O(d|S|). This running time is typically
insignificant compared to the time it takes to find S.

Which one of the two candidate wide separators should we choose? A
wide separator that is small and that dissects the graph evenly reduces
fill in the Cholesky factor of AT A, and hence in the LU factors of A.
The two criteria are usually contradictory. Over the years it has been
determined the the best strategy is to choose a separator that is as
small as possible, as long as the ratio of the number of vertices in G1

and G2 does not exceed 2 or so.
The following method is, therefore, a reasonable way to find a wide

separator: Select the smallest of S1 and S2, unless the smaller wide
separator unbalances the separated subgraphs (so that one is more
than twice as large as the other) but the larger does not. Our code,
however, is currently more naive and always choose the smaller wide
separator.

3. Experimental Results

This section summarizes our experimental results. We begin by de-
scribing our code, our collection of test matrices, and the computer
that was used to carry out the experiments. We then describe and

NESTED DISSECTION FOR NONSYMMETRIC LU 7

analyze the results of our experiments. The analyses focus on the ef-
fectiveness of various ordering methods and on their performance. By
effectiveness we mean the number of nonzeros in the factors, the num-
ber of floating-point operations (flops) required to compute them, and
the factorization time. By performance we mean the cost, mostly in
terms of time, of the ordering algorithm itself.

3.1. Experimental Setup. The experiments that this section de-
scribe test the effectiveness and performance of several column-ordering
codes. We have tested our new codes, which implement nested-dissection-
based orderings, as well as two existing ordering codes.

Our codes build a hierarchy of wide separators and use the separators
to constrain a minimum-degree algorithm. We obtain the wide separa-
tors by widening separators in GAT +A that spooles [1] finds. Spooles
is a library of sparse ordering and factorization codes written by Cleve
Ashcraft and others. Our codes then invoke a column-minimum-degree
code to produce the final ordering. One minimum-degree code that
we use is spooles’s multi-stage-minimum-degree (msmd) algorithm,
which we run on the augmented matrix

Ã =

[
I A

AT 0

]
.

We constrain the minimum-degree code to eliminate the first n rows/columns
first. This elimination constructs a clique-cover representation of GAT A

on the remaining uneliminated vertices, which msmd eliminate next
under the wide-separator constraints.

The other minimum-degree code that we used is a version of co-
lamd [12] that we modified to respect the constraints imposed by the
separators.

The existing minimum-degree codes that we have tested include co-
lamd, spooles’s msmd (operating on the augmented matrix with no
separator constraints). In an earlier experiment, reported in [2], we also
tested colmmd, a column minimum-degree code, originally written by
Joseph W.-H. Liu and distributed with SuperLU. It was not shown to
be consistently superior to the other two codes so we dropped it from
the experiment reported here.

We use the following acronyms to refer to the ordering methods:
msmd refers to spooles’s minimum-degree code operating on the aug-
mented matrix without constraints, wsmsmd refers to the same minimum-
degree code but constrained to respect wide separators, and similarly
for colamd and wscolamd.

NESTED DISSECTION FOR NONSYMMETRIC LU 8

In the experiments reported here, we always reduce the input ma-
trices to block triangular form (see [14]) and factor only the diagonal
blocks in the reduced form. Many of the matrices in our test suite
have numerous tiny diagonal blocks (most of them 1-by-1); we report
the performance of factoring all the diagonal blocks with dimension at
least 250.

We factor the reordered matrix using SuperLU [6, 13] version 2.0,
a state-of-the-art sparse partial-pivoting LU code. SuperLU uses the
Basic Linear Algebra Subroutines (blas). we used atlas2, a high-
performance implementation of the blas.

We conducted the experiments on a 600MHz dual Pentium III com-
puter with 2 GBytes of main memory running Linux. The machine
was configured without swap space so no paging occurred during the
experiments. This machine has two processors, but our code only uses
one processor. The compiler that we used is GCC version egcs-2.91.66.
We used the recommended optimization level for each package: -O for
spooles and -O3 for SuperLU.

3.2. Matrices. We tested the ordering methods on a set of nonsym-
metric sparse matrices from Tim Davis’s sparse matrix collection3. We
used all the nonsymmetric matrices in Davis’s collection that are not
too small (factorization time with the best ordering method at least
1/1000 of a second). Two of the matrices in Davis’s collection were too
large to factor on our machine (appu and pre2) and spooles broke
down on two more (av41092 and twotone; we are unsure whether the
breakdown is due to a bug in our code or due to a problem in spooles).

The matrices are listed in Tables 1 and 2. We split the matrices
into small ones and large ones based on the number of flops (floating-
point operations) in the factorization. We refer to matrices whose
factorization with the best ordering requires more than 100 Mflops
(millions of flops) as large, the rest are referred to as small. We always
sort matrices by this factorization-flops metric. The tables show the
matrix’s name, dimension (n), number of nonzeros (nnz), number of
blocks in the block triangular form, number of big blocks (dimension
at least 250) in the block triangular form, and the best flop count in
millions.

We also run experiments on matrices whose graphs are regular 2-
and 3-dimensional meshes and whose values are random numbers in
the range [0, 1].

2www.netlib.org/atlas
3www.cise.ufl.edu/~davis/sparse/

NESTED DISSECTION FOR NONSYMMETRIC LU 9

Table 1. General information for the small matrices.

btf big btf best
no name n nnz blocks blocks mflops

1 raefsky6 3402 137845 3402 0 0
2 raefsky5 6316 168658 6316 0 0
3 poli large 15575 33074 15466 0 0
4 bwm2000 2000 7996 1 1 0
5 epb0 1794 7764 1 1 0
6 cavity04 317 7327 82 0 0
7 lhr01 1477 18592 298 1 2
8 rdist2 3198 56934 199 1 4
9 bayer02 13935 63679 2151 1 7

10 bayer10 13436 94926 1541 1 8
11 rdist3a 2398 61896 99 1 8
12 rdist1 4134 94408 199 1 8
13 orani678 2529 90158 700 1 17
14 lhr04c 4101 82682 439 1 17
15 lhr04 4101 82682 439 1 18
16 bayer04 20545 159082 6378 1 18
17 ex9 3363 99471 1 1 23
18 lhr07c 7337 156508 672 2 27
19 lhr07 7337 156508 672 2 27
20 ex31 3909 115357 1 1 28
21 rw5151 5151 20199 6 1 30
22 bayer01 57735 277774 8861 1 30
23 ex28 2603 77781 1 1 35
24 lhr11 10964 233741 1192 3 35
25 lhr11c 10964 233741 1192 3 35
26 lhr10c 10672 232633 908 3 36
27 lhr10 10672 232633 908 3 36
28 ex19 12005 259879 305 3 36
29 memplus 17758 126150 1 1 39
30 lhr14 14270 307858 1556 5 42
31 lhr14c 14270 307858 1556 5 42
32 lhr17 17576 381975 1798 6 55
33 lhr17c 17576 381975 1798 6 56
34 ex8 3096 106344 1 1 68
35 ex35 19716 228208 173 4 73
36 cavity26 4562 138187 322 1 91
37 cavity24 4562 138187 322 1 91
38 onetone2 36057 227628 3843 1 92
39 cavity25 4562 138187 322 1 92
40 cavity23 4562 138187 322 1 92
41 cavity22 4562 138187 322 1 92
42 cavity21 4562 138187 322 1 94
43 cavity20 4562 138187 322 1 94
44 cavity19 4562 138187 322 1 95
45 cavity18 4562 138187 322 1 98

NESTED DISSECTION FOR NONSYMMETRIC LU 10

Table 2. General information for the large matrices.

of # of big best
no name n nnz blocks blocks mflops
46 cavity17 4562 138187 322 1 101
47 epb1 14734 95053 1 1 123
48 utm5940 5940 83842 147 1 126
49 lhr34 35152 764014 3533 10 128
50 lhr71 70304 1528092 7066 20 259
51 lhr71c 70304 1528092 7066 20 262
52 shyy161 76480 329762 25761 1 479
53 epb2 25228 175027 1 1 517
54 goodwin 7320 324784 2 1 524
55 epb3 84617 463625 1 1 809
56 raefsky2 3242 294276 1 1 921
57 raefsky1 3242 294276 1 1 921
58 graham1 9035 335504 478 1 989
59 garon2 13535 390607 1 1 1061
60 ex40 7740 458012 1 1 1075
61 rim 22560 1014951 2 1 1877
62 onetone1 36057 341088 3843 1 2371
63 olafu 16146 1015156 1 1 2584
64 venkat01 62424 1717792 1 1 4299
65 venkat50 62424 1717792 1 1 4299
66 venkat25 62424 1717792 1 1 4299
67 rma10 46835 2374001 1 1 4386
68 af23560 23560 484256 1 1 4515
69 raefsky3 21200 1488768 1 1 5243
70 raefsky4 19779 1328611 1 1 7800
71 ex11 16614 1096948 1 1 11194
72 psmigr 2 3140 540022 1 1 13412
73 psmigr 3 3140 543162 1 1 14649
74 psmigr 1 3140 543162 1 1 14776
75 wang3 26064 177168 1 1 15515
76 wang4 26068 177196 1 1 24484
77 bbmat 38744 1771722 1 1 44553
78 li 22695 1350309 2 2 84241

3.3. Results and Analysis. Table 3 and Figures 3.1, 3.2, and 3.3
summarize the results of our experiments. These results supersede the
preliminary results that we reported in [2, 3].

Table 3 shows that wide-separator (ws) orderings are both effective
and efficient. On the largest 2D and 3D meshes, ws orderings lead to
the fastest factorization times and to the fastest overall solution time
(including ordering time). Beyond performance, WS orderings enable
us to solve problem that we could simply not solve with minimum-
degree orderings with this amount of main memory (2GB).

NESTED DISSECTION FOR NONSYMMETRIC LU 11

0.4

0.5

0.6

0.7

0.8

0.9 1

1.1

1.25

1.5

1.75 2

2.25

2.5 3

C
O

LA
M

D

wide−separator/minimum−degree ratio

cavity17
epb1
utm5940
lhr34
lhr71
lhr71c
shyy161
epb2
goodwin
epb3
raefsky2
raefsky1
graham1
garon2
ex40
rim
onetone1
olafu
venkat01
venkat50
venkat25
rma10
af23560
raefsky3
raefsky4
ex11
psmigr2
psmigr3
psmigr1
wang3
wang4
bbmat
li

T
otal T

im
e

F
actor T

im
e

F
lops

N
N

Z
 in L+

U

Figure 3.1. The ratios of wscolamd’s performance
to that of colamd. Performance is reported in terms of
flops, number of nonzeros in L and U , factorization times,
and total times (including ordering). Data points below
1 indicate that wscolamd is better than colamd. Ma-
trices are sorted by best factorization flops. The y-axis
is logarithmic.

NESTED DISSECTION FOR NONSYMMETRIC LU 12

Table 3. A comparison of wide-separator and
minimum-degree orderings on regular 2- and 3-
dimensional meshes. All the matrix entries are random.
The first three columns show the dimensions of the
meshes, the next two the best factorization time and
the ordering method that lead to the best time. The
last four columns show the combined ordering and
factorization times in seconds.

Best Best Times In Seconds
Nx Ny Nz Time Method wscolamd colamd wscolmsmd colmsmd
500 500 113 wscolamd 150 202 150 —
750 750 496 wscolamd 601 — 684 —
30 30 30 352 colamd 399 352 1210 404
40 40 40 786 wscolamd 792 2340 958 —

Wide-separator orderings are not effective on small matrices. Of
the 45 small matrices in our test suite, ws orderings reduce flop counts
significantly (by more than 25%) over colamd on only 2 matrices (ex8
and ex9). We note, however, that even though wide separators do not
reduce work in the factorization small matrices, they rarely increase
work by a factor of 2 or more. Since wide-separator orderings do not
appear to be effective on small matrices, the rest of this section refers
only to large matrices.

Figures 3.1, 3.2, and 3.3 summarize the results with large matrices
from a test-matrix collection. A comparison of the best ws method
to the best non-ws method, shown in Figure 3.3, shows that ws or-
derings are effective. Ws and non-ws orderings produced similar flop
counts (within 25%) on 14 of the 33 matrices. Ws orderings reduced
flop counts by more than 25% on 12 matrices including 5 of the 10
largest. On the other hand, ws orderings increased flop counts on only
7 matrices, none of them in the top 10. The results with colmsmd
and wscolmsmd, shown in Figure 3.2, are even better: the overall
numbers are the same, but ws orderings reduce work significantly on
7 matrices in the top 10. The results with colamd and wscolamd
are a bit less favorable to WS orderings: they reduce work on 9 matri-
ces but increase work on 8 (discounting relative differences of less than
25%).

Nonzero counts in the LU factors and factorization times are gener-
ally correlated with flop counts; smaller flop counts usually imply fewer
nonzeros in the LU factors and shorter factorization times.

The improvement due to wide separators is often large. On the
largest matrix in our test suite, li, wide separators reduce flop counts

NESTED DISSECTION FOR NONSYMMETRIC LU 13

0.4

0.5

0.6

0.7

0.8

0.9 1

1.1

1.25

1.5

1.75 2

2.25

2.5 3

C
O

LM
S

M
D

wide−separator/minimum−degree ratio

cavity17
epb1
utm5940
lhr34
lhr71
lhr71c
shyy161
epb2
goodwin
epb3
raefsky2
raefsky1
graham1
garon2
ex40
rim
onetone1
olafu
venkat01
venkat50
venkat25
rma10
af23560
raefsky3
raefsky4
ex11
psmigr2
psmigr3
psmigr1
wang3
wang4
bbmat
li

T
otal T

im
e

F
actor T

im
e

F
lops

N
N

Z
 in L+

U

Figure 3.2. Wscolmsmd to colmsmd ratios.

and factorization time by about a factor of 2. The reduction in terms
of flop counts compared to non-ws methods is also highly significant
on wang3, raefsky1/2/3, rim, and especially epb3.

NESTED DISSECTION FOR NONSYMMETRIC LU 14

0.4

0.5

0.6

0.7

0.8

0.9 1

1.1

1.25

1.5

1.75 2

2.25

2.5 3

B
est of E

ach

wide−separator/minimum−degree ratio

cavity17
epb1
utm5940
lhr34
lhr71
lhr71c
shyy161
epb2
goodwin
epb3
raefsky2
raefsky1
graham1
garon2
ex40
rim
onetone1
olafu
venkat01
venkat50
venkat25
rma10
af23560
raefsky3
raefsky4
ex11
psmigr2
psmigr3
psmigr1
wang3
wang4
bbmat
li

T
otal T

im
e

F
actor T

im
e

F
lops

N
N

Z
 in L+

U

Figure 3.3. Best ws to best non-ws methods.

When ws orderings do poorly compared to non-ws methods, how-
ever, they sometimes do significantly poorer. On ex40, for example,
using wide separators slows down the factorization by a factor of about

NESTED DISSECTION FOR NONSYMMETRIC LU 15

2.5. In earlier experiments [2], in which we did not reduce the matri-
ces to block triangular form, we have found that on some of matrices,
especially the lhr and bayer matrices, the slowdowns are even more
dramatic. The experiments reported here show that reduction to block
triangular form resolves these problems.

Wide-separator orderings are somewhat more expensive to compute
than strict minimum-degree orderings. Figure 3.3 shows that when
the ordering times are taken into account, wide-separator orderings
speed up the total solution time by more than 25% in only 6 out of
the 33 matrices (but including 4 in the top 10). But there are no
cases where ws orderings significantly reduce the factorization time but
significantly increase the total times. Hence, ordering is a significant
cost in ws-based factorization, but not a dominant one. We also note
that even when a wide-separator ordering reduces the factorization
time but not total time, it typically also reduces the size of the factors,
which is often highly important (since it saves memory, reduces the
occurrence of paging, and speeds up subsequent triangular solves).

4. Conclusions And Discussion

Our main conclusion from this research is that hybrid wide-separator
minimum-degree column orderings are effective. Ws orderings are
clearly superior to minimum-degree orderings alone on large 2D and
3D meshes that require pivoting. On matrices obtained from a matrix
collection, ws orderings often substantially reduce the amount of time
and storage required to factor a sparse matrix with partial pivoting,
compared to column-minimum-degree orderings. They are more ex-
pensive to compute than minimum-degree orderings but the expense is
often more than paid off by reductions in time and storage during the
factorization stage.

Wide-separator orderings, like other column orderings based on fill
in the factors of AT A, are robust but pessimistic. They are robust in
the sense that they reduce worst-case fill. Optimistic column orderings
that attempt to reduce the fill in the factors of AT + A tend to reduce
fill better than pessimistic orderings when little or no pivoting occurs,
but can lead to catastrophic fill when pivoting does occur. Further
discussion of pessimistic versus optimistic orderings is beyond the scope
of this paper.

The combined results of this paper and of an earlier paper [2] show
that first permuting the matrix to block triangular form reduces the
wide-separator ordering times and improves the quality of the ordering
on some matrices.

NESTED DISSECTION FOR NONSYMMETRIC LU 16

This work can be extended in several directions. First, improving the
performance of the ordering phase itself would be significant. This can
be done by tuning the parameters of the ordering code (stopping the
recursive bisection on fairly large subgraphs) or by improving the wide-
separator algorithm itself. Second, one can try to improve the orderings
by trying to derive smaller wide-separators from a given conventional
separator. Third, one can interleave the ordering and factorization in
a way that widens separators only when necessary. That is, we would
find a conventional separator S in G, recursively order G1 and factor
the columns corresponding to G1. Once this phase is completed, we can
widen the separator by adding to S the neighbors of vertices that were
used as pivots. We now recursively order and factor the (shrunken) G2.

Acknowledgement. Thanks to John Gilbert for telling us about wide-
separator orderings. Thanks to John Gilbert and Bruce Hendrickson
for helpful comments on an early draft of the paper. Thanks to Cleve
Ashcraft for his encouragement, for numerous discussions concerning
this research, and for his prompt response to our questions concerning
spooles.

References

[1] Cleve Ashcraft and Roger Grimes. SPOOLES: An object-oriented sparse ma-
trix library. In Proceedings of the 9th SIAM Conference on Parallel Processing
for Scientific Computing, San-Antonio, Texas, 1999. 10 pages on CD-ROM.

[2] Igor Brainman and Sivan Toledo. Nested-dissection orderings for sparse LU
with partial pivoting. In Proceedings of the 2nd Conference on Numerical Anal-
ysis and Applications, Rousse, Bulgaria, June 2000. 8 pages, to appear in a
Springer LNCS volume.

[3] Igor Brainman and Sivan Toledo. Nested-dissection orderings for sparse LU
with partial pivoting. In Proceedings of the 10th SIAM Conference on Parallel
Processing for Scientific Computing, Norfolk, Virginia, March 2001. 10 pages
on CDROM.

[4] T. A. Davis and I. S. Duff. An unsymmetric-pattern multifrontal method for
sparse LU factorization. SIAM Journal on Matrix Analysis and Applications,
19:140–158, 1997.

[5] T. A. Davis and I. S. Duff. A combined unifrontal/multifrontal method for
unsymmetric sparse matrices. ACM Transactions on Mathematical Software,
25:1–19, 1999.

[6] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xiaoye S. Li, and
Joseph W. H. Liu. A supernodal approach to sparse partial pivoting. SIAM
Journal on Matrix Analysis and Applications, 20:720–755, 1999.

[7] A. George and J. W. H. Liu. The evolution of the minimum-degree ordering
algorithm. SIAM Review, 31:1–19, 1989.

[8] Alan George and Esmond Ng. On the complexity of sparse QR and LU factor-
ization on finite-element matrices. SIAM Journal on Scientific and Statistical
Computation, 9:849–861, 1988.

NESTED DISSECTION FOR NONSYMMETRIC LU 17

[9] John R. Gilbert. Graph Separator Theorems and Sparse Gaussian Elimination.
PhD thesis, Stanford University, 1980.

[10] John R. Gilbert. Predicting structure in sparse matrix computations. SIAM
Journal on Matrix Analysis and Applications, 15:62–79, 1994.

[11] John R. Gilbert and Robert Schreiber. Nested dissection with partial pivoting.
In Sparse Matrix Symposium 1982: Program and Abstracts, page 61, Fairfield
Glade, Tennessee, October 1982.

[12] S. I. Larimore. An approximate minimum degree column ordering algo-
rithm. Master’s thesis, Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, Florida, 1998. Also
available as CISE Tech Report TR-98-016 at ftp://ftp.cise.ufl.edu/cis/tech-
reports/tr98/tr98-016.ps.

[13] Xiaoye S. Li. Sparse Gaussian Elimination on High Performance Computers.
PhD thesis, Department of Computer Science, UC Berkeley, 1996.

[14] Alex Pothen and Chin-Ju Fan. Computing the block triangular form of a sparse
matrix. ACM Transactions on Mathematical Software, 16(4):303–324, Decem-
ber 1990.

School of Computer Science, Tel-Aviv University, Tel-Aviv 69978,
Israel

E-mail address: stoledo@tau.ac.il
URL: http://www.tau.ac.il/~stoledo

