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Abstract: Applications such as medical diagnosis, navigation, robotics, etc., require 3D images.
Recently, deep learning networks have been extensively applied to estimate depth. Depth pre-
diction from 2D images poses a problem that is both ill–posed and non–linear. Such networks
are computationally and time–wise expensive as they have dense configurations. Further, the net-
work performance depends on the trained model configuration, the loss functions used, and the
dataset applied for training. We propose a moderately dense encoder–decoder network based on
discrete wavelet decomposition and trainable coefficients (LL, LH, HL, HH). Our Nested Wavelet–Net
(NDWTN) preserves the high–frequency information that is otherwise lost during the downsampling
process in the encoder. Furthermore, we study the effect of activation functions, batch normalization,
convolution layers, skip, etc., in our models. The network is trained with NYU datasets. Our network
trains faster with good results.
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1. Introduction

Information on the depth is useful for applications related to satellite remote sensing,
navigating robots, autonomous landing, animal gesture identification, creation of 3D
models, etc. Active 3D imaging systems, such as LIDAR, RADAR, SONAR, etc., rely on
high–power sources and reflected echoes to build depth maps. Modern mobile platforms
prefer minimal resources, and, hence, there is an opportunity for simple 2D visible/infrared
cameras here. These cameras are simple, readily available, and use low power. Depth
estimation using single 2D images has attracted many research scholars and a trend exists
for this method.

Earlier methods of determining monocular depth were variations of detectors, such as
focus [1], defocus [2], and apertures [3]. These methods avoided correspondence issues as
with stereo methods but required a stack of images and had to address contrast (aperture
variation) or magnification (focus variation) issues. Others have recovered depth from a
single image using blur cue [4]. These methods have poor performance on homogeneous
surfaces and zones with poor contrast. Recently, CNN–based methods were successful in
training models to estimate high-resolution depth images from a single image [5]. These net-
works solve an ill–posed problem after training. The network model architecture consists of
customized building blocks, such as convolution layers, pooling functions, activation layers,
and expansion layers [6–8]. The state–of–the–art CNN use supervised or self–supervised
training strategies [6,9–13]. Supervised training [5] requires a labeled depth image for the
network to converge. Self–supervision uses stereo image pairs [14,15] monocular video and
exploits 3D geometry with image reconstruction or camera pose estimates to estimate depth
without labeled data. Recent researchers focused on transformers and attention mecha-
nisms to preserve details of depth image [16]. Authors have implemented innovative loss
functions with left–right disparity consistency loss [15], photo–metric loss [17], and sym-
metry loss [18]. Modern researchers also fused light fields information with photo–metric
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stereo [19] or used a pair of surface orientation maps (surface normals) from photo–metric
stereo [20–23] to derive accurate depth images.

Image information consists of global features, such as structure, texture, semantic
information, and local features, such as edges, noise, etc. After transforming an image into
the frequency domain, low frequencies represent the global features, while high frequencies
represent the local features. Edges are high–frequency components that represent contours,
local regions, and local features in an image [24]. Edges are created by neighboring
pixels with significantly different intensities. Networks apply averaging function during
pooling or down–sampling, reducing these high–frequency components and thus leading
to blurred and jagged edges. This degrades object definitions and merges features with the
background which results in errors during depth estimation [25].

Previous works have utilized edge–enhancement methods to improve the depth map
accuracy [26–28]. Alternately, Discrete Wavelet Transforms (DWT) convert spatial and contrast
domain images into the frequency domain and separate low–frequency and high–frequency
components. This happens along with down–sampling and avoids artifacts [29–32]. As
DWT provides three different high–frequency coefficients, training can enhance edges while
noise can be reduced by learning the required coefficients. The high–quality image can be
reconstructed with Inverse DWT (IWT) up–sampling after training.

Most networks for depth estimates are based on DenseNet, ResNet, VGG, etc., which
are time and computation intensive. Lately, UNet–like architectures have been used for
depth estimation [33,34] for faster learning and implementation in less computationally
intensive systems. The skip connections here inherently lead to boundary preservation
of depth maps. Earlier these were used for medical analysis and Semantic applications.
Ref. [35] used DWT–based down–sampling and up–sampling blocks in UNet–like models.

Our literature survey indicated that monocular depth estimation using lightweight
UNet–like networks is under–explored. As the inclusion of wavelets in a network is useful,
we propose a moderately dense network using DWT for depth estimates. The application
of DWT preserves the detailed features compared to the present UNet and UNet++. This
paper discusses our proposed network architecture, variants of this network, performance
with the public datasets, ablation studies, and results of experiments carried out. Our main
contributions are

• A nested DWT–based CNN architecture is proposed for monocular depth estimation,
• Dense Skip functions are implemented with attention function so as to improve the

learning of local features,
• Dense convolution blocks are incorporated for higher feature extraction and learning.

2. Wavelets

Wavelets are orthogonal and rapidly decaying functions of the Wavelet Transform
family and provide frequency and location information at lower scales. This 2D DWT
disintegrates an image into four components, a low–frequency coefficient map (LL) and
three high–frequency coefficient maps (LH, HL, and HH). These four coefficient maps have
half the resolution of an input image. For the image Y, the DWT is:

LL, LH, HL, HH = DWT(Y) (1)

DWT provides robustness to noise and improves accuracy in deep learning [36].
Another advantage of using DWT is the readily available high–frequency representation of
edges. Further, we can learn the coefficients of LH, HL, or HH components to improve the
features. The LL map can further be decomposed iteratively to get multi–scale coefficient
map sets as shown in Figure 1. In our experimentation, we use a scale of 1. Higher scales
are possible, however, we are replacing the pooling operation which reduces the feature
map size by two.
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Figure 1. DWT decomposes the image into low–resolution coefficient maps. Here, the scale is 2. We
use a scale of 1 to replace the down–sampling operation.

The DWT is an invertible transformer. The inverse DWT is IWT which converts the
four frequency components back to the original image (twice the resolution of the coefficient
maps) without any loss of feature definitions. Both Haar and Daubechies wavelets have
been used by researchers. We use the Daubechies wavelet with four vanishing moments
(db4) for all models. We also experiment with a Haar wavelet on the best model. Haar
wavelet has the simplest basis. We follow the DWT implementation from [37].

3. Nested DWT Net Architecture

Deep neural networks train models in a systematic way to extract required image
features. Most networks for depth estimates are based on DenseNet, ResNet, VGG, etc., and
are time and computationally intensive. Researchers are studying less complex networks for
small systems with faster learning. The simplest fully convolutional network is UNet [38]
developed primarily for abnormality localization in biomedical images. Here, in this
encoder–decoder model, the encoder has multiple blocks. Each block has a stack of
convolution operators with the last of the stack feeding a max pooling operator (down–
sampling). This sub–block extracts the image context and reduces the image resolution by
half. The decoder has an equal number of blocks. Each block has an up–sampling operation
that expands the size of feature maps by two. This passes through convolution operations.
Skip connections, taken from the corresponding encoder block, are fed to the decoder
block to enhance the output predictions. The decoder adds localization information to the
input context information. The final output has a similar resolution to the image taken for
prediction. UNet provides detailed segmentation maps using limited training datasets.

UNet was further improved by [39] by adding soft attention. Using attention, the
network learns to focus on relevant zones with low computational complexity. Attention to
the skip connections reduces redundant image features and improves prediction accuracy.
Residual UNet was developed [40] to overcome accuracy degradation and ease the training
of networks. Refs. [31,41–45] proposed wavelet transform to extract sharp edge and strong
object boundaries for image dehazing, enhancing the low–light image, reducing artifacts,
image segmentation, and depth map estimation. Here, they replace the down–sampling
layer with a DWT and the up–sampling layer with an IWT. Ref. [30] used multiple wavelet–
based transforms for down–sampling. Recently, Refs. [31,41,46] studied wavelet–based
loss function to improve structural details while [32] proposed learning sparse wavelet
coefficients to estimate depth maps. Researchers have also replaced the UNET encoder
backbone with dense pretrained image networks, such as ResNet, DenseNet [7], etc., and
tuned the decoder accordingly to estimate depth. However, these deep networks need
computationally intensive resources. UNET++ was defined by [47] and uses (a) convolution
operations on skip paths, (b) a series of nested skip paths (dense), and (c) deep supervision.
The prediction of this model was improved by reducing the gaps in encoder–decoder
feature maps at the sub–block levels. This also made learning easier. The published
performance is better compared to UNet and wide UNet. To date, UNET++ has been
mostly used for medical analysis and Semantic applications [48]. We realize that this is a
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less researched area for estimating depth maps. We study UNet and UNet++ to propose a
moderately dense network using Discrete wavelets to preserve depth map details.

Our network architecture, Nested Discrete Waveform Transform Net or NDWTN for
depth estimation uses an encoder, multi–scale decoders, and skip paths. We replace the
down–sampling and up–sampling layers with wavelet transforms. All the coefficients of
the wavelet transform (LL, LH, HL, HH) are trainable so as to preserve the details. We
also apply nested dense skip paths and convolution, such as UNET++. We also evaluate
variants of NDWTN by implementing (a) attention in the skip path, (b) residual blocks
in place of convolution blocks, (c) batch normalization layers, and (d) different activation
layers. Our network architecture is shown in Figure 2. The structure is similar to UNet++
and has a single encoder path and multiple decoder paths of different scales, all connected
through dense skip connections. These skip connections enable nested networks which
reduces the semantic gap and provides deep supervision of the output. NDWTN has four
scales having a UNet structure. The networks and scales are indicated with yellow, blue,
green, and pink colors. Each decoder has independent outputs which are connected to the
final output through skip connections.

Figure 2. Our network architecture (NDWTN).

An encoder down–sampling block is shown in Figure 3 and consists of a learnable
convolution block and a DWT layer. This block can have residual convolution as indicated
by ‘+’ sign. DWT layer downsamples the input. This block provides input to the skip layer
and the succeeding block. A typical convolution block includes convolution, activation, and
batch normalization layers. The activation function can be either ReLU (Rectified Linear
Unit) or Leaky ReLU. The number of each layer can be increased to improve network
density Figure 4. Convolution blocks can be replaced with residual convolution blocks.
Residual blocks have additional skip paths. These skip paths are taken from the output of
the first convolution operator in the block and then added to the final output of the block.
A typical residual block is shown in Figure 5. Each down–sampling block feeds the next
block and the skip paths. There are five down–sampling blocks.

A decoder up–sampling block is shown in Figure 6 and consists of an IWT layer for up–
sampling and a learnable convolution block. The convolution block is similar to the encoder
and can be replaced with a residual block. Two inputs are received (a) from the preceding
block and (b) from the skip function. The input from the skip layer is concatenated. The
number of convolutions, batch normalization, and activation layers in the convolution
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block is variable. A typical full decoder block is shown in Figure 7. Each up–sampling
block feeds the next block. There are five up–sampling blocks.

The supervised training attempts to predict pixel–wise depth from models by mini-
mizing the regression loss with the help of ground truth images. In the network, the down–
sampling and convolution layers of the encoder reduce the information details of these
input images. The feature maps arising from initial encoders have higher resolution but
lack global information when compared with the final encoders. Our encoder–to–decoder
skip connections improve these detail preservation by concatenating high–resolution local
features from initial encoders with the decoders global contextual features. Each skip
connection responds to the encoder features energy using a gating signal to generate an
attention grid that preserves the higher local features.

Figure 3. Structure of down–sampling block.

Figure 4. Down–sampling block details: The stack of convolution operators and the sequence of
Batch–Norm and activation layers are customized.
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Figure 5. Residual convolution block. The stack of convolution operators and the sequence of
Batch–Norm and activation layers are customized.

Figure 6. The up–sampling block provides IWT and convolution operations. Information from the
skip path ‘a’ is also concatenated.
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Figure 7. Up–sampling block details: The stack of convolution operators and the sequence of
Batch–Norm and activation layers are customized. The convolution stack can be replaced with a
residual block.

Typically, the skip layer feeds the encoder output to the decoder. The skip function
improves the feature details while up–sampling in decoders. The skip paths go to every
decoder horizontally (same scale). This provides nested dense skip functions totaling 10.
We also add an attention gate inside the skip layer. This skip layer takes two inputs, one
from the preceding encoder block (higher scale) and one from the horizontal encoder block
(same scale), and provides input to the attention gate. A strided–convolution operation on
the lower input lets us match the feature dimensions. Summing these two vectors results
in higher aligned weights and small unaligned weights. The resultant vector is fed to a
ReLU function followed by a convolution to reduce the feature dimensions to 1. This vector
is finally scaled within [0, 1] using the Sigmoid activation function. This stage gives the
attention coefficients. The attention coefficients are upsampled to the dimensions of the
lower scale and multiplied with the lower scale input. This input is given to the decoder
block. Figure 8 represents the attention block.

Figure 8. Skip layer with attention. This layer takes two inputs from encoder blocks of different
scales, ‘g’ from the higher scale or input to the encoder and ‘x’ from the lower scale or output of the
encoder, and feeds the decoder block with attention vectors ‘a’.
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Finally, the decoder output layer is represented by Figure 9. The block is the same
for all four decoder outputs. The block has the Sigmoid function as the activation layer
to provide the final prediction statistics. Though we can use the scaled four outputs
independently, we feed three outputs to the final fourth output via nested skip layers to
have the best prediction accuracy. We made variants of our network based on convolution
blocks, residual convolution blocks, and attention features. These architecture variants are
designated as:

• NDWT: Basic NDWTN;
• NADWT: NDWTN with attention on skip paths;
• NRDWT: NDWTN with residual blocks;
• NARDWT: NRDWT with attention on skip paths.

Figure 9. Output block with Sigmoid activation layer.

Table 1 compares our model with published models. The trainable parameters in
our models are higher than most UNet types. The non–trainable parameters are less than
DenseNet backbone UNet [7].

Table 1. Parameters and models (in millions).

Parms DWT ADWT UNET++ DenseNet [7] AdaBins [16] NDWTN

Total 13.39 14.88 13.23 53.99 78.0 42.82
Trainable 13.39 14.87 13.22 53.97 – 42.66

The input RGB image resolution used is 240 × 320 × 3 pixels and the labeled data
resolution is 240 × 320 pixels. The estimated depth map resolution is also 240 × 320 pixels.
These dimensions are arbitrarily chosen.

4. Loss Function

A loss function reduces the training loss and estimates depths comparable to the
reference labeled data by converging the model, through gradient descent, during training.
Hence, an optimum formulation is crucial for good performance and faster training. The
convergence is helped by error functions such as the Mean Absolute Error (MAE) or the
L1 loss function. This loss is robust to outliers as it has a large and constant gradient.
The orange curve in Figure 10 shows the simulated loss. The pixel–wise error for MAE is
given as:

Lpix =
∑n

i=1 |Yi −Ypredi
|

N
(2)

where the ground truth data (labeled data) pixel is Yi, the estimated depth pixel is Ypredi
,

and the number of pixels in the depth map totals to N.
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MAE loss is linear and offers equal weight for both lower and higher residual values.
This reduces overall prediction and hence, MAE is not good for learning. The reversed
Huber loss function (BerHu Loss) [6,9] is a better alternative. This provides higher weight
to pixels with higher residuals (mean square error) and also to pixels with smaller residuals
similar to MAE (Figure 10, dark green curve). The transition between mean square error
(MSE) and MAE is defined by a threshold c. In a training batch, c is 20% of the maximum
error. The BerHu Loss is given as:

Lpix =


|Ypredi

−Yi| |Ypredi
−Yi| ≤ c,

((Ypredi
−Yi)

2 + c2)/2c |Ypredi
−Yi| > c

c = 0.2maxi(|Ypredi
−Yi|)}

(3)

Figure 10. A comparison between MAE, MSE, and BerHu functions.

The depth map needs parameters to define the image structure and object features
other than pixel–wise errors. This information comes from interdependent neighboring
pixels [49]. The image structure is constructed by the Structural Similarity Index (SSIM).
The perceptual difference is indicated by SSIM loss between images. Identical images score
the lowest. The loss function is:

LSSIM = 1− SSIM(Yi, Ypredi
) (4)

when SSIM loss is 0, the two images have the same structure. Usually, a weight of 0.5 is
applied to this loss to weaken the penalization.

The features and edges in an image are represented by high–frequency structure
components. Edge functions make the depth map sharper and more detailed. Gradient
edge loss functions are based on the maximum of the derivatives. However, this function
sometime leads to double edges as in lines. The derivative will give one positive and one
negative peak in such cases. The intensity gradient of an image Y is given in the horizontal
and vertical directions as:

∂Y
∂h

= Y(h + 1, v)−Y(h− 1, v),

∂Y
∂v

= Y(h, v + 1)−Y(h, v− 1),

Ledges = mean(|
∂Ypred

∂v
− ∂Y

∂v
|+ |

∂Ypred

∂h
− ∂Y

∂h
|)

(5)

We used a comprehensive loss function formulated on the above loss functions. These
function outputs are further weighted with hyper–parameters to control the penalization.
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Our loss function comprises pixel–wise loss (MAE or BerHu), structural loss (SSIM), and
edge loss (gradient). The total loss is:

Ltotal(Yi, Ypredi
) = λ1Lpix(Yi, Ypredi

) + λ2LSSIM(Yi, Ypredi
)

+ λ3Ledges(Yi, Ypredi
)

(6)

5. Datasets

The NYU dataset [50] provides registered RGB–depth image pairs of 640 × 480 pixels
resolution. The dataset contains diverse 464 indoor scenes. The depth images are obtained
from a Kinect 3D camera which is processed (in painted) to fill in the missing information.
Hence, the pixel–level depth information is semi–synthetic. These semi–synthetic depth
maps have a maximum depth range of 10 m. The dataset is popular for semantic and
depth–related studies and is, hence, suitable for comparing performance. This dataset is
divided into three parts and used for training models, validating loss, and finally evaluating
our models.

6. Standard Performance Metrics

Performance evaluation and comparison of our trained models are based on several
prior works [5,7,51,52]. These are
Root Mean Squared Error (RMS):

RMS =

√
1
N ∑

i∈N
(Yi −Ypredi

)2 (7)

Average relative error (REL):

REL =
1
N ∑

i∈N

|Yi −Ypredi
|

Y
(8)

Logarithm error (log10):

log10 =
1
N ∑

i∈N
|log10(Yi)− log10(Ypredi

)| (9)

The pixel–level percentage having a relative error below the defined threshold (1.25,
1.252, 1.253) is defined as threshold accuracy (δi). It is based on the maximum ratio of

labeled data pixels and predicted pixels [51]. This is represented as Yi% s.t. max(
Ypredi

Yi
, Yi
Ypredi

)

= δ < th for th = 1.25, 1.252, 1.253; and Y is the average value of pixels in labeled data.
Smaller values of RMS, REL, log10 error are the goals here while higher values of δ

below the defined threshold are a good indicator.

7. Experiments and Ablation Studies

We train the model on Google Co Laboratory Pro. This gave us a faster GPU (T4,
P100/V100) with 25 GB GPU memory. The training was stopped after 10 epochs so as
to compare performances. Batch sizes 4 and 8 were used to meet the allocated memory
limits. The learning rate was 0.0001. The learning rate exponentially decayed for successive
epochs. The filter weights were randomly initialized. The loss optimizer was ADAM.
The Batch Normalization layer in our network reduces internal Covariate Shift, speeds
up training, and reduces overfitting. This layer has two learnable parameters (β and γ)
and two non–learnable parameters (Mean and Variance Moving Averages). The original
paper [53] proposes this layer before the non–linear activation function. However, many
researchers advocated better results when this layer is placed after the activation function.
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Hence, as part of the ablation study, this aspect will be verified. Convolutional layers extract
features from input images through learnable filter parameters and remove redundant
information by weight sharing. Higher convolution layers lead to an exclusive compressed
feature map of the image which ultimately provides informative decisions. This layer also
consumes most of the training time. Optimal use of convolution layers is thereby necessary.
We experiment with the density of convolution layers in our network architecture and
study the performance. The activation layer filters the information (neuron) transmitted to
the succeeding layer by a non–linear function. These layers activate the selected neurons
by increasing their weight. ReLU (Rectified Linear Unit) is computationally efficient for
positive values and allows backpropagation. However, negative input values prevent
backpropagation and learning. The Leaky ReLU (LR) activation overcomes this problem
by having a small positive slope in the negative zone. ELU (Exponential Linear Units) are
better than these two activation functions, but are computationally intensive and, hence,
not used. In practice, there is no evidence that Leaky ReLU is always better than ReLU.
Hence, we experiment to compare the performance between ReLU and LR. We developed
many models by changing the blocks of the architecture of our network to study the impact
of the various blocks on the overall performance of (a) the activation layer ReLU and
Leaky ReLU; (b) the batch normalization density; (c) the sequence of batch normalization
and activation layer: before or after; and (d) the convolution layers in the stack. We also
experimented with different loss functions for training. The model implementation and
training are in the following combinations:

1. NDWT (3C, 3R, 3Bs) + Bs
2. NADWT (3C, 3LR, 1Bs)
3. NADWT (3C, 3LR, 1Bs) + Bs
4. NADWT (3C, 3Bs, 3R) + Bs
5. NADWT (3C, 3R, 3Bs) + Bs
6. NRDWT (3C, 3R, 3Bs) + Bs
7. NRDWT (3C, 3Bs, 3R) + Bs
8. NARDWT(3C, 3LR, 3Bs) + Bs
9. NARDWT (3C, 3R, 3Bs) + Bs
10. NARDWT (3C, 3Bs, 3LR) + Bs
11. NARDWT (3C, 3Bs, 3LR)
12. NARDWT (3C, 3LR)
13. NARDWT (4C, 4Bs, 4LR) + 1Bs

Where, C: Convolution LAYER, R: ReLU, LR: Leaky ReLU, Bs: Batch Normalization, and
NUMBER: Number of LAYERS implemented.

Here, NDWT is our basic model, which implements multistage networks with skip
layers. There are five down–sampling blocks (block D in Figure 4) with one input and two
outputs. These outputs cater to the lower D block and skip layer (Figure 2). The sequence
of the activation layer and bath normalization layer is interchangeable in our studies. The
DWT layer replaces the Maxpool layer in this network. These blocks make the encoder.
The upsampler block (U as in Figure 7) is similar to the D block with the exception of the
DWT layer. An IWT layer at the output upscales the estimated image. There are 10 such
blocks which for four decoder chains. The last decoder U15 takes all outputs of decoders
via skip paths to provide the final estimate. NADWT augments our base with attention
gates (Figure 8) in all the skip functions, which makes the training focus on image zones of
higher energy. In the NRDWT model, we replace the convolution with residual convolution
as in Figure 5 for encoders and decoders. This model augmented with attention gates gives
NARDWT model.

The NYU dataset is used by most researchers and hence we used this for bench–
marking. The trained model was evaluated with performance metrics as given by [5,7].
This gives an easy and error–free comparison method. The evaluation dataset (NYU–test)
is used. We experiment with the hyper–parameters λ1 to λ3 and empirically find that the
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optimum weights are λ1 = 0.5, λ2 = 1 and λ3 = 0.1. We also modified the loss function and
replaced the MAE with BerHu.

The trained models were tested on some complex indoor images having good depths
and variation in contrasts. The performances of our models are plotted in Figures 11–13.
The training loss and training accuracy are given in Figures 14 and 15. The validation loss
and validation accuracy are given in Figures 16 and 17.

Figure 11. Depth map prediction after training, a visual comparison. A: Input image, B: Ground
Truth, C: UNETP, 1: NDWT (3C, 3R, 3Bs) + Bs, 2: NADWT (3C, 3LR, 1Bs), 3: NADWT (3C, 3LR,
1Bs) + Bs, 4: NADWT (3C, 3Bs, 3R) + Bs, 5: NADWT (3C, 3R, 3Bs) + Bs, 6: NRDWT (3C, 3R, 3Bs) + Bs,
7: NRDWT (3C, 3Bs, 3R) + Bs, 8: NARDWT(3C, 3LR, 3Bs) + Bs, 9: NARDWT (3C, 3R, 3Bs) + Bs,
10: NARDWT (3C, 3Bs, 3LR) + Bs, 11: NARDWT (3C, 3Bs, 3LR), 12: NARDWT (3C, 3LR),
13: NARDWT (4C, 4Bs, 4LR) + 1Bs).

In Figure 11 we take UNET++ as the base for work (Figure 11C). The details of feature
depths are barely visible. Our basic NDWT (Figure 11(1)) has a configuration of three
convolution layers, three ReLU layers, and post–batch normalization. This model provides
better feature detailing showing that edges and high–frequency features are propagated
from early encoder features to the estimated features. This model is augmented with
attention gate as NADWT (3C, 3LR, 1Bs) NADWT (3C, 3LR, 1Bs) + Bs, NADWT (3C, 3Bs,
3R) + Bs, and NADWT (3C, 3R, 3Bs) + Bs (Figure 11(2–5)). An attention grid generated
in these models improves the areas of relevance with higher weight and brings out the
object boundaries (Figure 11(2)). LR activation with batch normalization layers only at the
final stages improved the depth dynamic range (Figure 11(3)). This model gives the best
performance. The same effect is seen with batch normalization layers before each activation
layer (Figure 11(4)). Batch normalization after each activation layer reduces the depth range
(Figure 11(5)) as the activation function has pruned the lower value neurons. NDWT with
residual convolution further improves the object details (Figure 11(6,7) left corner objects)
but blurs the edges lightly. Here, again, batch normalization before the activation layer
is better. An attention gate is also added to NRDWT models (Figure 11(8–13)). Here, a
model with R activation layers makes the estimation better when compared with ground
truth. A reduction in the batch norm before the final output shows a slight loss of detail of
the sofa arm (Figure 11(11)). Removing all batch norm layers leads to the degradation of
definitions in the estimated image (Figure 11(12)). We increased the convolution layers in
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one model (Figure 11(13)). The near objects are stronger but definitions at the end of the
room are lost. Figure 12 plots the performance of training loss of each of the 13 models.
We also show the performance of UNet with DWT here for comparison. NADWT (3C,
3LR, 1Bs) + Bs has the lowest loss and correlates with the depth image in Figure 11(3).
The model evaluation accuracy performance (Figure 13) also supports this. Figures 14–17
show the model training loss performance, accuracy performances, and validation accuracy
performances. The curves are close, indicating that the models are well–trained. The jagged
lines are indications of over–fit or under–fit. The training is fast and reaches near saturation
within 10 epochs.

Figure 12. Model loss performance. The best is DWT + Attention followed by Residual + Attention
architecture.

Figure 13. Model evaluation accuracy performance.



Sensors 2023, 23, 3066 14 of 20

Figure 14. Model training loss performance.

Figure 15. Model training accuracy performance.
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Figure 16. Model validation loss performance.

Figure 17. Model validation accuracy performance.

8. Results and Observation

Figure 11 shows the visual quality of models after training. We summarize our
observations below:

• Batch normalization: improves the depth range and loss. Batch normalization after
the activation layer degrades loss. Additional computations and trainable parameters.

• Activation: among activation layers, the LR activation function offered higher perfor-
mance. Training and validation performance is better with ReLU.

• Attention: gives higher training, validation, and evaluation scores.
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• Residual: gives lower training and validation accuracy but the evaluation score is
moderately better. Requires more training.

• Convolution: higher convolution layers do not improve performance, but visually
give better representation.

• Loss function: replacing MAE loss with BerHu loss did not show improvement.

The overall best loss performance is from the NDWT + Attention (NADWT) network
followed by the NDWT model and third the Residual (NRDWT) model (Figures 12 and 13). It
is also observed that the NARDWT models need more training iterations. The best training
accuracy is from the NDWT model followed by the NARDWT model. The validation
accuracy performance plots (Figure 17) show that NARDWT models tend to saturate faster.
We verified the performance of our model–3 with Haar wavelets instead of db4 wavelets.
There seems to be a minor improvement in performance as tabulated in Table 2.

The performance parameters are tabulated in Table 3. Our models are superior to
published DWT–type models and UNET++ for depth prediction. Our network has better
scores for all six types of performance metrics. All our model variants performed better as
seen in Figures 12 and 13. The primary improvement is due to higher convolution layers.
We experimented with low convolution layer density NDWT having two layers and NDWT
with three layers. The performance was better with three layers. This was the optimal
number as blocks with four convolution layers had a lower performance. The performance
further improved with the inclusion of the attention function. Attention enables the
learning of finer structures leading to performance improvements. Regularization with
bath normalization before the activation layer corrects the co–variance shift of learned
weights. This adds to the improvement. We also compared our results with a UNET based
on a DenseNet backbone encoder. This model performed higher as (1) it used pretrained
models and weights (2) it was additionally trained on a more extensive set of improved
image sets (50,000) and (3) The trainable parameters are very large. We trained our model
from scratch on less than 400 image sets from NYU.

The training time increases with convolution density, batch normalization layers and
density, attention feature, and residual convolution blocks. The NARDWT models took
approximately 17 mins to train with the NYU dataset per epoch using A100, 40 GB GPU
(premium GPU). The training increased to about 97 mins for T4 GPU (standard GPU).
This was the same with the Haar wavelet–based model. Our light network trains faster
compared to UNET with a DenseNet backbone which, in our experimentation, took about
150 min per epoch.

Table 2. Performance of model with different wavelets.

Models δ1 ↑ δ2 ↑ δ3 ↑ REL↓ RMSE↓ log10↓

db4 0.33 0.61 0.81 0.39 0.16 0.18
Harr 0.34 0.62 0.82 0.39 0.15 0.17

Table 3. Comparison of model performances.

Models δ1 ↑ δ2 ↑ δ3 ↑ REL↓ RMSE↓ log10↓ Year

DWT 0.27 0.52 0.73 0.54 1.76 0.21 2023 *
ADWT 0.27 0.51 0.70 0.80 1.57 0.23 2023 *
UNET++ 0.29 0.55 0.75 0.66 1.69 0.21 2023 *
DenseNet [7] 0.85 0.97 0.99 0.12 0.52 0.05 2018
DORN [54] 0.83 0.97 0.99 0.12 0.51 0.05 2018
P3Depth [55] 0.898 0.98 0.996 0.1 0.36 0.04 2022
NewCRFs [56] 0.92 0.99 0.998 0.095 0.33 0.04 2022
ZoeD–M12–N [57] 0.96 0.995 0.999 0.075 0.27 0.03 2023
NADWT(3) 0.33 0.61 0.81 0.39 0.16 0.18 2023

* Trained with NYU dataset.
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9. Conclusions

We developed a DWT–based dense network model that successfully predicts depth
from an image. Our network learns to estimate the wavelet coefficients through loss
functions consisting of MAE, SSIM, and gradient functions. We experiment with various
variants of our network and demonstrate that the performance is better than UNet and
UNet++. The network can train fast with NYU datasets, and the average accuracy reaches
more than 92% within 10 epochs. The training time of 17 min per epoch is faster than other
models based on dense networks. We completed ablation studies with batch normalization
and activation types and infer that evaluation performance is best with Leaky ReLU
activation and dense batch normalization. The activation layer before batch normalization
provided the best–trained models. We studied the density of convolution layers in our
models. More convolution layers in a block increase the trainable feature map density
and hence higher performance. Higher–density convolution layers yielded better visual
results also. The speed of training is an advantage of our model. This speed is primarily
due to lower trainable feature maps compared to dense networks like DenseNet, RESNET,
etc. The lower feature maps have the disadvantage of lower accuracy. It is observed that
estimations are poor for smooth surfaces at the far end of the scene. These aspects require
more analysis and study. Further, the network performance for the outdoors will be studied
using the KITTI dataset in our subsequent versions of this work. The scope for future
studies is increased blocks in the network with higher trainable parameters and pruning of
the non–performing weights in these feature maps. This will be a trade–off study for speed
and performance.
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Abbreviations
The following abbreviations are used in this manuscript:

2D Two dimensional
3D Three dimensional
ADAM Adaptive Moment Estimation
BerHu Reversed Huber loss
CNN Convolution Neural Network
DWT Discrete wavelet transforms
GPU Graphic processing unit
IWT Inverse DWT
LIDAR LIght Detection and Ranging
LR Leaky ReLU
MAE Mean Absolute Error
MSE Mean square error
mins Minutes
NDWTN Nested Discrete Waveform Transform Net
NYU New York University
RADAR Radio Detection and Ranging
ReLU Rectified Linear Unit
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RGB Red, Green and Blue
RMSE Root mean square error
SONAR Sound Navigation and Ranging
SSIM Structural Similarity Index
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Choroś, K., Kopel, M., Kukla, E., Siemiński, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 372–381.

7. Alhashim, I.; Wonka, P. High Quality Monocular Depth Estimation via Transfer Learning. arXiv 2018, arXiv:1812.11941.
8. Shivakumar, S.S.; Nguyen, T.; Miller, I.D.; Chen, S.W.; Kumar, V.; Taylor, C.J. DFuseNet: Deep Fusion of RGB and Sparse Depth

Information for Image Guided Dense Depth Completion. arXiv 2019, arXiv:1902.00761.
9. Laina, I.; Rupprecht, C.; Belagiannis, V.; Tombari, F.; Navab, N. Deeper Depth Prediction with Fully Convolutional Residual

Networks. arXiv 2016, arXiv:1606.00373.
10. Zhao, C.; Sun, Q.; Zhang, C.; Tang, Y.; Qian, F. Monocular depth estimation based on deep learning: An overview. Sci. China

Technol. Sci. 2020, 63, 1612–1627. [CrossRef]
11. He, L.; Wang, G.; Hu, Z. Learning Depth From Single Images With Deep Neural Network Embedding Focal Length. IEEE Trans.

Image Process. 2018, 27, 4676–4689. [CrossRef]
12. Chi, J.; Gao, J.; Qi, L.; Zhang, S.; Dong, J.; Yu, H. Depth estimation of a single RGB image with semi–supervised two–stage

regression. In Proceedings of the 5th International Conference on Communication and Information Processing, Chongqing,
China, 15–17 November 2019; pp. 97–102. [CrossRef]

13. Masoumian, A.; Rashwan, H.A.; Cristiano, J.; Asif, M.S.; Puig, D. Monocular Depth Estimation Using Deep Learning: A Review.
Sensors 2022, 22, 5353. [CrossRef]

14. Zhu, J.; Liu, L.; Liu, Y.; Li, W.; Wen, F.; Zhang, H. FG–Depth: Flow–Guided Unsupervised Monocular Depth Estimation. arXiv
2023, arXiv:2301.08414.

15. Godard, C.; Mac Aodha, O.; Brostow, G.J. Unsupervised Monocular Depth Estimation with Left–Right Consistency. arXiv 2016,
arXiv:1609.03677. https://doi.org/10.48550/ARXIV.1609.03677.

16. Bhat, S.F.; Alhashim, I.; Wonka, P. AdaBins: Depth Estimation Using Adaptive Bins. In Proceedings of the 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 19–25 June 2021. [CrossRef]

17. Li, B.; Zhang, H.; Wang, Z.; Liu, C.; Yan, H.; Hu, L. Unsupervised monocular depth estimation with aggregating image features
and wavelet SSIM (Structural SIMilarity) loss. Intell. Robot. 2021, 1, 84–98. [CrossRef]

18. Zhao, S.; Fu, H.; Gong, M.; Tao, D. Geometry–Aware Symmetric Domain Adaptation for Monocular Depth Estimation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019.

19. Antensteiner, D.; Štolc, S.; Huber-Mörk, R. Depth Estimation with Light Field and Photometric Stereo Data Using Energy
Minimization. In Proceedings of the Progress in Pattern Recognition, Image Analysis, Computer Vision and Applications (CIARP
2016), Lima, Peru, 8–11 November 2016; Beltrán-Castañón, C., Nyström, I., Famili, F., Eds.; Springer International Publishing:
Cham, Switzerland, 2017; pp. 175–183.

20. Woodham, R.J. Photometric Method For Determining Surface Orientation From Multiple Images. Opt. Eng. 1980, 19, 191139.
[CrossRef]

21. Chen, G.; Han, K.; Wong, K.Y.K. PS–FCN: A Flexible Learning Framework for Photometric Stereo. arXiv 2018, arXiv:1807.08696.
https://doi.org/10.48550/ARXIV.1807.08696.

22. Chen, G.; Han, K.; Shi, B.; Matsushita, Y.; Wong, K.Y.K. Deep Photometric Stereo for Non–Lambertian Surfaces. arXiv 2020,
arXiv:2007.13145. https://doi.org/10.48550/ARXIV.2007.13145.

23. Ju, Y.; Jian, M.; Guo, S.; Wang, Y.; Zhou, H.; Dong, J. Incorporating Lambertian Priors Into Surface Normals Measurement. IEEE
Trans. Instrum. Meas. 2021, 70, 1–13. [CrossRef]

24. Van Dijk, T.; de Croon, G.C.H.E. How do neural networks see depth in single images? arXiv 2019, arXiv:1905.07005.
25. Yue, H.; Zhang, J.; Wu, X.; Wang, J.; Chen, W. Edge Enhancement in Monocular Depth Prediction. In Proceedings of the 2020 15th

IEEE Conference on Industrial Electronics and Applications (ICIEA), Kristiansand, Norway, 9–13 November 2020; pp. 1594–1599.
[CrossRef]

http://doi.org/10.1109/34.192482
http://dx.doi.org/10.1117/12.629611
http://dx.doi.org/10.1364/OE.21.023116
http://dx.doi.org/10.1007/s11431-020-1582-8
http://dx.doi.org/10.1109/tip.2018.2832296
http://dx.doi.org/10.1145/3369985.3370004
http://dx.doi.org/10.3390/s22145353
https://doi.org/10.48550/ARXIV.1609.03677
http://dx.doi.org/10.1109/cvpr46437.2021.00400
http://dx.doi.org/10.20517/ir.2021.06
http://dx.doi.org/10.1117/12.7972479
https://doi.org/10.48550/ARXIV.1807.08696
https://doi.org/10.48550/ARXIV.2007.13145
http://dx.doi.org/10.1109/TIM.2021.3096282
http://dx.doi.org/10.1109/ICIEA48937.2020.9248336


Sensors 2023, 23, 3066 19 of 20

26. Xie, J.; Feris, R.S.; Sun, M.T. Edge–Guided Single Depth Image Super Resolution. IEEE Trans. Image Process. 2016, 25, 428–438.
[CrossRef]

27. Zhang, C.; Tian, Y. Edge Enhanced Depth Motion Map for Dynamic Hand Gesture Recognition. In Proceedings of the 2013
IEEE Conference on Computer Vision and Pattern Recognition Workshops, Portland, OR, USA, 23–28 June 2013; pp. 500–505.
[CrossRef]

28. Paul, S.; Jhamb, B.; Mishra, D.; Kumar, M.S. Edge loss functions for deep–learning depth–map. Mach. Learn. Appl. 2022, 7, 100218.
[CrossRef]

29. Wolter, M.; Garcke, J. Adaptive wavelet pooling for convolutional neural networks. Proc. Mach. Learn. Res. 2021, 130, 1936–1944.
30. Ferrà, A.; Aguilar, E.; Radeva, P. Multiple Wavelet Pooling for CNNs. In Proceedings of the Computer Vision–ECCV 2018

Workshops, Munich, Germany, 8–14 September 2018; Leal-Taixé, L., Roth, S., Eds.; Springer International Publishing: Cham,
Switzerland, 2019; pp. 671–675.

31. Yang, H.H.; Yang, C.H.H.; James Tsai, Y.C. Y–Net: Multi–Scale Feature Aggregation Network With Wavelet Structure Similarity
Loss Function For Single Image Dehazing. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 2628–2632. [CrossRef]

32. Ramamonjisoa, M.; Firman, M.; Watson, J.; Lepetit, V.; Turmukhambetov, D. Single Image Depth Estimation using Wavelet
Decomposition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville,
TN, USA, 20–25 June 2021.

33. Yu, B.; Wu, J.; Islam, M.J. UDepth: Fast Monocular Depth Estimation for Visually–guided Underwater Robots. In Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023.

34. Zioulis, N.; Albanis, G.; Drakoulis, P.; Alvarez, F.; Zarpalas, D.; Daras, P. Hybrid Skip: A Biologically Inspired Skip Connection
for the UNet Architecture. IEEE Access 2022, 10, 53928–53939. [CrossRef]

35. Luo, C.; Li, Y.; Lin, K.; Chen, G.; Lee, S.J.; Choi, J.; Yoo, Y.F.; Polley, M.O. Wavelet Synthesis Net for Disparity Estimation to
Synthesize DSLR Calibre Bokeh Effect on Smartphones. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020; pp. 2404–2412. [CrossRef]

36. Li, Q.; Shen, L.; Guo, S.; Lai, Z. Wavelet Integrated CNNs for Noise–Robust Image Classification. arXiv 2020, arXiv:2005.03337.
https://doi.org/10.48550/ARXIV.2005.03337.

37. Liu, P.; Zhang, H.; Lian, W.; Zuo, W. Multi-level Wavelet Convolutional Neural Networks. IEEE Access 2019, 7, 74973–74985.
[CrossRef]

38. Olaf Ronneberger, P.F.; Brox, T. U–Net: Convolutional Networks for Biomedical Image Segmentation. In Proceedings of the
Medical Image Computing and Computer–Assisted Intervention, MICCAI 2015, Munich, Germany, 5–9 October 2015; Springer
International Publishing: Cham, Switzerland, 2015; pp. 234–241. [CrossRef]

39. Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al.
Attention U–Net: Learning Where to Look for the Pancreas. arXiv 2018, arXiv:1804.03999.

40. Zhang, Z.; Liu, Q.; Wang, Y. Road Extraction by Deep Residual U–Net. IEEE Geosci. Remote Sens. Lett. 2018, 15, 749–753.
[CrossRef]

41. Yang, H.H.; Fu, Y. Wavelet U–Net and the Chromatic Adaptation Transform for Single Image Dehazing. In Proceedings of the
2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; pp. 2736–2740. [CrossRef]

42. Wang, Y.; Zhu, X.; Zhao, Y.; Wang, P.; Ma, J. Enhancement of Low–Light Image Based on Wavelet U–Net. J. Phys. Conf. Ser. 2019,
1345, 022030. [CrossRef]

43. Li, Y.; Wang, Y.; Leng, T.; Zhijie, W. Wavelet U–Net for Medical Image Segmentation. In Proceedings of the Artificial Neural
Networks and Machine Learning—ICANN 2020: 29th International Conference on Artificial Neural Networks, Bratislava,
Slovakia, 15–18 September 2020; Part I; Springer: Berlin/Heidelberg, Germany, 2020; pp. 800–810. [CrossRef]

44. Chuter, J.L.; Boullanger, G.B.; Saez, M.N. U–N. o . 1 T: A U–Net exploration, in Depth, 2018. Stanford University CS229 Projects,
Fall 2018 Edition. Available online: https://cs229.stanford.edu/proj2018/report/34.pdf (accessed on 9 March 2023).

45. Sharma, M.; Sharma, A.; Tushar, K.R.; Panneer, A. A Novel 3D–Unet Deep Learning Framework Based on High–Dimensional
Bilateral Grid for Edge Consistent Single Image Depth Estimation. In Proceedings of the 2020 International Conference on 3D
Immersion (IC3D), Brussels, Belgium, 15 December 2020; pp. 1–8. [CrossRef]

46. Liu, P.; Zhang, Z.; Meng, Z.; Gao, N. Monocular Depth Estimation with Joint Attention Feature Distillation and Wavelet–Based
Loss Function. Sensors 2021, 21, 54. [CrossRef]

47. Zhou, Z.; Siddiquee, M.M.R.; Tajbakhsh, N.; Liang, J. UNet++: A Nested U–Net Architecture for Medical Image Segmentation.
arXiv 2018, arXiv:1807.10165.

48. Peng, D.; Zhang, Y.; Guan, H. End–to–End Change Detection for High Resolution Satellite Images Using Improved UNet++.
Remote. Sens. 2019, 11, 1382. [CrossRef]

49. Gur, S.; Wolf, L. Single Image Depth Estimation Trained via Depth from Defocus Cues. arXiv 2020, arXiv:2001.05036.
50. Silberman, N.; Hoiem, D.; Kohli, P.; Fergus, R. Indoor Segmentation and Support Inference from RGBD Images. In Proceedings of

the Computer Vision—ECCV 2012, Florence, Italy, 7–13 October 2012; Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C.,
Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 746–760.

http://dx.doi.org/10.1109/TIP.2015.2501749
http://dx.doi.org/10.1109/CVPRW.2013.80
http://dx.doi.org/10.1016/j.mlwa.2021.100218
http://dx.doi.org/10.1109/ICASSP40776.2020.9053920
http://dx.doi.org/10.1109/ACCESS.2022.3175864
http://dx.doi.org/10.1109/CVPR42600.2020.00248
https://doi.org/10.48550/ARXIV.2005.03337
http://dx.doi.org/10.1109/ACCESS.2019.2921451
http://dx.doi.org/10.1007/978-3-319-24574-4-28
http://dx.doi.org/10.1109/LGRS.2018.2802944
http://dx.doi.org/10.1109/ICIP.2019.8803391
http://dx.doi.org/10.1088/1742-6596/1345/2/022030
http://dx.doi.org/10.1007/978-3-030-61609-0-63
https://cs229.stanford.edu/proj2018/report/34.pdf
http://dx.doi.org/10.1109/IC3D51119.2020.9376327
http://dx.doi.org/10.3390/s21010054
http://dx.doi.org/10.3390/rs11111382


Sensors 2023, 23, 3066 20 of 20

51. Lubor Ladicky, J.S.; Pollefeys, M. Pulling Things out of Perspective. In Proceedings of the CVPR ’14: 2014 IEEE Conference on
Computer Vision and Pattern Recognition, Columbus, OH, USA, 23–28 June 2014; IEEE Computer Society: Washington, DC,
USA, 2014; pp. 89–96. [CrossRef]

52. Wang, Y. MobileDepth: Efficient Monocular Depth Prediction on Mobile Devices. arXiv 2020, arXiv:2011.10189.
53. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv 2015,

arXiv:1502.03167.
54. Fu, H.; Gong, M.; Wang, C.; Batmanghelich, K.; Tao, D. Deep Ordinal Regression Network for Monocular Depth Estimation.

arXiv 2018, arXiv:1806.02446. https://doi.org/10.48550/ARXIV.1806.02446.
55. Patil, V.; Sakaridis, C.; Liniger, A.; Van Gool, L. P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior. arXiv

2022, arXiv:2204.02091. https://doi.org/10.48550/ARXIV.2204.02091.
56. Yuan, W.; Gu, X.; Dai, Z.; Zhu, S.; Tan, P. NeW CRFs: Neural Window Fully–connected CRFs for Monocular Depth Estimation.

arXiv 2022, arXiv:2203.01502. https://doi.org/10.48550/ARXIV.2203.01502.
57. Bhat, S.F.; Birkl, R.; Wofk, D.; Wonka, P.; Müller, M. ZoeDepth: Zero–shot Transfer by Combining Relative and Metric Depth.

arXiv 2023, arXiv:2302.12288. https://doi.org/10.48550/ARXIV.2302.12288.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CVPR.2014.19
https://doi.org/10.48550/ARXIV.1806.02446
https://doi.org/10.48550/ARXIV.2204.02091
https://doi.org/10.48550/ARXIV.2203.01502
https://doi.org/10.48550/ARXIV.2302.12288

	Introduction
	Wavelets
	Nested DWT Net Architecture
	Loss Function
	Datasets
	Standard Performance Metrics
	Experiments and Ablation Studies
	Results and Observation
	Conclusions
	References

