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Abstract—Network information theory promises high gains
over simple point-to-point communication techniques, at the cost
of higher complexity. However, lack of structured coding schemes
limited the practical application of these concepts so far. One
of the basic elements of a network code is the binning scheme.
Wyner and other researchers proposed various forms ofcoset
codes for efficient binning, yet these schemes were applicable
only for lossless source (or noiseless channel) network coding.
To extend the algebraic binning approach to lossy source (or
noisy channel) network coding, recent work proposed the idea of
nested codes, or more specifically, nested parity-check codes for
the binary case and nested lattices in the continuous case. These
ideas connect network information theory with the rich areas
of linear codes and lattice codes, and have strong potential for
practical applications. We review these recent developments and
explore their tight relation to concepts such as combined shaping
and precoding, coding for memories with defects, and digital
watermarking. We also propose a few novel applications adhering
to a unified approach.

Index Terms—Binning, digital watermarking, error-correcting
codes, Gelfand–Pinsker, memory with defects, multiresolution,
multiterminal, nested lattice, side information, Slepian–Wolf,
writing on dirty paper, Wyner–Ziv.

I. INTRODUCTION

NETWORK information theory generalizes Shannon’s
original point-to-point communication model to systems

with more than two terminals. This general framework allows
to consider transmission of more than one source, and/or over
more than one channel, possibly using auxiliary signals (“side
information”) to enhance performance. Existing theoretical
results, although still partial, show strong potentials over con-
ventional point-to-point communication techniques, at the cost
of higher complexity. Classic problems in this theory are the
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multiple-access channel, the broadcast channel, multiterminal
coding of correlated sources, the interference channel, and
coding with side information. See [90], [3], [24], [21] for
tutorials. Until now, however, most of these solutions have
remained at the theoretical level, with the exception of, perhaps,
the multiple-access channel for which theory and practice meet
quite closely in cellular communication. Thus, communication
systems ignore much of the useful information available about
the topology and the statistical dependence between signals in
the network.

One of the key elements in the solutions of information net-
work problems is the idea of “binning” [21]. A binning scheme
divides a set of codewords into subsets (“bins”), such that the
codewords in each subset are as far apart as possible. As usual
in the “direct” coding theorems in information theory, the proof
constructs the bins atrandom, and therefore characterizes the
scheme in probabilistic terms: the probability that some vector
is close to (or “jointly typical” with) more than one codeword in
a given bin is very small or high, depending on the application.
This random construction, although convenient for analysis, is
not favorable for practical applications.

The main goal of this work is to show that binning schemes
may have structure. Our ideas originate from Wyner’s linear
coset code interpretation for the Slepian–Wolf solution [76],
[90]. Wyner’s construction may be thought of as analgebraic
binning scheme fornoiselesscoding problems, i.e., a scheme
that can be described in terms of a parity-check code and al-
gebraic operations over a finite alphabet. His solution applies
directly to losslesssource coding where the decoder has ac-
cess to an additive-noise side-information channel. In a dual
fashion, this solution applies also to channel coding over an ad-
ditive-noise channel with an input constraint, and where the en-
coder (but not the decoder) hasperfectside information about
the channel noise. See Section II-A.

Another example for a coset-code-based binning scheme is
the Kuznetsov–Tsybakov code for a memory with defective
cells [55]. Similarly to the additive noise problem previously
discussed, the encoder has perfect knowledge about the defect
location, which is completely unknown to the decoder. See [47]
for a generalization of this model.

In common applications, however, source coding is often
lossy, while channel coding is done withimperfect knowledge
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Fig. 1. Nested lattices: special case of self-similar lattices.

of the channel conditions or noise. In order to extend the idea
of coset-code-based binning to “noisy” coding problems, we
introduce the structure ofnested codes, or more specifically,
nested linear codesfor the discrete case, andnested latticesfor
the continuous case. The idea is, roughly, to generate a diluted
version of the original coset code; see Fig. 1. This structure
allows one to construct algebraic binning schemes for more
general coding applications, such as rate-distortion with side
information at the decoder (the Wyner–Ziv problem) [91], and
its dual problem of channel coding with side information at the
encoder (the Shannon/Gelfand–Pinsker problems) [67], [41].

Specifically, nested codes apply to symmetric versions of
the Wyner–Ziv problem, and to important special cases of the
Gelfand–Pinsker problem such as “writing on dirty paper” (the
Costa problem) [18], and “writing to a memory with known
defects and unknown noise” (the Kuznetsov–Tsybakov/Hee-
gard–El-Gamal problem) [55], [81], [47], [45]. In addition,
nested codes can be used as algebraic building blocks for
more general network configurations, such as multiterminal
lossy source coding [3], coordinated encoding over mutually
interfering channels (and specifically broadcast over Gaussian
channels) [8], [98], [99], digital watermarking [9], and more.
Nested lattices turn out also as a unifying model for some clas-
sical point-to-point coding techniques: constellation shaping
for the additive white Gaussian noise (AWGN) channel, and
combined shaping and precoding for the intersymbol interfer-
ence (ISI) channel; see [29], [30], [27], [28] for background.

Nesting of codes is not a new idea in coding theory and digital
communication. Conway and Sloane used nested lattice codes
in [17] for constellation shaping. Forney extended and general-
ized their construction in [50], results which were subsequently
applied to trellis shaping [51], trellis precoding [33], [12], etc.
Related notions can be found in multilevel code constructions,
proposed by Imai and Hirakawa [48], as well as in the work of
Ungerboek and others forset partitioningin coded modulation
[82]. In the lattice literature, Constructions B–E are all multi-
level constructions [16], [52], [53].

In the context of network information theory, nested codes
were proposed by Shamai, Verdú, and Zamir [71], [73], [72],
[97] as an algebraic solution for the Wyner–Ziv problem. Their
original motivation was systematic lossy transmission. Interest-
ingly, the nested code structure is implicit already in Heegard’s
coding scheme for a memory with (a certain type of) defects
[45], a problem which is a special case of channel coding with
side information at the encoder. Willems proposed a scalar ver-
sion of a nested code for channels with side information at the
transmitter [88]. Barron, Chen, and Wornell [9], [1] showed
the application of multidimensional nested codes to these chan-
nels as well as to digital watermarking. Independently of this
work, Pradhan and Ramchandran [63] proposed similar struc-
tures for multiterminal source coding. Servetto [102] proposed
explicit good nested lattice constructions for Wyner–Ziv en-
coding. Chou, Pradhan, and Ramchandran [11], Barron, Chen,
and Wornell [1], and Su, Eggers, and Girod [77] pointed out
the duality between the Wyner–Ziv problem and channel coding
with side information at the encoder, and suggested using sim-
ilar codes for both problems. A formal treatment of this du-
ality under various side-information conditions is developed by
Chiang and Cover [20].

This paper attempts to serve the dual roles of a focused
tutorial and a unifying framework for algebraic coding schemes
for symmetric/Gaussian multiterminal communication net-
works. We hope it gives a reliable coverage for this new and
exciting area along with providing insights and demonstrating
new applications. While demonstrating the effectiveness of
the algebraic nested coding approach, we emphasize that for
general (nonsymmetric/non-Gaussian) networks, this approach
is not always suitable or it is inferior torandombinning with
probabilistic encoding–decoding. The paper is organized
as follows. Section II considers noiseless side information
problems associated with binary sources and channels, and
describes Wyner’s coset coding scheme. Section III introduces
the basic definitions and properties of nested codes, for both
the binary-linear case and the continuous-lattice case and
discusses ways to construct such codes. Section IV uses
nested codes to extend the discussion of Section II to noisy
side information: the Wyner–Ziv, Costa, and Kuznetsov–Tsy-
bakov–Heegard–El-Gamal problems. Section IV also discusses
a hybrid approach of nested coding with probabilistic decoding.
The rest of the paper describes various applications. Sections V
and VI use the building blocks of Section IV for more general
multiterminal communication problems. Section VII shows
how these ideas reflect back onpoint-to-point communica-
tion problems, which include the standard additive and the
dispersive Gaussian channels as well as multiple-input–mul-
tiple-output (MIMO) Gaussian channels.

II. WYNER’S NOISELESSBINNING SCHEME

A. Two Dual Side Information Problems

Figs. 2 and 3 show two problems of noiseless coding with side
information, which involve binary sources and channels. As we
shall see, if we make the correspondence , the problems
and their solutions become dual [11], [1], [77], [10].
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Fig. 2. Source coding with side information at decoder (SI= noisy version of
source via binary-symmetric channel (BSC)).

Fig. 3. BSC coding subject to an input constraint with side information at
encoder (SI= channel noise).

The first problem, lossless source coding with side infor-
mation at the decoder, is an important special case of the
Slepian–Wolf setting [76]. A memoryless binary symmetric
source is encoded and sent over a binary channel of rate

. The decoder needs to recover the source losslessly in the
sense that its output is equal to with probability
larger than for some small positive number. In addition
to the code at rate , the decoder has access to a correlated
binary source , generated by passing the source through
a binary-symmetric channel (BSC) with crossover probability

. Were the side information available to the
encoder as well, the encoder could use a “conditional” code of
rate arbitrarily close to the conditional entropy

(2.1)

for sufficiently large block length , where

and where all logarithms are taken to base two. This result is
a direct consequence of the conditional form of the asymptotic
equipartition property (AEP) [21]: for each typical side-infor-
mation sequence (known to both the encoder and the decoder)
the source sequence belongs with high probability to a set of
roughly members, and thus can be described by a
code at rate close to .

The interesting result of Slepian and Wolf [76] shows that this
rate can be approached even if the encoder does not have ac-
cess to the side information. The idea underlying Slepian and
Wolf’s result is to randomly assign the source sequences to

bins with a uniform probability, and reveal this
partition to the encoder and the decoder. The encoder describes
a source sequence by specifying the bin to which it belongs;
the decoder looks for a source sequence in the specified bin

that isjointly typical with the side-information sequence .
The AEP guarantees that the true source sequence would pass
this joint-typicality test. As for the other source se-
quences which are jointly typical with the side information, the
probability that the random binning scheme would assign any
of them to the specified bin is very small; see [21].

Hence, as in other proofs by random coding, the proof shows
that a good coding schemeexists. The proof even hints at a de-
sired property of the binning scheme: it should not put together
in one bin vectors which are “close” to (typical with) the same

. In other words, each bin should play the role of agood
channel code. However, the proof does not show how tocon-
structa binning scheme with enough structure to allow efficient
encoding and decoding. Can a good binning scheme have struc-
ture?

We shall soon see that indeed it can. To acquire some feeling
for that in some hypothetic problem, suppose a party A wishes
to specify an integer number to another party B, who knows
a neighboring number, but A does not know which of its two
neighboring numbers B has. An efficient solution, which re-
quires only one bit of information—just as if A knew B, is the
following. Tell B, supposing, say, that A is even, whether it di-
vides by four or not (for a general integer, A tell B the result of

). In terms of the Slepian–Wolf code above, this
coding scheme partitions the even numbers into two bins, one
of multiples of four and one of nonmultiples of four. In other
words, the bins partition the source space intolattice cosets.

Before describing Wyner’s algebraic binning scheme for the
configuration of Fig. 2, let us consider the second problem, de-
scribed in Fig. 3, of channel coding with perfect side informa-
tion at the encoder. Here, we need to send information across
a binary-symmetric channel, where the encoder knowsin ad-
vancethe channel noise sequence, i.e., the times at which the
channel will invert the input bits. The decoder does not have
this knowledge. To sharpen the ideas of this example, we shall
assume that the channel crossover probability is half, i.e.,is
a Bernoulli- process. Suppose the encoder outputmust
satisfy the constraint (the equivalent, in essence, of the “power”
constraint in the continuous case) that the average number of’s
cannot exceed , where is the block length and .
Now, if the side information were available to the decoder as
well, it could cancel out the effect of the channel noise allto-
gether byXORing , and thus achieve capacity of

(2.2)

where denotes the Hamming weight (number of’s). Due
to the input constraint, however, the noise cannot be subtracted
by theencoder; byXORing the channel input vectors would
have an average weight of

(2.3)

for any sequence, thus violating the input constraint. On the
other hand, ignoring the side information would nullify the ca-
pacity. Can the encoder make any use of knowing the noise?

Indeed, the result of Gelfand and Pinsker [41] implies that
with a clever binning scheme we can achieve capacity of
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even if the decoder does not have access to the side informa-
tion , and without violating the input constraint. The idea is to
randomly assign the possible binary -vectors to
bins, and reveal this partition to the encoder and the decoder. The
message to be sent specifies the bin. The encoder looks in that
bin for a vector whose Hamming distance fromis at most

, and outputs the difference vector . The decoder
who receives identifies the bin containing, and
thus decodes the message unambiguously. Hence, we achieve
a rate of under the desired input constraint provided
that at least one vector in the bin is within a distancefrom ;
indeed, by random selection of bins, for sufficiently largeit is
very likely to find such a vector.

This solution for the configuration of Fig. 3 shows another
angle of the desired property of a good binning scheme: each bin
should contain a good collection of representative points which
spread over the entire space. In other words, here each bin plays
the role of agood source code. Again, however, random binning
lacks structure, and therefore it is not practically efficient.

B. Parity-Check Codes

We now turn to show an algebraic construction for these
two binning schemes. Following the intuition underlying the
Slepian–Wolf solution, Wyner’s basic idea in [90] was to
generate the bins as the cosets of some “good” parity-check
code.

To introduce Wyner’s scheme, let an binary parity-
check code be specified by the (binary) parity-check
matrix . The code contains all -length binary vec-

tors whose syndrome is equal to zero, where here mul-
tiplication and addition are modulo. Assuming that all rows of

are linearly independent, there arecodewords in , so the
code rate is .

Given some general syndrome , the set of all
-length vectors satisfying is called a coset . The

decoding function , where , is
equal to the vector with the minimum Hamming weight,
where ties are broken arbitrarily. It follows from linearity that
the coset is a shift of the codeby the vector , i.e.,

(2.4)

where the -vector is called thecoset leader.
Maximum-likelihood decoding of a parity-check code, over a

BSC , amounts to quantizingto the nearest vector in
with respect to the Hamming distance. This vector,, can be

computed by a procedure, called “syndrome decoding,” which
follows from the definition of the function

(2.5)

Hence, is the maximudm-likelihood estimate of the
channel noise . Alternatively, we can interpret as the
error vector in quantizing by , or as reducing modulo the
code

(2.6)

Fig. 4. Geometric interpretation of a parity-check code (solid) and one of its
cosets (dashed) and their associated decision cells.

Fig. 4 illustrates the interrelations between a parity-check
code and its cosets by interpreting the codewords as points of
a two-dimensional hexagonal lattice. We may view the decoder
(or quantizer) above as a partition of to decision cells
of size each, which are all shifted versions of the basic
“Voronoi” set

(2.7)

Each of the members of is a coset leader (2.4) for a
different coset.

An important asymptotic property of parity-check codes is
that there exist “good” codes among them. Here “good” may
have one of the following two definitions:

i) Good channel codes over BSC: For any and
large enough there exists an code of rate

, where is the BSC capacity, with
a probability of decoding error smaller than

(2.8)

where denotes the channel noise vector (a Bernoulli
vector), and denotes its estimation (2.5). See [39]. We
call such a code a “good BSC-code.”

ii) Good source codes under Hamming distortion:For any
, , and sufficiently large , there exists

an code of rate , where
is the rate-distortion function of a binary-symmetric

source (BSS) , such that the expected quantization error
Hamming weight satisfies

(2.9)

where denotes the quantization of by the code, and
where is the quantization error,
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Fig. 5. Wyner’s coset coding scheme for the binary-symmetric Slepian–Wolf problem in terms of modulo-code operations (both the+ and� signs amount to
the XOR operation).

which is uniformly distributed over . We call such a
code a “good BSS-code.”

The geometric meaning of the asymptotic properties (2.8) and
(2.9) is that the decision cells of a good -parity-check code
are approximatelyHamming ballsof radius (or ), where

(2.10)

See [21]. Random parity-check arguments as in [39, Sec. 6.2]
imply that the same code can be simultaneously good in both
senses.

Another measure of goodness of a linear code, not neces-
sarily asymptotic, is itserasurecorrection capability. For gen-
eral -ary alphabets (not necessarily binary) there exist
codes, called minimum-distance separable (MDS) codes, which
can correct erasures [6]. Asymptotically, good binary

codes correct almost every pattern of erasures.

C. Coset Codes as Bins

Consider now the use of these algebraic structures for the two
perfect side information problems of Section II-A. In the sequel,
we will need to compute the error between a vectorand a
coset

(2.11)

Making thesubstitutions and ,weseethat
minimizes the Hamming weight in , thus by the definition

of the decoding function and the - operation in (2.6)

(2.12)

(2.13)

(2.14)

(2.15)

where is the coset leader associated with.
In the setting of lossless source coding with side information

at the decoder (Fig. 2), we choose a good BSC-code, and use
as bins its cosets. The encoding and decoding
can be described by simple algebraic operations.

Encoding: transmit the syndrome ; this requires
bits.

Decoding: find the point in the coset which is closest
to the side information; by (2.12) this can be computed as

where (2.16)

Note that the computation of (2.16) is unique, so unlike in
randombinning we never have ambiguous decoding. Hence,
letting and noting from (2.16) that

, a decoding error event amounts to
so the probability of decoding error is

(2.17)

which by (2.8) is smaller thanfor a good BSC -code. This is
actually the probability that exceeds the cell shifted by ,
or that .

Thus, we were able to encodeat rate close to
, with a small probability of decoding error, using side in-

formation at the decoder, as desired.
Fig. 5 shows a useful way to describe the functioning of this

coding scheme in terms of the “modulo-code” operation (2.6),
using the identity (2.15). The modulo-code operation satisfies a
distributive property [6]

(2.18)

Now, note that the successive operationsand at the be-
ginning of the signal path are equivalent to a single - op-
eration. Hence, by the distributive property, due to the -
operation later in the signal path, we can eliminate theseand

operations without affecting the output of the scheme. We
then see immediately that .

We turn to the dual setting of channel coding with perfect
side information at the encoder (Fig. 3). Here we choose a good
BSS- -code, and, again, use its cosets as bins.
The encoding and decoding can be described in algebraic terms
as follows.

Message selection: identify each syndrome with
a unique message; this amounts to
information bits.

Encoding: transmit the error vector between the side in-
formation and the message coset, i.e. (see (2.12))

(2.19)

(2.20)

(2.21)

where .

Decoding: reconstruct the message as the syndrome
.
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Fig. 6. Coset-based scheme for channel coding with perfect side information (Fig. 3).

It is easy to verify that the decoding is perfect, i.e.,

(2.22)

due to the identity . Moreover,
for any , the average transmission Hamming weight satisfies

(2.23)

by the BSS -goodness of the code and the symmetry of.1

Thus, we were able to transmit at rate with input con-
straint , using side information at the encoder, as desired.

Fig. 6 shows an equivalent formulation of this scheme in
terms of modulo- operations. For illustration purposes, we
have inserted a second - operation that does not affect
the output. As in Fig. 5, the functioning of the scheme becomes
transparent by applying the distributive property (2.18) of the

- operation, and eliminating the first - operation.
It immediately follows that the noise cancels out so that

, and clearly implies .

D. Other Variants

1) Nonsymmetric Channels and Sources:We can generalize
the two side information problems discussed throughout this
section in various ways. One way is to consider more general
distributions for the signals in the system. It is clear from the
equivalent formulation of Wyner’s scheme in Fig. 5, that the
scheme is insensitive to the structure of thevector, as long
as is obtained by passing the side informationthrough a
BSC. Likewise, it is easily seen from Fig. 6 that in the second
problem the side-information signalmay be arbitrary; only, to
ensure that the-input constraint is satisfied, we need to smooth
out the effect of adding using a technique called “dithering”
before applying the - operation at the encoder; see Sec-
tion IV. It follows from this discussion, that the same schemes
can achieve the optimum rates of in the former case and

in the latter case forarbitrarily varying side-information
signals.

Note, however, that if the channel connectingand in
the first problem isnonsymmetric, or if the input constraint
in the second problem is more complex (e.g., depends on

1Dithering can be used to guarantee (2.23) for a nonsymmetricZZZ; see the
discussion in the sequel.

or has memory), then the algebraic binning schemes above are
no longer optimal. This is similar to the difficulty of applying
parity-check codes to general, nonsymmetric channels, or to
nondifference distortion measures for source coding.

2) Digital Watermarking/Information Embedding:The al-
gebraic construction for channel coding with perfect side in-
formation is based on the equivalent formulation of digital wa-
termarking by Barron, Chen, and Wornell [1] and by Chou,
Pradhan, and Ramchandran [11]. In these formulations, the side-
information signal is considered as a “host” signal, which car-
ries information under the constraint that the Hammingdistor-
tion due to the watermark code should not exceed. An exten-
sion of this setting to watermarking in the presence of noise is
equivalent to the nonperfect side information case (the Costa
problem) which we discuss in Section IV. See [14], [10], [1],
[11] for more settings and literature about the digital water-
marking problem and its equivalence to channel coding with
side information.

3) Writing to Computer Memory With Defects:Another
well-known example of coset-code-based binning is that of
computer memory with defects [55], [47]. Here,out of
binary digits are stuck at arbitrary positions, so the encoder can
write new information only at the remaining binary digits.
The location of the defective cells is arbitrary, and is detected
by the encoder prior to writing. Various authors (mostly in
the Russian literature) developed schemes and performance
bounds for this channel model, and showed that it is possible
to achieve the capacity of bits, even if the location of the

defective cells is not known to the decoder. See [47], [106],
and the references therein.

To prove this fact asymptotically by a random binning argu-
ment, assume that the binary-vectors are randomly assigned
to bins, where . This assignment is fixed prior
to encoding. A message containing bits selects the
bin. The encoder looks for a vector in the selected bin which
agrees with the values of thedefective cells, and writes this
vector to the memory. Since each vector identifies a unique bin,
the decoder can decode the message correctly, provided that the
encoder indeed finds a “defect-matching” vector in the selected
bin. Otherwise, an encoding error is declared. A standard calcu-
lation shows that the probability of an error event is given by
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Fig. 7. Capacity with causal (dashed), and noncausal (solid) SI at the encoder
in the setting of Fig. 3.

which goes to zero as goes to infinity for any . (There
are valid -vectors, and each of them is in the selected bin
with probability .)

An algebraic coding scheme which achieves this capacity
uses the cosets of anerasure correction codeas bins. Specif-
ically, assume a-ary linear code of length which can correct

erasures (each erasure is a full-ary symbol). If the code is
MDS (e.g., a Reed–Solomon code) [6], then it containscode-
words. This implies that each fixed pattern ofsymbols takes
all the possible values as we scan thecodewords; further-
more, the code has distinct cosets (including the original
code), each of which satisfies this property. It follows that if we
use these cosets as bins, the encoder can find a defect-matching
vector in each bin, for any pattern ofdefective cells.

A noisy generalization of this problem will be discussed in
Section IV-D.

4) Causal Side Information:Shannon proposed the perfect
binary side information problem, without the input constraint,
as a motivation for his treatment of thecausalside information
case [67]. Unlike the setting in Fig. 3, in Shannon’s formulation
the channel input depends only on the past and present samples
of the channel noise, i.e.,

where denotes the message to be sent. It follows from the anal-
ysis of Erezet al. [30], [28], [27] that the capacity withcausal
side information and input constraintas above, is given by

, . See the dashed line in Fig. 7. This capacity,
which is of course lower than that achieved by thenoncausal
binning scheme solution, is realized by appropriate time sharing
of two strategies: (“perfect precancellation”) a frac-
tion of the transmission time, and (“idle”) a fraction

of the transmission time, where are
the information bits, i.e., .

III. N ESTEDCODES: PRELIMINARIES

The binning schemes discussed so far are not suitable for
“noisy” coding situations, i.e., source coding withdistortion,
or transmission in the presence of anunknown(random) noise
component. In the noiseless case, the cosets (bins) filled the
binary space completely. To allow further compression in source

coding, or noise immunity in channel coding, we need to dilute
the coset density in space. Nested parity-check codes generate
such a diluted system of cosets in an efficient way.

The continuous analog of a parity-check code is the lattice
code. Being a construction in Euclidean space, the lattice has
continuously many cosets. The notion of a nested lattice code
allows to define afinite sample of lattice cosets efficiently. This
will provide the basis for algebraic binning schemes for contin-
uous signals.

This section establishes the basic definitions of these con-
cepts. It is an extended and more complete version of the discus-
sion by Zamir and Shamai [97]. We start with the binary case
and nested parity-check codes, and then continue to the contin-
uous alphabet case and nested lattice codes.

A nested code is a pair of linear or lattice codes sat-
isfying

(3.1)

i.e., each codeword of is also a codeword of . We call
the “fine code” and the “coarse code.”

A. Nested Parity-Check Codes

If a pair of parity-check codes, ,
satisfies condition (3.1), then the corresponding parity-check
matrices and are interrelated as

(3.2)

where is an matrix, is an
matrix, and is a matrix. This implies that the
syndromes and associated with some

-vector are related as , where the length
of is bits. In particular, if , then

. We may, therefore, partition into
cosets of by setting , and varying , i.e.,

where (3.3)

Of fundamental importance is the question: can we require
both components of a nested code, the fine code and the coarse
code, to be good in the sense of (2.8) and (2.9)? More interest-
ingly, it turns out that in the network problems discussed below,
one of the component codes should be a good channel code,
while the other component code should be a good source code;
see the discussion in Section III-C. If a nested code is indeed
“good,” where the fine code is a good-code and the coarse
code is a good -code, , then by (2.10) the number of
cosets in (3.3) is about

(3.4)

where means approximation in an exponential sense (i.e., the
difference between the normalized logarithms is small).
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B. Lattices and Nested Lattice Codes

We turn to Euclidean space and to nested lattices. Let us first
introduce the basic properties of a lattice code. An-dimen-
sional lattice is defined by a set of basis (column) vectors

in . The lattice is composed of all integral com-
binations of the basis vectors, i.e.,

(3.5)

where , and the generator matrix
is given by . Note that the zero vector

is always a lattice point, and that is not unique for a given .
See [16].

A few important notions are associated with a lattice. The
nearest neighbor quantizer associated with is defined by

if (3.6)

where denotes Euclidean norm. In analogy with the basic
decision cell in the binary case, the basic Voronoi cell of
is the set of points in closest to the zero codeword, i.e.,

(3.7)

where ties are broken arbitrarily. The Voronoi cell associated
with each is a shift of by . In analogy with (2.6) the

- operation is defined as

(3.8)

which is also the quantization error ofwith respect to . The
second moment of is defined as the second moment per di-
mension of a uniform distribution over

(3.9)

where is the volume of . A figure of
merit of a lattice code with respect to the mean squared error
distortion measure is the normalized second moment

(3.10)

The minimum possible value of over all lattices in is
denoted . The isoperimetric inequality implies that

. When used as a channel code over an unconstrained
AWGN channel, [62], [30], the decoding error probability is the
probability that a white Gaussian noise vectorexceeds the
basic Voronoi cell

(3.11)

The use of high-dimensional lattice codes is justified by the
existence of asymptotically “good” lattice codes. As for parity-
check codes in the binary case (Section II-B), we consider two
definitions of goodness.

i) Good channel codes over AWGN channel:For any
and sufficiently large , there exists an-dimensional lat-
tice whose cell volume , where

and are the differential entropy and the
variance of the AWGN , respectively, such that

(3.12)

Such codes approach the capacity per unit volume of the
AWGN channel, and are called “good AWGN channel

-codes;” see [62], [16].

ii) Good source codes under mean squared distortion mea-
sure:For any and sufficiently large , there exists
an -dimensional lattice with

(3.13)

i.e., the normalized second moment of good lattice codes
approaches the bound as goes to infinity; see [95].
Such codes, scaled to second moment, approach the
quadratic rate-distortion function at high-resolution
quantization conditions [96] and are called “good source

-codes.”

In analogy with the binary case, the meaning of i) and ii)
is that the basic Voronoi cells of good lattice codes approxi-
mate Euclideanballsof radius (or ); see [16], [95],
[62]. This implies that the volume of the Voronoi cells of good
-codes satisfies asymptotically

(3.14)

where corresponds to (or ).
It is interesting to note that a lattice which is good in one sense

need not necessarily be good in the other. This is analogous to
the well-known fact that lattice sphere packing is not equivalent
to lattice sphere covering; see [16] and [100].

A pair of -dimensional lattices is nested in the
sense of (3.1), i.e., , if there exists corresponding gen-
erator matrices and , such that

where is an integer matrix whose determinant is greater
than one. The volumes of the Voronoi cells of and satisfy

(3.15)

where and . We call

thenesting ratio.
Fig. 1 shows nested hexagonal lattices with , where

is the identify matrix. This is an example of the important
special case ofself-similar lattices, where is a scaled—and
possibly rotated—version of [15].

The points of the set

(3.16)

are called thecoset leadersof relative to ; for each
the shifted lattice is called a

cosetof relative to . Mapping of border points in (3.16)
(i.e., points of that fall on the envelope of the Voronoi region

) to the coset leader set is done in a systematic fashion, so
that the cosets , are disjoint. It follows
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that there are different cosets, whose union
gives the fine lattice

(3.17)

Note that for any , reducing (see (3.8)) gives
the leader of the (unique) coset which contains. Enumeration
of the cosets can be obtained using a parity-check-like matrix
[16].

As mentioned in the binary case, of fundamental importance
is the question of existence of a sequence of good pairs of nested
lattices, where one of the lattices (the fine one or the coarse one)
is good for AWGN channel coding, while the other is good for
source coding under mean squared distortion. See the discussion
in Section III-C. If a nested lattice pair is indeed good in this
sense, where the fine lattice is a good-code and the coarse
lattice is a good -code, , then by (3.14) the number of
cosets of relative to in (3.17) is about

(3.18)

where means approximation in an exponential sense.2

Another special issue that arises in the application of nested
codes is the “self-noise” phenomenon. In simple words, it is the
immunity of the channel-code component of the nested code
to noise induced by the quantization error of the source-code
component. This issue will be discussed in detail in Section IV.

C. Construction of Good Nested Codes

For the binary case, existence is straightforward by the prop-
erties of random ensembles of parity-check codes [39, Sec. 6.2].
For a more explicit construction one may proceed as follows
[58]. Let be the generating matrix of a code that has
roughly a binomial distance spectrum. This property guarantees
that is a good parity-check code. One can now add cosets to

(or equivalently, rows to ) and still retain a binomial spec-
trum for the new code, denoted by. Furthermore, from the
construction it is evident that . See also Heegard’s con-
struction of partitioned Bose–Chaudhuri–Hocquenghem (BCH)
codes [45].

We present a detailed construction of good nested lattice
ensembles (Construction-U) in a future work [30], [31]. We
shall point out here the basic elements. Our construction is
based on Loeliger’s construction of lattice ensembles [59],
and is similar to common approaches aiming at incorporating
shaping gain into coded modulation [33], [86], in that the
“effective dimensionality” of the coarse and fine lattice may
greatly differ. That is, at large nesting ratios it might suffice to
use a relatively low-dimensional source-coding (shaping) lat-
tice to make small enough as required by (3.13).
Denoting such a -dimensional lattice by , the construction
forms the -dimensional coarse lattice by a Cartesian
product of this basic lattice, i.e.,

(3.19)

2Note that for the good channel code component, the “�” indicates the AWGN
power, which is in general smaller than, or equal to the second moment of the
lattice. For the good source code component, the “�” indicates the mean square
distortion, which coincides with the second moment of the lattice.

The fine lattice is typically much more complex in
order to achieve large coding gains, i.e., make the decoding error
probability small as required by (3.12). Therefore, its “effec-
tive dimension” is .3

Loeliger’s construction is based on drawing a random-di-
mensional code over where is a prime number, and applying
construction A [16]. This forms a good fine lattice in-dimen-
sional Euclidean space nested with a coarsecubic lattice with
nesting ratio . While this nesting in a coarse cubic lattice
is just an artifact of any type A construction, we can utilize it to
obtain a fine code nested in a goodcoarselattice as well. Specif-
ically, denoting the generator matrix of as , we trans-
form the -dimensional Euclidean space by applying

to each of the consecutive -blocks. This transformation
preserves the random code properties required in Loeliger’s con-
struction, which for the appropriate choice ofimply the good-
ness properties i) and ii) in Section III-B. As discussed in Sec-
tion IV-C, this factorizable form also has some practical merits,
but it requires modifications for small nesting ratios.

An explicit (and practical) construction of good nested codes
in real space was introduced by Forney and Eyuboglu [51],
[33]. Here, a trellis code plays the role of a finite complexity
infinite-dimensional lattice. The preceding existence argument
for good nested lattices can be extended to such trellis-based
nested codes. In fact, in the applications discussed later it may
be practically advantageous to replace the nested lattice codes
with nested trellis codes.

IV. NOISY SIDE INFORMATION PROBLEMS

Relative cosets of good nested codes generate efficient bin-
ning schemes for “noisy” network coding problems. To demon-
strate that, we first consider the simpler settings of coding with
side information. These settings are in a sense noisy extensions
of the two basic settings of Section II, Figs. 2 and 3, and are
based on [72], [97], [1]. In the sequel, we switch back and forth
between the binary case and the continuous case, and for conve-
nience we use the same letters to denote source/channel
variables in both cases.

A. The Wyner–Ziv Problem

Consider the lossy extension of the configuration in Fig. 2 of
source coding with side information. As in the lossless case, the
encoding and decoding functions take the form

and (4.1)

respectively. However, in the lossy case we allow some distor-
tion between the source and the reconstruction

(4.2)

for some distortion measure. Wyner and Ziv [91] showed that
if and are doubly binary symmetric, where
with Bernoulli- , and is the Hamming distance, then the
minimum coding rate is given by

(4.3)

3The dual case of complex-coarse/simple-fine nested lattices can be achieved
using concatenated codes, and it will be discussed elsewhere.
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Fig. 8. R (D) for a doubly symmetric binary source.

where is the binary convolution
of and , i.e., is the lower convex envelope of the
function and the point ; see
Fig. 8.

In the continuous case, Wyner [89] showed that ifand
are jointly Gaussian, and the distortion measure the a squared
error, then

(4.4)

where is the conditional variance of given .
Interestingly, the Wyner–Ziv rate-distortion function (4.3)

in the binary case is strictly greater than the conditional
rate-distortion function , which
corresponds to the case where the side information is available
to both the encoder and the decoder. On the other hand, in
the quadratic-Gaussian case the two functions coincide, i.e.,

.
The standard proof of the achievability of the Wyner–Ziv

function is by random binning; see, e.g., [21]. We now show how
to achieve these rate-distortion functions using relative cosets
of nested codes, following the constructions in [72], [97]. Our
constructions generalize (4.3) and (4.4) in the sense that the
side information may be an arbitrary signal (not necessarily
Bernoulli/Gaussian).

In the binary-Hamming case, we use a pair of nested parity-
check codes with check matrices and , where

and denotes transpose, as defined in (3.2). We
require the fine code to be agood source -code, and the
coarse code to be agood channel -code.

Encoding: quantize to the nearest point in , resulting
in ; then transmit ,
which requires bits (see
(3.4)).

Decoding: compute by zero padding, i.e.,
; then reconstruct by the point in the coset

which is closest to , an operation that can be written
as (see (2.11) and (2.12))

where (4.5)

Time sharing this procedure with the “idle point”
gives the function (4.3). It is left to be shown that

the reconstruction is equal with high probability to , and,
therefore, by the definition of the fine code,
satisfies the distortion constraint . To that end, consider
Fig. 9, which shows an equivalent schematic formulation of
this coding–decoding procedure in terms of - operations
based on the identity (2.15). Note that the concatenation of,
zero padding, and in the signal path can be replaced by a
single - operation, whose output is .4

Since we have two successive - operations at the signal
path, we use the distributive property (2.18) to eliminate the
first, and arrive at the equivalent channel shown in Fig. 10, with

denoting the quantization error. It follows that

(4.6)

(4.7)

(4.8)

4Using this formulation, the vector̂www in (4.5) is given byŵww = (vvv � yyy)
mod C
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Fig. 9. Wyner–Ziv encoding of a doubly symmetric binary source using nested linear codes.

Fig. 10. Equivalent channel for the coding scheme of Fig. 9.

where denotesequality conditional on correct decoding, and
in the last line we used . Thus, correct decoding
amounts to , which implies that

, as desired. The decoding error probability is equal to

(4.9)

Note that and are statistically independent, is
Bernoulli- , and

thus,

(4.10)

Hence, if the quantization error were a Bernoulli process,
then were a Bernoulli process, and the

-goodness of the coarse code would have implied that
. However, is not a Bernoulli process. In fact,

is distributed uniformly over , the basic Voronoi cell of
(see (2.7)).5

We see that the quantization error generated by the fine code
plays the role of a noise component for the coarse code. We
call this phenomena “self noise,” and as we shall see, it appears
in almost all applications of nested codes to binning schemes.
Can the coarse code, the good channel code component of the
nested code, protect against errors induced by the self-noise? We
will address this question momentarily, in the context of nested
lattice codes.

To achieve the Wyner–Ziv function in the quadratic Gaussian
case, we assume that and are related as

(4.11)

5Even for a nonuniform source the encoding scheme can forceEEE to be uni-
form over
 using subtractive dithering based on common randomness; see
the Gaussian case later.

where is an independent zero mean Gaussian with variance
, i.e., .6 The random variable

may be arbitrary (not necessarily Gaussian). Our nested code
construction discussed next is an improved version of the basic
construction of [97] (which was optimal only for ), and
of [1] (which extended [97] to any ratio of to , but did not
take into account the exact effects of the self-noise).

Use a nested lattice pair whose generator matrices
are related by , as discussed in Section III-B. Re-
quire the fine lattice to be a good source -code, and the
coarse lattice to be a good channel -code. Let the (pseudo)
random vector , the “dither,” be uniformly distributed over

, the basic Voronoi cell of the fine lattice. We shall assume
that the encoder and the decoder sharecommon randomness, so
that is available to both of them. Let denote
the optimum estimation coefficient to be used in the following.

Encoding: quantize to the nearest point in ,
resulting in , then transmit an index
which identifies , the leader of the unique
relative coset containing ; by (3.18), this index requires

bits.

Decoding: decode the coset leader, and reconstruct
as

where
(4.12)

This procedure is unique up to scaling. For example, we can
equivalently inflate by a factor , quantize di-
rectly (instead of ), and multiply the output of the second

- operation by (instead of ).
Note that the coding rate coincides with (4.4) as desired. To

complete the analysis of the scheme, we show that the expected
mean squared reconstruction error .

To that end, consider Fig. 11, which shows a schematic for-
mulation of this coding–decoding procedure. Note that in the
figure we suppressed the intermediate mapping ofinto the
transmitted index. As in the binary case (2.18), the - op-
eration satisfies a distributive property

(4.13)

(which easily follows by ).
This property implies that we can eliminate the first -
operation in the signal path, and arrive at the equivalent channel

6Note that any jointly Gaussian pair(X; Y ) can be described in the form
(4.11), replacingY with aY .
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Fig. 11. Wyner–Ziv encoding of a jointly Gaussian source using nested lattice codes.

Fig. 12. Equivalent channel for the scheme of Fig. 11.

of Fig. 12, where denotes the subtractive dither quantization
error [95]

Observing that the input to the - operation in Fig. 12 is
, we write the final reconstruction as

(4.14)

(4.15)

(4.16)

where, as earlier, denotesequality conditional on correct de-
coding, and in the last line we used . We conclude that
conditional on correct decoding, the equivalent error vector is

(4.17)

while the decoding error probability is given by

(4.18)

As we shall show later, for a sequence of good nested codes the
probability of decoding error vanishes asymptotically, i.e.,

as (4.19)

Hence, the reconstruction error converges in probability
to the right-hand side of (4.17). Now, the second moment per
dimension of the right-hand side of (4.17) is given by

(4.20)

(4.21)

(4.22)

for any , where in (4.20) we used a property of subtractive
dithered quantization, [96], [95]; namely, that is indepen-
dent of (and therefore of ), and is equal in distribution to

; and in (4.22) we substituted . On the other
hand, in view of (4.14) and since the - operation only
reduces the magnitude, has a finite second moment as
well. Thus, both sides of (4.17) have a finite second moment per

dimension, implying that their convergence in probability (im-
plied by (4.19)) implies convergence of their second moments,
and we conclude that the reconstruction error is indeed arbi-
trarily close to , provided that (4.19) holds, i.e., that the de-
coding error indeed vanishes.

Good Nested Codes and the Self-Noise Phenomenon:
Proof of (4.19)

To show (4.19), consider the definition of the error event in
(4.18). Note that the argument of the - operation satisfies

where we used the properties of subtractive dithered quantiza-
tion as in (4.20); see [96], [95]. Thus, if were AWGN,
then the -channel-goodness of the coarse code would imply
that as and (4.19) is proved. But the quan-
tization error is not AWGN and, therefore, is not
either. Thus, we again encounter the “self-noise” phenomenon,
where part of the noise seen by the channel code component of
the nested lattice pair is induced by the quantization error of the
source code component.

The “self-noise” phenomenon was observed in [72], [97],
where it was conjectured that asymptotically its effect is similar
to a Bernoulli process in the binary case, and to AWGN in the
continuous case. This is, indeed, plausible by the source-coding
goodness of the fine code. Other works which dealt with nested-
like constructions adopted this argument to justify their deriva-
tions [1] or tended to disregard this phenomenon. However, there
was no rigorous treatment until recently. Now, if the fine and
coarse code components were independent, then the effect of the
self-noise could have been made identical to a Bernoulli/AWGN
process by appropriate randomization of the coarse code, e.g.,
interleaving in the binary case. However, we cannot randomize
one code component while keeping the other component fixed,
because the nesting relation connects the two components. In a
recent work [30], Erez and Zamir confirm the conjecture made in
[72], [97] by putting an additional condition on the nested code.
This condition extends the meaning of a “good channel code,”
as defined for the lattice case in item i) of Section III-B:

i) Exponentially good channel codes over AWGN
channel: For any and , there exists an -di-
mensional lattice with cell volume , where

and are the entropy and the
variance of the AWGN , respectively, such that

(4.23)

where .



1262 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 48, NO. 6, JUNE 2002

As discussed in Section III-B, for good codes, the Voronoi re-
gion tends to a Euclidean ball, implying that the quantiza-
tion error is roughly uniform over a Euclidean ball of radius

. The analysis of [30] shows that the effect of such a noise
on the decoding error probability issubexponential in relative
to an AWGN with the same power. Thus, if the coarse lattice

is exponentially good, the effect of the self-noise on the de-
coding error probability (4.18) is asymptotically equivalent to
AWGN. A similar analysis shows this fact with respect to the
binary case, and it can be found in [32].

Note that the existence of a sequence of lattice channel codes
with exponential decay of the decoding error probability (as in
(4.23)) was shown in [62]. Yet, the existence of a good nested
pair of lattices, as required by the Wyner–Ziv encoding schemes
above, is a more delicate question, which we address in another
work [31].

In the next section, we shall see that the “self-noise” phenom-
enon occurs in a “reversed” manner also in the dual problem
of channel coding with side information. We note also that Eg-
gers, Su, and Girod observed this phenomenon in their analysis
of scalar digital watermarking schemes (“scalar Costa”) at high
host-to-watermark ratio [25].

B. The Costa Problem: “Writing on Dirty Paper”

The second setting we consider is a special case of channel
coding with side information at the transmitter, known as
“writing on dirty paper.”

Consider the channel

(4.24)

where and are the channel input and output, respectively,
is an unknown additive noise, andis an interference signal

known to the transmitter but not to the receiver.7 As in the con-
figuration of Fig. 3 (and unlike Shannon’s causal formulation
[67], [28]), the encoder knows theentire interference vector

prior to transmission. Hence, the encoding
and decoding functions have the form

and (4.25)

respectively, where denotes the message. This setting extends
the configuration of channel coding with perfect side informa-
tion discussed in Section II (Fig. 3), in the sense that here there
is an additional noise component which is unknown to both
the transmitter and the receiver.

Costa [18] adhering to the Gelfand–Pinsker setting [41],
showed that if and are statistically independent Gaussian
variables, and the channel input must satisfy an average
power constraint , then the capacity with side
information at the transmitter is given by

(4.26)

where is the variance of . Thus, the effect of the inter-
ference is canceled out completely, as if it were zero or it
were available also at the receiver. The proof is based on the

7Note that any channelY = X + Z with side informationS, whereZ and
S are jointly Gaussian, can be reduced to the form (4.24).

random binning solution for general channels with side infor-
mation [41].

In the binary - additivie-noise channel case, Barronet
al. [1] showed that if the known interferenceis a binary-sym-
metric source, the unknown noise is an independent
Bernoulli- source, and the channel input satisfies an input
Hamming constraint , then the capacity with
side information at the transmitter is given by

u.c.e.
(4.27)

where u.c.e. denotes upper convex envelope as a function
of . Thus, in this case we loose in capacity for not knowing

at the receiver, because with an informed receiver we could
achieve capacity of , which is larger for
any .

We now demonstrate how to achieve these side-information
capacities using algebraic binning schemes, based on the
relative cosets of a good nested linear/lattice code pair. In fact,
our scheme generalizes (4.26) and (4.27) in the sense that
the interference may be an arbitrary signal (not necessarily
Gaussian/Bernoulli). The following configurations are based
on [1], yet with a more exact analysis of the effects of the
self-noise.

In both cases, we tune the fine code to the (effective) unknown
noise level, and the coarse code to the input constraint. Specifi-
cally, in the continuous case, we choose for the fine latticean
exponentially good channel -code (as defined in (4.23)).
The coarse lattice should be a good source-code. In the
binary case, we choose for the fine codean exponentially
good channel -code, and for the coarse codea good source
-code. Let the (pseudo) random vectorbe uniform over the

basic Voronoi cell of the coarse code, i.e., (lattice case)
or (binary case). As in our scheme for the Wyner–Ziv
problem, is a dither signal, known to both the transmitter and
the receiver via common randomness. For the continuous case
define also the estimation coefficient , and use
the following encoding procedure.

Message selection: identify each coset ,
, with a unique message; by (3.18) this amounts to

bits per -block.

Encoding: transmit the error vector between and
the selected coset , i.e.,

(4.28)

where is the interference vector andis the dither. By
the properties of dithered quantization

independently of the values ofand , where the expecta-
tion is over the dither .

Decoding: reconstruct the message as the unique coset
containing ; the leader of this coset can be
computed as

(4.29)
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Fig. 13. Nested encoding and decoding scheme for the Costa problem.

Fig. 14. Equivalent representation of encoding–decoding for the Costa problem.

Fig. 15. Equivalent channel for the Costa problem.

Fig. 13 depicts this procedure. In the binary case, the pro-
cedure is the same, setting , replacing by , and
regarding the “lattice decoding” as minimum Hamming
distance decoding with respect to the fine code. This results
in

bits of information, and an average codeword Hamming weight
of . Time-sharing this procedure with the “idle point”

gives the function (4.27).
We want to show that with high probability, so that the

message is decoded correctly. In the binary case, the distributive
property of the - operation allows to eliminate the first

- operation, and obtain that the decoded coset leader is
given by

(4.30)

(4.31)

where the second equality holds conditional on correct de-
coding. By the -goodness of the fine code and since is
Bernoulli- , the second line indeed holds with high probability.

The proof that the decoding error probability

(4.32)

is small also in the continuous case is slightly more involved due
to the presence of the estimation coefficient . Consider
first Fig. 14, where we replaced the gainin the signal path by a
shortcut and compensated for that by subtracting from

; we also inserted another - operation which by the
distributive property does not affect the final result, and denoted
its output , i.e., . We then used the

distributive property to eliminate the first - operation,
and arrived at the equivalent channel of Fig. 15. It follows that

(4.33)

(4.34)

Thus, the equivalent noise component is .
Quite surprisingly, an interesting lemma in [28], [27] shows that
this noise is independent of the input so the equivalent channel
is modulo-additive.

Lemma 1 “Inflated Lattice” [28], [27]: The channel from
to , for uniformly distributed over , is equivalent in
distribution to the channel

where
(4.35)

and where is independent of .

Substituting , the second moment per di-
mension of is equal to

Thus, if were AWGN, then the -channel-
goodness of the fine lattice would imply that
is equal to with high probability, and, therefore, is small as
desired. However, the “self-noise” component is not
Gaussian, but rather uniform over . Yet, as in Section IV-A,
if the fine lattice is exponentially good, then the probability of
decoding error goes to zero in spite of the slight deviation of

from AWGN. See [30] for a detailed proof. Thus, with
good nested codes, the proposed scheme approaches capacity,
as desired.
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As discussed in Section VII, if we choose the coarse lattice
to be cubic, the preceding scheme becomes a dithered version
of Tomlinson precoding [80], where plays the role of “inter-
symbol interference.”

C. A Note on Coding Complexity

In practice, the “goodness” requirement from the two
components of the nested code is not equally stringent. In
the quadratic Wyner–Ziv problem of Section IV-A (source
coding with side information) the channel coding goodness
of the coarse code determines the decoding error probability
(4.19). Hence, the coarse lattice must be sufficiently complex
to make this probability small. On the other hand, the source
coding goodness of the fine code has only a slight effect
on the rate, and therefore in practice the fine lattice can be
simple. For example, if the fine code is simply a cubic lattice
(corresponding to scalar quantization), then ,
instead of the optimum value ; see (3.10).
This implies cell volume , and rate redun-
dancy of bit per sample above the
Wyner–Ziv-rate distortion function. For a general lattice, the
rate redundancy becomes .

In the dual Costa problem of Section IV-B (channel coding
with side information) this behavior is reversed. The channel
coding goodness of thefinecode determines the decoding error
probability in (4.32); in the terminology of digital communi-
cation [52], the “coding gain” of the fine lattice should be high
enough to achieve a desired without too much excess power.
The source coding goodness of thecoarsecode only slightly af-
fects the rate; the coarse lattice cell volume is ,
so the rate gain relative to a cubic lattice is given by (see (3.10))

a term called “space-filling gain” in the quantization litera-
ture [43] and “shaping gain” in the digital communication
literature [52], [100]. Hence, the asymptotic gain of a good
coarse lattice with respect to a simple cubic coarse lattice is
only 0.254 bit. See discussion regarding
constellation shaping in [51], [33].

The perfect source/channel decoupling of the nested code dis-
cussed above ceases to hold at low coding rates, i.e., at small
nesting ratios. In this regime the “self-noise” becomes a sig-
nificant portion of the equivalent channel noise. This implies
that the decoding error probability is determined not only by
the properties of the channel coding component of the nested
code, but also by the source coding component.

D. Writing to a Memory With Noise and Defects

The third setting we consider is another special case of
channel coding with side information at the encoder, proposed
by Tsybakov [81] and Heegard and El-Gamal [47]. A binary
memory is modeled as a channel with three states

stuck at zero, stuck at one, BSC()

where the state process is memoryless, with probabilityof
each of the “stuck-at” states, and probability of the “BSC”
state. As shown in [47], if the state sequence is known in advance

to the encoder, or to both the encoder and the decoder, then the
capacity of this channel is given by

Note that the case corresponds to the Kuznetsov–Tsy-
bakov problem, [55], which can be solved using a goodera-
surecorrection coset code (correcting erasures per

-block), as discussed in Section II-D.
A nested coding approach for this problem was proposed by

Tsybakov [81] and Heegard [45], where the codes are referred to
as “partitioned” codes. Heegard showed that nested parity-check
codes may achieve the capacity of the channel above as well
as suggested specific code constructions for this problem based
on BCH codes. We now give a heuristic description of a nested
parity-check code solution in the terminology of this paper. The
fine code component is a good BSC-code of dimension , as
defined in Section II-B. The coarse code component is good in
a different sense than discussed so far. It should have the prop-
erty that the projection of the code on almost every subset of
components is a good BSS-code of dimension . Note that
for , this property amounts to gooderasurecorrection at
coding rate slightly higher than. Observe also that the require-
ment becomes less restrictive asincreases; random coding ar-
guments imply that there exist parity-check codes satisfying this
property at coding rates slightly higher than . It
follows that such codes have slightly less than
cosets, each of which satisfies the desired property above.

Message selection: identify each relative coset with a
unique message; the number of bits per-block are thus

Encoding: look for a vector in the message coset which
is -compatible with the known defect, that is, it agrees
with the stuck-at values a fraction of these cells.
(Such a vector exists with high probability by the BSS
-goodness of every projection of the coarse code.)

Store this vector in the memory, or declare an error if it
does not exist.

Decoding: do conventional BSC decoding of the fine
code from the stored vector, and identify the coset (mes-
sage) to which the decoded vector belongs. The decoding
error is small by the BSC-goodness of the fine code, and
because the stored vector has a total oferrors (inten-
tional at the stuck-at positions, and random
errors at the other positions).

E. Nested Codes with Probabilistic Decoding

So far we assumed that the unknown noise components (
in the Wyner–Ziv problem, and in the Costa problem) corre-
spond to memoryless binary-symmetric/Gaussian-noise chan-
nels. For such channels, maximum likelihood (ML) is equiva-
lent to minimum Hamming/Euclidean distance, so it lends it-
self toalgebraicdecoding of the nested code. We may extend
the schemes above to more general additive noise channels if
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we keep the nested coding structure, but allowprobabilisticde-
coding. This amounts to replacing the Voronoi decision cells of
the channel code component (the coarse code in the Wyner–Ziv
problem or the fine code in the Costa problem) by ML decoding
decision cells.

Information-wise, a good nested code is equivalent to a uni-
formly distributed random code over ; see Section III-C. Such
a code is not necessarily optimal for a general (non-Gaussian/
correlated) noise and a general coding rate. Nevertheless, in the
limit of high coding rate (i.e., large nesting ratio), a good nested
code with probabilistic decoding becomes optimal for any ad-
ditive noise. Specifically, it can be shown that asymptotically
as , the rate-distortion performance of the ML-decoded
Wyner–Ziv nested coding scheme is

provided that is finite. Also, the asymptotic
rate–power performance of the ML-decoded Costa nested
coding scheme becomes, as

provided that is finite. Note that these expressions co-
incide asymptotically with the rate-distortion and the capacity
functions, respectively [27], [105].

V. MULTITERMINAL CODING OFCORRELATED SOURCES

The nested coding schemes above, in the presence of side in-
formation, provide the basic blocks for more general network
coding schemes. In the context of source coding, the main appli-
cation we address is multiterminal (or distributed) source coding
[3], [94]. This configuration generalizes the problem of source
coding with side information at the decoder, discussed in Sec-
tions II-A and IV-A. Before considering this application, we
briefly consider two related problems: multiresolution source
coding, variants of which are known also assuccessive refine-
mentor multistage source coding[26]; and multiple side-infor-
mation terminals.

A. Two Related Problems

Multiresolution Source Coding:A multiresolution source
code consists of two codewords, the first contains a coarse de-
scription of the source, while the second contains a refinement
of this description. Nested codes provide a straightforward
mechanism for multiresolution source coding, where the coarse
and fine components, and , generate the coarse and fine
descriptions, respectively. By the structure of the nested code,
the relative coset information, , provides a natural
construction for the refinement codeword. However, unlike
in side information problems, both components of the nested
multiresolution code should be “goodsource codes.” More
importantly, this code isnot induced by a binning mechanism.
Hence, this problem is, in fact, conceptually different than the
problems discussed so far, and it will not be developed here
further.

Multiple Side-Information Terminals:Consider the problem
of Fig. 2, but assume that the decoder has access to two side-in-

formation variables instead of one, and , which are
correlated with the source . From arandombinning view-
point, this configuration is basically the same as before, since we
can view the two side information variables as a single variable
with two components. However, an algebraic formulation for
the solution is not straightforward. Specifically, following the
solution in the single side-information terminal case, we would
like the decoder to reconstruct the sourcevia an algebraic op-
eration on some coset information and the side information, i.e.,
using

and (5.1)

where is a suitable coset code. In the binary case, maximum-
likelihood decoding of from (5.1) amounts toweightedmin-
imum Hamming distance decoding (because has
four values, one per each of the four possible pairs ).
Thus, we must use “soft” decisions, rather than basic algebraic
operations as desired. Nevertheless, in the joint Gaussian case,
the pair in (5.1) can be reduced to a singlesuffi-
cient statistic, , where and are suitable min-
imum mean square error (MMSE) estimation coefficients. The
conditional distribution of given this statistic is Gaussian,
with variance equals to the conditional variance ofgiven

. Thus, the problem reduces to conven-
tional lattice decoding in the presence of AWGN, as in the single
side-information terminal case.

Combining the two cases (multiresolution and multiple side-
information terminals), we can devise nested coding schemes
for more general configurations, e.g., rate distortion when side
information may be present/absent [46], [54].

B. The Theoretic Multiterminal Rate Region

The general form of the Slepian–Wolf problem allows en-
coding of both correlated sourcesand , at rates and ,
respectively [76]. The resulting configuration consists of two
separate encoders and a common decoder, as shown in Fig. 16.

Lossless reconstruction of and is possible if and only if

(5.2)

A lossy version of the Slepian–Wolf problem was considered
by several researchers, but a tight solution was found only in
special cases [91], [3], [4], [61], [94]. In the quadratic-Gaussian
case, the largest known explicit single-letter characterization of
the set of achievable rates is given by a “long Markov chain
solution” [3]

(5.3)

where are any independent Gaussian variables, such
that

and

and where denotes the conditional variance of
given .
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Fig. 16. General multiterminal source coding configuration.

As usual, the information-theoretic solutions above are based
on random binning coding schemes and jointly typical decoding
[22], [21]. Our goal is to realize these rate regions using alge-
braic coding–decoding schemes, and specifically, using nested
codes as building blocks. Similar formulations were derived by
Pradhan and Ramchandran [63].

C. Multiterminal Nested Codes

Lossless Case:We start with the lossless version, known
as the Slepian–Wolf problem. As in Section II, we assume
that and form a doubly symmetric memoryless source,
and are related as , so , and

. Clearly, the case
where and is redundant, and trivially
solved by single terminal codes. Hence, without loss of gener-
ality we can assume that . If ,
then we can compresslosslessly using a single terminal code,
and the problem reduces to that of encoding with side
information at the decoder , as discussed in Section II-A.
The interesting case is thus .
One way to solve this case is by time-sharing the “corner
points” and in the

-plain, each corresponds to a simple side information
problem as discussed earlier.

An alternative way to solve the latter case is to use asource-
splitting approach [66]: quantize the first source into such
that , and transmit across the first channel
at rate ; then, encode given side information at the de-
coder, and transmit the corresponding (coset) codeword across
the second channel at rate; finally, encode losslessly given
the side-information pair , and transmit the codeword
across the first channel at rate , as an addendum to the code-
word of the first stage. If we generate in the first stage using
a good source -code, the error is roughly a
Bernoulli- process. Hence, we realize the first stage at rate

. Furthermore, since , we can
realize the second stage using the coset information of a good
channel -code, at rate , as discussed in Sec-
tion II. (Note that similarly to our treatment of the “self-noise”

problem, we can avoid the effect of the deviation offrom a
Bernoulli process by a suitable choice of these codes.) The third
stage requires,in principle, rate of

(5.4)

(5.5)

(5.6)

where (5.5) uses the approximate Bernoulli form of, while
(5.6) follows using the chain rule and using the fact thatis a
binary-symmetric source. It follows that the total rate

is approximately

and by varying in the range we obtain the en-
tire boundary of the rate region (5.2). Unfortunately, however,
achieving (5.4) is problematic in practice, as we need to encode
a binary source given two noisy binary versions ;
as discussed in Section V-A, we cannot realize this encoding
using pure algebraic operations, but must use a more complex
“soft” decision decoding.

Lossy Case:The latter difficulty does not exist in the (lossy)
quadratic-Gaussian case. Following the discussion of the loss-
less case, without loss of generality we assume that the rate of
the -terminal is smaller than the corresponding rate distortion
function, i.e., . Consider first
the case . Quantize at rate
into a codeword with distortion .
Assuming entropy-coded dithered quantization (ECDQ) with a
“good” -dimensional lattice [95], the quantization error

is additive and white, and becomes AWGN, , as
goes to infinity, i.e.,

and

Then, use a nested lattice Wyner–Ziv code, to encodewith
distortion , given side information at the
decoder. The rate required, , can be written
as , where is an independent Gaussian
random variable such that . Thus, the
pair lies on the boundary of the region (5.3) whenever

.
Consider next the more interesting case, where both rates are

smaller than the corresponding (marginal) rate distortion func-
tions, i.e., and . Similarly to
the lossless case, we can realize this case bytime-sharingtwo
points in the -plain, having the form

and

Alternatively, we can use asource-splittingapproach. First,
quantize at rate into a codeword , such that is
equal to the conditional rate-distortion function ofgiven
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at distortion level .8 As above, we use ECDQ of sufficiently
large dimension, so that , where is approxi-
mately AWGN. Then, use a nested lattice Wyner–Ziv code to
encode at rate and distortion with side information

at the decoder. Finally, use a nested lattice Wyner–Ziv
code to encode at rate and distortion , given the two
side-information variables and which
are approximately jointly Gaussian by the properties of ECDQ.
Unlike the binary case discussed earlier, we can convert these
two side-information variables into a single sufficient statistic,
and hence realize the latter stage using a “conventional” nested
lattice code with algebraic encoding–decoding. See the discus-
sion of multiple side-information terminals in Section V-A. It
follows that by varying the quantization resolution at the first
stage, the resulting rates and realize the
entire rate region (5.3) using nested lattice codes, as desired.

VI. COORDINATED ENCODING OVER MUTUALLY INTERFERING

CHANNELS

In this section, we apply the paradigm, observations, and re-
sults of the preceding sections to a variety of problems associ-
ated with interfering channels. In particular, we heavily rely on
Section IV-B and demonstrate the power of the nested lattice
coding approach in settings of single and multiple users and in
multiple-element (vector) communication.

After presenting the general model in Section VI-A, in Sec-
tion VI-B we address the Gaussian broadcast channel [19] and
then broaden our view to discuss the framework of the broad-
cast approach for the block-fading channel scenario, for single
[69] and multiple [68] users. Section VI-C will be devoted to
the multiantenna broadcast channel recently treated in [8], [98],
[99], [7]. In all these cases, a nested lattice approach is in fact a
natural and appealing capacity-achieving strategy.

Two applications, though seemingly different from the above,
are then shown to be fully equivalent as far as the nested lattice
technique goes. Specifically, in Section VII-B, it will be con-
cluded that the standard single-user dispersive Gaussian channel
as well as the single-user multiantenna (MIMO) channel can
also be treated within a similar framework.

For the sake of conciseness, we reduce the systems discussed
in this section to the basic setting that has already been ad-
dressed in Section IV-B and invoke the relevant results and ob-
servations. We refer to the nested coding scheme for this setting
as “dirty paper coding.”

A. The General Model

The model on which we focus is the vector Gaussian channel
described by

(6.1)

where designates the discrete-time index and
stands for block length. Here stands for the transmitted

column vector. The Gaussian ambient noise

8Note that in view of (5.3),R is in generalgreater than the conditional
rate-distortion function ofY given thefinal description ofX ; on the other hand,
the conditional rate-distortion function decreases monotonically as the side in-
formation is refined. Thus,XXX is coarserelative to the final description ofX .

column vector is denoted by and is the received
vector. The matrix designates the matrix character-
izing the MIMO channel. Unless otherwise stated, it is assumed
that is a real deterministic known matrix and all signals
are real valued.9 When relevant, we treat as a realization of
a random matrix process. We also impose average power con-
straints on the input signals, and state the constraints according
to the specific application discussed.

B. The Single-Input Gaussian Broadcast Channel

In this case, and designates the number of separate
users, so that

(6.2)

Let the entries of the vector

(with upperscript standing for the transpose operation) be or-
dered in increasing order . We also assume that the
noise is independent and identically distributed (i.i.d.) (in)
and normalized to unit variance per component .
This is a classical description of a Gaussian degraded broadcast
channel [19], [21], the capacity region of which (assuming no
common rate components), is given by the union of all rates si-
multaneously satisfying

(6.3)
where the union is taken over all power assignments ,

, satisfying an average power constraint

SNR (6.4)

Here, SNR designates the input average power con-
straint, where is the expectation operator. The classical ap-
proach [21] to achieve this region is by decomposing the trans-
mitted signal into a sum of independent components ,

, where

(6.5)

and where . Now, carries the coded
message information to user, which is assumed to comprise
the output of a good (capacity-achieving) Gaussian code of rate

. Decoding is accomplished via successive cancellation, that
is, the decoder of usercan reliably decode10 the messages of all
preceding users , as the channel is degraded,
that is, . The interference that stems
from the already successfully decoded users is absolutely re-
moved, while the interference of the users not yet decoded is
accumulated and added to the ambient Gaussian noise.

We depart here from this classical approach by the way the
decomposition (6.5) is interpreted and by the way the actual

9Extensions to circularly symmetric complex signals is straightforward.
10It is tacitly assumed that each user is equipped with the codebooks assigned

to all users that it can potentially decode.
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Fig. 17. Nested lattice encoding–decoding for the two-user broadcast channel.

coding–decoding strategy is constructed. Theth-user output at
time is

(6.6)

The part

(6.7)

is interpreted as an interference sequence known ahead of
“time” (for all ) at the transmitter. This is in-
deed the case at hand, as the transmitter controls the generation
of all , . The “dirty paper coding,”
which encompasses the nested lattice technique, as described
in Section IV-B, guarantees the achievability of the rates
as in (6.3). Note also that here the other interference term seen
by user

(6.8)

functions as an additional noise component, approaching Gaus-
sianity as the lattice dimension grows. Caution should be exer-
cised here as , mayfunctionallydepend on .
Nevertheless, they are ensured to bestatistically independent
due to the dither, so we can regard asadditivenoise. This
conforms to the fact that in the “dirty paper” setting (the Costa
model) is independent of the interfering signal[18]. For an
alternative treatment of this issue, see [8, Appendix], [98], [99].

As mentioned, the nested lattice approach yields here an
algebraic binning strategy and is applied straightforwardly as
described in Section IV-B. One important feature here is that
the mechanism is not dependent on the Gaussianity of
(6.7).11 Further, also the first user , for which ,

, can use a capacity-approaching lattice code, as addressed
in Section VII, which is indeed a special case. This provides
a unifying nested lattice based approach of optimal signaling
over the Gaussian broadcast channel.

In Fig. 17, the nested lattice approach is demonstrated for
the user broadcast channel. User produces
Gaussian codewords, which are decoded taking the full inter-
ference penalty of user 2 (who enjoys a better channel as

). This code can be based on a lattice approach, as described
in Section VII-A, and so depicted. User 2 treats user 1, to whom
power is assigned, as interference known beforehand at the
transmitter and hence uses a nested lattice
strategy. That is, user 2 selects a codeword from the fine lattice
and then transmits an appropriate error vector based on a coarse
lattice modulo operation.

The underlying interpretation giving rise to the nested lat-
tice techniques, mentioned also in [9] and [101], conforms, in
fact, to the basic insight provided by the Marton approach in
deriving achievable rates for general broadcast channels [60]
and evidently yields here, in the degraded channel case, the
full capacity region. Specifically, Theorem 2 of Marton with
the special case of (Marton’s [60] notations) chosen to be a
constant, is directly related to this interpretation. The informa-

11Though here, Gaussianity of the marginals is preserved by the very fact that
X are so constructed as to achieve the capacity of the respective channel.
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tion-carrying signal of the first user plays the role of a state se-
quence given beforehand to the transmitter for the second user.
For this special case, the linkage to the Gelfand–Pinsker [41]
setting is evident, as indeed mentioned in [41]. A well-known
random binning interpretation of this special case (-constant)
of Marton’s region is given in [40]. The focus in this paper, as
demonstrated by the example at hand is to show specifically how
in the realm of a Gaussian broadcast channel binning is effi-
ciently implemented in terms of a nested lattice code.

Furthermore, there are some inherent advantages within the
advocated setting as opposed to the conventional onion peeling
at the decoder approach [19], [21]. Here, those users that expe-
rience better channels do not have to reliably decode the mes-
sages assigned to the users who experience degraded (worse)
channels, and in fact the “better” users may even be fully ig-
norant of the codebooks assigned to those “degraded” users, a
property which may be advantageous for secured communica-
tion. This occurs without affecting the achievable rate region as
in (6.3).

Yet, it is not that absolutely no information is revealed about
those users corresponding to the degraded channels, which are
not reliably decodable within this paradigm, but rather that the
amount of information is exactly the same as if i.i.d. inputs had
been generated and the underlying coding strategy of those users
was totally ignored. See the conclusions in [78], where the rel-
evant result here corresponds to the case where the transmitter
invests no special efforts in improving the state estimation at the
receiver, and hence allocates no power to that purpose.

The ability to treat successfully the standard broadcast set-
ting with no loss of optimality within the framework of nested
lattice codes opens a variety of possibilities. Here we highlight
the broadcast approach to a fading channel [69], [68]. Within
this framework, in a single-user setting any channel gain real-
ization is interpreted as a different (virtual) channel connected
to a different user. In this framework of composite channels [5],
the transmitter, which is not aware of the specific channel re-
alization, is able to adapt the reliably transmitted information
to the actual channel conditions. In [69], the continuous case,
where the channel gain takes on real (or complex) realizations,
is treated and the optimal average throughput strategy is explic-
itly identified.

The fact that we were able in this section to retain the
Gaussian broadcast channel capacity region adhering to the
nested lattice approach, makes this technique immediately ap-
plicable to the general broadcast approach to communicate over
a composite channel [19]. Evidently within this application,
the reliable decoded rate depends on the realizationand is a
nondecreasing function of , as all information decoded for
a particular realization may also be decoded for a “better”
realization , where . One may therefore wonder
what, if at all, is the advantage of the nested lattice approach
over the standard ordered decoding and cancellation in such a
case where the information intended for some degraded gain
realization is to be decoded anyhow. Note that with the nested
lattice approach, all information streams are decoded inparallel
(see Fig. 19) as opposed to serial decoding and cancellation.
This strategy eliminates the error propagation associated with
the standard approach, which manifests itself in the behavior

of the associated error exponents. In certain cases, it may
also provide some practical advantages of signal processing.
Specifically, at the (usually small) cost of the additional com-
plexity of the modulo-coarse-lattice operations at the encoder
and the decoder, this “precoding” strategy saves the cost of
the fine-lattice decoding of the interfering signal (directed for
the bad receiver) at the good receiver. Obviously, extensions
of the nested lattice technique to the broadcast approach for a
multiple-access setting, where the different users communicate
over fading channels [68] are also straightforward, and again
rely on the very same principles as in the “dirty paper” case.
This is also the case for a multiple-transmit/receive antenna,
for which certain aspects of the broadcast approach are under
study. Another aspect of nested lattices mentioned in Section V
is its natural application to multiresolution [3] problems and
successive refinement techniques [26], [65]. As indicated in
[5], the successive refinement and the broadcast approach are
perfectly matched to transmit over composite or compound
channels where reliability (distortion) is refined as the channel
realization improves. The possibility to treat both these aspects
within the nested lattice paradigm demonstrates the rather
broad scope of this idea.

C. The Multielement Broadcast Channel

We now turn our attention to the multiple-antenna broadcast
example, which again is characterized by the basic equation
(6.1). Within this representation, the vector designates the
power-constrained input into the-transmitting antennas and
the vector designates the associated signal received at the

antennas of the different and noncooperative users, each
equipped with a single antenna. The matrix is assumed
known and fixed and it stands for the MIMO propagation
coefficients. For simplicity, we assume here that and
the matrix has full rank .

This model has recently been proposed and first treated in [8],
[98], [99], and [74], [102], where the single-cell multiple-an-
tenna broadcast channel and multicell single antenna per cell
are studied, respectively. Subsequent efforts extending the orig-
inal results of [8], [98], [99] appear in [7], [92], [103], [85], [84],
and [49].

The broadcast transmission scheme advocated in [8], [98],
[99] employs the lower triangular quadratic residue (QR-LQ)
decomposition

(6.9)

where is a lower triangular matrix and is a
orthonormal matrix. The channel input is given by

(6.10)

where is the information-carrying signal, and where super-
script stands for the Hermitian transpose. The transformation
(6.10) is power preserving

SNR (6.11)

This decomposition combined with (6.1) then yields
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Fig. 18. The nested lattice encoding–decoding for the multiantenna broadcast channel.

(6.12)

where is the entry of the matrix . Again, the received
signal has assumed the recognizable form of the “dirty paper”
Costa setting where

(6.13)

plays the role of the interference sequence perfectly known be-
forehand of the transmitter.

The application of a nested lattice technique to this frame-
work, as depicted in Fig. 18, is straightforward and relies again
on the canonic blocks of the “dirty paper” nested lattice en-
coders and decoders, as presented in Section IV-B and depicted
in Figs. 13–15. The resultant achievable rates of this approach,
coined in [8], [98], [99] “ranked known interference (RKI),” is
evidently given by

(6.14)
where the union is taken over all power assignments

such that the average power constraint (6.11)

SNR (6.15)

is satisfied.
A generalization of the RKI approach is also suggested in [8],

[98], [99], where the transformation used is

(6.16)

The matrix is an upper triangular matrix satisfying
, so as to maintain the average power

constraint (6.11). The RKI approach turns then to be the special
case of . This transformation (6.16) gives rise to the
familiar equation

(6.17)

where are appropriate coefficients determined by the ma-
trices . Here

(6.18)

(6.19)

are identified to be, respectively, the post-cursor and precursor
elements as in (6.7) and (6.8). Again, the nested lattice pre-
coding for user eliminates the effect of known be-
forehand at the transmitter for , giving rise to
the achievable set of rates

(6.20)

The union operation in (6.20) is as in (6.14). The entries of
the matrix and the power assignment subjected to the
average power constraint (6.15), can be chosen to optimize
certain rate features as the total throughput [8], [98],
[99]. Indeed, for , it was demonstrated in [8], [98],
[99] that the generalized RKI method achieves the optimal
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throughput in this multiple antenna, generally nondegraded,
broadcast-channel setting. This optimality holds also for gen-
eral [7]. It was further demonstrated that even the basic RKI
(where ) technique is asymptotically optimal in the high
and low signal-to-noise ratio (SNR) regions, where in the latter
case it reduces to the beamforming zero forcing technique [8],
[98], [99].

The application of the nested lattice technique in this gener-
alized RKI approach operating over the multiantenna broadcast
is straightforward and depicted in Fig. 18, whereis replaced
by . This application is again, in principle, the same as in
the broadcast channel or the ISI case of Section VII as expres-
sion (6.17), is of the very same structure as (6.6) and (7.5), re-
spectively. A similar decomposition to the basic RKI transfor-
mation (6.9) was suggested in [42] to combat far-end crosstalk
for a discrete multitone-based system. Their approach, i.e., pre-
coding, is however Tomlinson-like [64], [34], and as such sub-
jected to shaping, modulo and power losses. The possible use
of a Tomlinson precoder in a coordinated transmission setting
has also been mentioned in [35]. The RKI technique, which
interprets the LQ decomposition in terms of the “dirty paper”
channel, is free of all the above degradations as described, and
the nested-lattice technique which implements the full poten-
tial of the RKI (either basic or generalized) technique is indeed
a natural coding/signaling strategy in this multiantenna broad-
cast setting. Again, the precursor (6.19) interference inherently
cannot be alleviated, since symbols in the precursor are coded
in order to eliminate the effect of their post-cursors, containing
the current symbol. This is evident, as otherwise one could fal-
laciously surpass the maximum achievable throughput capacity
(even in the case).

In [74], [75] the very same ideas are applied to a somewhat
different setting of a multicell downlink, and it was shown that
multicell central processing has a fundamental impact on the
achievable throughput. Subsequent developments of this appli-
cation based on the results in [85] are reported in [49], where
also per-cell-site antenna power constraints are examined.

We have demonstrated the results here assuming that the
MIMO propagation matrix is given. Extensions to being
a realization of a random matrix process can also be treated, as
is done in [8], [98], [99].

The approach of [8], [98], [99] has recently been extended in
[92], [103], where it has been shown that the sum rate of the
multielement broadcast channel can be achieved using the “dirty
paper” principles as in [92], [103], for any number of users and
any number of elements (antennas). To that end the vector gen-
eralization of Costa’s approach [93] has been invoked. This ob-
servation has also been made in [85], where the rate region as in
[92], [103] was interpreted in its dual setting as the union of ca-
pacity regions of an associated multiple-access channel, over all
power assignments among its users subjected to a total average
power constraint. Nested lattice coding as described here can im-
mediately be used in the generalized setting as well, noting that
the vector “dirty paper” setting [93] breaks up to a set of parallel
scalar standard “dirty paper” channels, via the classical singular
value decomposition applied to the original vector channel. This
duality has also been exploited in [84] to show the throughput op-
timality, presenting an elegant rigorous proof. The nested lattice

approach in this application, as first advocated in [8], [98], [99],
is intimately and directly related to trellis precoding, as applied
later in [92], [103]. Note that standard trellis precoding, when ap-
plied to the “dirty paper” configuration is optimal only at asymp-
totically high SNR, while the nested lattice precoding scheme is
optimal throughout the whole SNR region, and that this is due to
the introduction of the inflation factor (which in fact can also
be combined with the trellis precoding strategy).

We have focused on the multiple-antenna broadcast setting.
However, the same model is applicable to a variety of broad-
cast applications as, for example, that of high-speed twisted pair
wire-line communications [42]. For the sake of simplicity, we
have restricted our attention to real-valuedand in (6.1).
Extensions to circularly complex valued matrices and vectors
are straightforward and mainly require proper normalizations,
which are already accounted for in (6.9)–(6.11). Having this ex-
tension in mind is the reason for invoking the complex notation
in (6.10), (6.11), and (6.16).

VII. N ESTEDCODES INPOINT-TO-POINT COMMUNICATION

In this section, we demonstrate that the nested lattice ap-
proach presented can also be relevant to standard point-to-point
problems. We point out two examples, lattice codes and de-
coding for the AWGN channel, and achieving the capacity of
Gaussian dispersive (ISI) channels through precoding.

A. Nested Codes With Lattice Decoding for the AWGN
Channel

This application turns out to be a by-product of the encoding–
decoding scheme of Section IV-B (the Costa problem). We
show that using nested codes in conjunction with dithering
techniques, the power-constrained AWGN channel can be
transformed into a modulo lattice additive noise channel having
the same capacity as that of the original channel. By so doing
we are able to retain the “one” in the capacity formula of the
AWGN channel which was sacrificed in prior works on lattice
decoding (see discussion in [53]). This allowslattice decoding
to be optimal for all SNRs.

De Buda’s Theorem [23] states that a lattice code, cut
into a bounded region with second moment, can approach
arbitrarily close (in the limit of high dimension) the capacity

of an AWGN channel at SNR . This
result has been corrected and refined by several investigators,
see [57], [83], [62], [59]. The optimality of this scheme relies
upon maximum-likelihood decoding, i.e., on finding the lattice
point inside the bounded regionwhich is closest to the received
signal. In contrast, “lattice decoding” amounts to finding
the closest lattice point, ignoring the boundary of the code.
Such an unconstrained search seems to save complexity, and
retains codewords’ symmetry, and thus attracted some special
attention. However, existing lattice coding schemes with lattice
decoding can transmit reliably only at rates up to .
This loss of “one” in rate means significant degradation in
performance for low SNR. In fact, it was conjectured [59] that
lattice decoding is optimum only at high SNR, i.e., that with
lattice decoding the rate cannot be surpassed. See
also discussion in [53].
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Fig. 19. Nested lattice encoding–decoding scheme for AWGN.

In [29], [30] it is shown that the encoding scheme of Sec-
tion IV-B may be applied, “as is,” to the ordinary (no side in-
formation) AWGN channel. This scheme, along withlattice de-
coding, preserves the one in the capacity formula. Specifically,
by taking we may regard the encoding scheme as shown
in Figs. 13 and 14 as a dithered lattice code transmitter along
with a lattice decoding receiver, for the AWGN channel. Since
it was shown in Section IV-B that lattice decoding may achieve
the capacity of the Costa channel using the latter scheme, it fol-
lows that the same is true for the AWGN channel, regarded as
a special case . The resulting encoder–decoder is de-
picted in Fig. 19 and its equivalent channel is the same as for the
Costa nested coding scheme (Fig. 15). Notice that the lattice de-
coding operation does not depend on the exact distribution
of the equivalent noise (4.35); rather, it is a Euclidean nearest
neighbor quantizer, as if the equivalent noise was AWGN.

We note that this transmission scheme in effect transforms
the original AWGN channel into a modulo-lattice additive noise
one. This transformation is not strictly information lossless in
the sense that it does not preserve the mutual information. How-
ever, the (information) loss goes to zero as the dimension of the
code goes to infinity. This suffices for achieving the channel’s
capacity, albeit may result in a suboptimal error exponent.

B. Dispersive (ISI) Channels

We now show that the classical ISI channel also falls into
the general framework of Section VI. Consider the dispersive
Gaussian channel, which can be expressed by

(7.1)

This can be viewed as a special case of (6.1), with
and where is an countably infinite “row vector,”
i.e., a sequence, with components . In this notation
in (6.1) is composed of overlapped vectors of components

, which are shifted by a single
coordinate, with time, where stand for the scalar inputs to
the ISI Gaussian channel. In this application, designates
the received samples and , are the ISI coefficients.
The additive Gaussian noise samples are denoted by. We
assume that this equation represents the sampled output of the
matched filter which preserves information. Suboptimal filtering
can also be represented within the setting of (7.1), as in [13].

We further assume that the ISI coefficients account for
the transmission filter, channel time-invariant transfer function
characteristics, and the receiver matched filter. The information-
carrying input symbols are assumed to be i.i.d. Gaussian.
The input–output mutual-information normalized per channel
use equals

(7.2)

where

SNR

(7.3)
and where

(7.4)

stands for the formal transform of the associated ISI coeffi-
cients [12]. Here, SNR designates the signal-to-noise ratio. The
expression may, in fact, equal the original channel capacity
provided the transmission-shaping filter is selected to imple-
ment the capacity-achieving water-pouring spectrum over the
original Gaussian dispersive channel. Hence, no optimality loss
is incurred by assuming i.i.d. information-carrying inputs
[70]. We focus here on the feedforward MMSE decision feed-
back (MMSE-DFE) equalizing filter [12], the output of which
at time epoch is given by

(7.5)

The post-cursor (causal) and precursor (anticausal) parts are
designated by and , respectively, and are given by

(7.6)

(7.7)

resembling a stationary version of the MIMO broadcast example
as in (6.17). Here designates the ISI coefficients at the
output of the MMSE-DFE feed-forward filter and stands
for the corresponding filtered noise samples. This is referred to
in [12] as a canonic form mainly due to the fact that mutual in-
formation is preserved on a symbol-by-symbol basis, provided
an ideal DFE is available as to cancel the post-cursor ef-
fect. This can be seen by calculating the associated SNR

(7.8)

referred to as the MMSE-DFE-U SNR, withstanding for “un-
biased,” meaning that in (7.5) the equivalent precursor noise
term is uncorrelated with the desired signal [12]. Evidently (see
[12], [104]), the sample-per-sample-wise mutual information,
assuming ideal DFE equals the
full input–output mutual information (or, as
said, the optimal channel capacity), provided fully reliable feed-
back decisions are available. This observation motivated the in-
troduction of a capacity-approaching coding strategy [44] where
the decisions fed back are taken after decoding of a capacity-ap-
proaching code is completed, and therefore decisions are reli-
able. The basic scheme is sketched in Fig. 20 for the time con-
tinuous dispersive channel. The central mechanism is the inter-
leaver/deinterleaver guaranteeing that post-cursor symbols be-
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Fig. 20. The Guess–Varanasi MMSE-DFE coding strategy for the Gaussian dispersive channel.

long to different codewords, which were already decoded. This
is why, in principle, when capacity-approaching codes are used,
the decoding error probability at the near-capacity operational
point is guaranteed to be negligible. This is in contrast to pre-
viously used DFE schemes, where the feedback filter makes
use of “unreliable” symbol-by-symbol decisions. Thus, reliable
post-cursor symbols are fed back and ideally removed before
the current codeword gets decoded.

The scheme we advocate here uses in fact the interleaver/
deinterleaver as in Fig. 20. However, the DFE part is replaced
by nested latticeprecodingas in the “dirty paper” case. Note
that when codeword, which comprises theth row in the in-
terleaver, is to be encoded, the post-cursor interference desig-
nated by the signals comprises, due to the interleaving,
previous codewords. Since, as described in Section IV-B, nested
lattice precoding is capable of retaining capacity over the “dirty
paper” channel (and an AWGN channel as a special case), this
approach achieves capacity over the regular ISI channel. This
strategy is depicted in Fig. 21 for the continuous Gaussian dis-
persive channel. The setting is identical to that of Fig. 20, but
for the coding which is replaced by the “dirty paper” encoder
and the decoding by the “dirty paper” decoder, where the latter
does not require any DFE loop. The blocks of the “dirty paper”
encoder and decoder are shown in Figs. 13 and 14.

Evidently, precoding techniques are widely used over the
ISI channel. While standard Tomlinson precoding [64] suffers
inherent degradation of power loss, modulo-loss, and shaping
loss [70], [87], the more sophisticated trellis precoding [33]
and Laroia precoding [56] avoid the shaping and power losses

but are still subjected to the modulo loss in the low SNR region.
In the extreme case, where the coarse lattice in our scheme
is taken to be a (Cartesian product of a) scalar quantizer, the
nested precoding scheme actually becomes almost identical
to combined coding and Tomlinson precoding. The crucial
difference is the scaling factorwhich in this case must be op-
timized numerically (as a function of the SNR), see [28]. Even
if we take Costa’s , the rate loss of this scheme
is upper-bounded by the shaping gain,
0.254 bit, at any SNR. The Laroia precoding [56] technique
which is part of the V-34 modem standard, might be viewed
as a certain lattice/trellis-based precoding, which guarantees
close to capacity performance at high rates (asymptotically
high SNR conditions). See also [34], where lattice precoding
for Tomlinson-based processing has been addressed. Nested
lattice coding–decoding, as advocated here, approaches ca-
pacity at all rates and SNR values. In fact, the inflated lattice
technique manifests itself in the introduction of the scalar
and the uniform dithering (see Section IV-B). These are crucial
elements so as to guarantee near-capacity operation throughout
the whole SNR region and not only at high SNR scenarios.

Evidently, this ISI precoding scheme can easily be general-
ized to the multiple-antenna (MIMO) single-user channel with
the propagation matrix (replacing the time-invariant channel
filter of (7.1)) available to both the transmitter and the re-
ceiver [79]. In fact, this precoding technique is immediately ap-
plicable to a MIMO, Bell Laboratories Layered Space–Time
(BLAST) [38] type communication where the Cholesky-based
filtering is performed at the receiver and the resultant interdata
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Fig. 21. The “dirty paper” capacity-approaching strategy for the Gaussian dispersive channel.

stream interference, usually coped with by post-decoding DFE
[38], is absolutely eliminated by the “dirty paper” precoding as
described here. A Tomlinson-type precoding for this setting has
been presented in [37], [36].

A closing comment refers to the effect of the precursor des-
ignated by (7.7) in both the broadcast (as presented in the
previous section) and ISI settings. The interference from this
part is taken in full, and that despite of the fact that the pre-
cursor is also composed, in principle, of symbols produced at
the transmitter. Any mitigation of interference associated with
this signal (precursor) is inherently prohibited (in the broadcast
and MMSE-DFE-U ISI setting). This is evident as otherwise
the achievable rate region would fallaciously surpass the ulti-
mate broadcast channel rate region and the dispersive Gaussian
channel capacity. This is a manifestation of the fact that future
symbols (part of the precursor) represent codewords which are
so produced as to mitigate the interference of past (post-cursor)
symbols. In the MMSE-DFE ISI channel setting, this inherent
limitation is another manifestation of the inherent disability to
implement vector processing combined with ideal DFE, as this
yields a fallacious surpass of the ultimate Shannon capacity
[70], [44].

VIII. C ONCLUSION

In this tutorial paper, we have presented the paradigm of al-
gebraic binning in an effort to encompass a class of the rich
information-theoretic settings where random binning ideas are
applied and beyond. The underlying framework is the nested
codes, which have recently been studied extensively in a va-
riety of applications. The unified framework of nested structured
coding encompasses also other settings, where binning seems

not to be necessary, but yet, the nested approach facilitates a
new angle of perspective. Multiple-description lattice quantizers
[107] seem to have similar structure, but were not considered in
this work.

We examine, first, noiseless source coding problems with
side information available to the decoder and dual schemes of
constrained point-to-point transmissions, with side information
available to the transmitter only, adhering basically to Wyner’s
coset coding. We introduce the notion of nested codes either
on a binary or continuous alphabets, and extend then the
discussion to noisy side information settings, as the Wyner–Ziv
rate distortion problem, and the Costa, “writing on dirty paper”
and the Kuznetsov–Tsybakov–Heegard–El-Gamal defected
memory problems. We note also that since the Costa problem
and the problem of digital watermarking are equivalent, the
nested lattice scheme also provides a capacity-achieving
solution to the latter problem. The basic building blocks of
nested coding are then used to address classical multiterminal
problems, as correlated sources encoding–decoding, degraded
Gaussian broadcast channel, and a nondegraded Gaussian mul-
tiple-antenna broadcast setting. We also study the nested coding
approach on the standard point-to-point AWGN channel, and
the classical dispersive Gaussian channel, and demonstrate how
capacity can be achieved adhering to the basic building blocks
of nested coding. It is emphasized that trellis precoding via
Voronoi region coding as in [51], [33] can also be interpreted
in terms of nested lattice codes and, in fact, this may serve as a
possible practical construction of nested lattice codes.

As a closing remark, it is interesting to mention that nested
codes were recently speculated to be the central ingredient in
the accurate replication of the Genome [2].
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