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ABSTRACT

Many problems in information integration rely on specifioas, called

schema mappings, that model the relationships between schemas. Sch

ma mappings for both relational and nested data are welikndn
this work, we present a new formalism for schema mappingekat
tends these existing formalisms in two significant ways.st-iour
nested mappings allow for nesting and correlation of mappings. This
results in a natural programming paradigm that often yieldse ac-
curate specifications. In particular, we show that nestedpings
can naturally preserve correlations among data that egistiapping
formalisms cannot. We also show that using nested mappamgpsif-
poses of exchanging data from a source to a target will r@sldss
redundancy in the target data. The second extension to thpinta
formalism is the ability to express, in a declarative waguging and
data merging semantics. This semantics can be easily ctharge
customized to the integration task at hand. We present a fggw a
rithm for the automatic generation of nested mappings fronema
matchings (that is, simple element-to-element correspoces be-
tween schemas). We have implemented this algorithm, aldtigaly
gorithms for the generation of transformation queries.(&X@uery)
based on the nested mapping specification. We show that tiez-ge
ation algorithms scale well to large, highly nested scheriés also
show that using nested mappings in data exchange can dibstés
duce the execution cost of producing a target instanceicphatly
over large data sources, and can also dramatically impteveual-
ity of the generated data.

1. INTRODUCTION

Many problems in information integration rely on specifioas
that model the relationships between schemas. These spéoifis,
called schema mappings, play a central role in both data integra-
tion and in data exchange. We consider schema mappings awer p
of schemas that express a relation on the sets of instancegoof
schemas. The benefits of using declarative formalisms foerse
mappings are well-known. Such formalisms have the pronfipems
viding a high-level, natural programming paradigm for mapp,
and can facilitate customization, evolution, and use ifed#t in-
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tegration tasks. Declarative schema mapping formalisrae baen
used to provide formal semantics for data exchange [9, 13 idée-

@ration [14], peer data management [12, 5], and model manaige

operators [18] such as composition [15, 8, 21] and inverfipn

We start by examining the most widely used formalisms foesth
mappings. For relational schemas, these are bassaliore-to-target
tuple-generating dependencies (source-to-target tgds) [9] or, equiv-
alently, GLAV (global-and-local-as-view) assertions [10, 14]. For
schemas containing nested data (including XML schemagcidéx-
tensions have been proposed [24, 27]. We consider the eky@asss
of these mappings to understand what semantics they camaured
importantly cannot, capture. In addition, we study to wheemt
these formalisms meet the goal of providing a natural prognang
paradigm for mappings. In particular, we identify sevesalies that
can lead to inaccurate or underspecified mappings. Furtirerrmwe
show how existing mapping specifications may be fragmemea i
many small, overlapping formulas where the overlap may tead-
dundant computation, may hinder human understanding ahtqe
pings and, ultimately, may limit the effectiveness of maygpiiools.

To alleviate these issues, we propose a new mapping fommalis
nested mappings, that allows for nesting and correlation of mappings.
Nested mappings permit the expression of powerful grouping
data merging semantics declaratively within the mapping show
that nested mappings yield more accurate specificatiorts wéuen
used in data exchange can improve the quality of the exclooaafz.

1.1 Current Schema Mapping Formalisms

Source-to-target tgds and GLAV assertions are constra@itseen
relational schemas. They are expressive enough to represen
declarative way, many of the relational schema mappingstefeést.
In this work, we start by examining an extension of sourcéatget
tgds designed for schemas with nested data that is basedtlon pa
conjunctive constraints [23], and that have been used iesysfor
data exchange [24], data integration [27], and schema &wDnI{26,
28]. We refer to such mappings basic mappings. They form the
basic building blocks for our subsequent nested mapgings.

To illustrate the use of basic mappings, consider the mgpgin
ample shown in Figure 1. The source schema, illustrated etefh
is a nested schema describing departments with their eegdognd
projects. There is a top-level set of department record$each de-
partment record has a (nested) set of employee recordse had-
ditional nesting in that each employee has a set of dependeict a
set of projects. Each set can be empty, in general. The tsebetna,
shown on the right, is a slight variation of the source schema

LIn the literature thesbasic mappings have sometimes been referred
to as nested constraints or dependencies since they areaiotsson
nested data. However, the mappings themselves have ntustroc
nesting. Hence, we will use the teimasic to distinguish them from
the more structuredested mappings that we are proposing.



Tdept: Set of [

dname

location

budget

emps Setof |

- €NAMEe

-~ salary

dependents Set of [

salary
- name
name - age
age ]

] projects: Set of [

pid --------

pname | ] ] ;
projects: Set of [ !

] ______________ m,
T
pname

m,: “for every department element, map department info”:
for d in dept = exists d’ in Tdept where (d'.dname=d.dname 0O
d'.location=d.location)
m,: “for every department elemewith employees, map department and
employee info™:
for d in dept, e in d.emps = exists d’ in Tdept, e’ in d’.emps where ...
: “for every department elemewith employeewith dependents, ...”
m,: “for every department elemewith employeesvith projects, ...”

Figure 1: Multiple “small” mappings.

The formulas that are sketched below the schemas are exaofple
basic mappings. They are constraints that describe, in a declarative
way, the mapping requirements. These formulas may be dedera
by a tool such as Clio [24] from the lines (@orrespondences) be-

for d in dept =
exists d’ in Tdept [ ... \(mapping conditions from m;)

O|for e in d.emps =
exists e’ in d.emps [ ... (rest of m, -- not covered by m,)
O for c in e.dependents —
exists ¢’ in e’.dependents
[...(restof m3) ]
O for p in e.projects =
exists p’ in e’.projects, p” in d'.projects
[...(restof m,) ]
]

Correlation with
parent mapping

Figure 2: Nested mapping.

time inefficiency, this puts additional burden on methodslfgplicate
elimination or data merging. For the above example, an eyeplo
may be generated three times in the target: oncerfer(with an
empty set of dependents and an empty set of projects), oneeso
(with a non-empty set of dependents) and oncernfar(with a non-
empty set of projects). Merging of the three employee recantb
one is more than just duplicate elimination: it requires gieg of
two nested sets as well. Furthermore, this raises the guestivhen
to merge in general (since this is not expressed in any wayhéy t
mapping formulas of Figure 1). This brings us to the next poin
Underspecified grouping semantics'he formulam. requires that
for every department and for every employee record in theceou
there must exist, in the target, a “copy” of the departmecore with
a“copy” of the employee record nested underneath. Howigleft
unspecified whether to group multiple employees that arenoom
for a given department namdr{ame), or whether to group by other
fields, or whether not to group at all. Again, one of the reason

tween schema elements, or may be written by a human expert andhis lack of expressive power is the simplicity of these basapping

interpreted by a model management tool such as Moda [18]her ot
integration tools such as Piazza [12]. (We will give a precisman-
tics for the schema and basic mapping notation in Sectiont®e T
exact details are not essential for this introductory dis@n.)

Each formula (that is, eact;) deals with one possible “case” in
the source data (where each case is expressed by a conjun€tio
navigation paths joined in certain ways). In order to coligr@ssible
cases of interest, we need many such formulas. However, ofdhg
cases overlap (i.e., have common navigation paths). Hencemon
mapping behavior must be repeated in many formulas.

For example, the formula:> must repeat the mapping behavior
thatm;, already specifies for department data (althoughdoes it in
a more specialized context). Otherwise, if we specifyripionly the
mapping behavior for employees, we lose in the targeashaciation
that exists in the source between employees and their depats
(since there is no correlation between andms). At the same time,
m1 cannot be eliminated from the specification, since it deéls de-
partments in general (that are not required to have empsdyédso,
in the examplegns andm4 contain a common mapping behavior for
employees and departments (but they differ in that they rnifégrent
components of employees: dependents and projects).

Such formulas are (relatively) easy to generate and redsout.a
This is, partly, why they have been widely used in researadwéver,
the number of formulas quickly increases with large scheteasing
to an explosion in the size of the specification. This explosis well
as the overlap in behavior causes significant usability lprob for
human experts and for tools using these specifications ttipea
Inefficiency in executionIn a naive use of basic mappings, each
mapping formula may be interpreted separately. Optinonadf these
mappings requires sophisticated techniques that dedeceotinela-
tions and common subexpressions within the mappings.
Redundancy in the specificationVhen using basic mappings in data
exchange, the same piece of data may be generated multis in
the target due to the multiple formulas. In addition to pokesirun-
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formulas. In an early version of Clio [24], a default grouplmehavior
is used based on partitioned normal form (PNF) which alwagss
nested sets of elements by all the atomic elements at the lgets.
For example, under the PNF semantics, employees will bepgabu
by dname andlocation  (assuming thabudget is not mapped
and its value is null). In effect, the semantics of the tramsftion
is specified in two parts: first the mapping formulas, and tthen
implicit (PNF-based) grouping semantics. An importantifétion of
this approach is that the default grouping semantics is petied
declaratively, and it cannot be easily changed or custamizeen it
is not the desired semantics.

1.2 Nested Mappings

In order to address the above issues, we propose an extension
basic mappings that is based on arbitrary nesting of mapfpimgu-
las within other mapping formulas. We shall call this forigad the
language ohested mappings. As a first observation, it can be argued
that nested mappings offer a more natural programming frarefdr
mapping tasks, since human users tend to design a mappimg fro
top to bottom, component-wise: define first how the top corepts
of a schema relate, then define, recursively, via nested apjbimgs,
how the subcomponents relate, and so on. For our earlierpgam
the corresponding nested mapping is illustrated in FigureTke
nested mapping relates, at the top-level, source depatsméi tar-
get departments; it then continues, in this context of a deynt-to-
department mapping, with a submapping relating the cooredipg
employees, which then continues with submappings for dig@s
and projects. At each level, there are correlations betweeourrent
submapping and the upper-level mappings. In particulahing is
repeated from the upper level, but instead reused.

Advantages of nested mapping®ested mappings overcome (to a
large extent) the previous shortcomings of basic mappiRagst, we
need fewer formulas and overall produce a more natural acutate
specification. For our example, one nested mapping repfaceba-



sic mappings. In general, we may still need multiple nestagpings
(one common situation is when we have multiple data sour&es)-
ond, by using nested mappings, we are able to produce marieeffi
data exchange queries. This is because nested mappings datt
common subexpressions, so we can more easily optimize time nu
ber of passes over the same input data. For our example toheper
records can be scanned only once, and the entire work imgpivie
subelements can be done in the same pass (by the submappings)
execution will also generate much less redundancy in tlgetalata.
An employee is generated once, and all dependents and {srajec
added together (by the two corresponding submappings).

Nested mappings also have a natural, built-in, groupingyzieh,
that follows the grouping of data in the source. For examtiie,
above nested mapping requires that all the employees iatpettare
grouped in the same way as they are in the source. This gmupin
behavior is ideal for mappings between two similar schemémch
is common in the important case of schema evolution) wherehmu
of the data should be mapped using the identity (or mostyHidy)
mapping. For more complex restructuring tasks, additigmalp-
ing behavior may need to be specified. We use a simple, butrpowe
ful, mechanism for adding such grouping behavior by usirgieix
grouping functions (a restricted form of Skolem functions)
Summary of Contributions
e \We propose a nested mapping formalism for representingethe r
tionship between schemas for relational or nested datdi¢Be).

e We propose an algorithm for generating nested mappingsrfratoh-
ings, or correspondences, between schema elements. Tted nas
ture of the mappings makes this generation task more clggtign
than in the case of basic mappings (Section 3).

e We give an algorithm for the generation of data transforomati
queries that implement data exchange based on nested myapgic-
ifications. Notably our algorithm can handle all nested niagg in-
cluding those generated by our mapping algorithm as wellasary
customizations of these mappings, which may be made, fanpbea
by a user to capture specialized grouping semantics ($ef}io

o We show experimentally that the use of nested mappings &nedat
change can drastically reduce the execution cost of praductarget
instance, and can also dramatically improve the qualithefgener-
ated data. We show examples of important grouping semathtits
cannot be captured by basic mappings, and we empiricalky it
underspecified basic mappings may lead to significant rezhaydin
data exchange (Section 5).

Related Work Schema mappings are so important in information in-
tegration that many mapping formalisms have been propasediff
ferent tasks. Here we mention only a few. The important rdle o
Skolem functions for merging data has been recognized inna nu
ber of approaches [13, 22] and Skolem functions appear aithpli
as part of the XML-QL query language [6]. Work on model man-
agement has used embedded dependencies (similar to otinesi
pings) which may be augmented with Skolem functions [3, H&P-
ToX [5] uses a datalog-like language that supports nesteedatel al-
lows Skolem functions, but mappings cannot be nested oeletbed.
Grammars have been used to specify mappings for (recuiBvBs
[2]. While most of these formalisms support nested dataheddest
of our knowledge, none of the existing declarative fornmtsupport
the expression of nesting between mappings.

Our nested mappings are strictly more expressive than baegie
pings. At the same time, they are less expressive than lgegussed
for composition [8, 21]. In particular, if we restrict ouhges to the
relational model (for comparison purposes), nested maggpane a
strict sublanguage of the second-order tgds (SO tgds)dated in
[8]: every nested mapping can be rewritten, via Skolenratinto
an equivalent SO tgd (but not vice-versa). However, thisritéw
would erase the nesting structure of the mapping, and ittislear
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dept: Setof [
.- dname
~" budget

proj: Setof [ .- emps Setof [
dname-" . ename
pname., .. salary
emps Set projects: Set of [
id

my

where d’.dname=p.dname O p’.pname=p.pname

m,  for p in proj, e in p.emps =
exists d’ in dept, p’ in d’.projects, €’ in d".emps, p” in €’.projects
where p”.pid=p’.pid O
d’.dname=p.dname 0 p’.pname=p.pname [
e’.ename=e.ename [ e’.salary=e.salary

Figure 3: A mapping scenario with two basic mappings.

to what extent such nesting could be extracted from an argi®O
tgd. The language of SO tgds does not allow nesting of forsjula
but instead allows correlation of formulas via arbitrary&kn func-
tions, a more powerful but arguably less user-friendly progming
concept. We also note that there is no known algorithm foegsn
ing SO tgds; the algorithm for generating nested mappings ke
propose here can, however, be seen as a step in that diresition
nested mappings correspond to a form of SO tgds.

Many industry tools such as BizTalk Mapper, IBM WebSphere
Data Stage TX, and Stylus Studio’s XML Mapper support thestiev
opment (by a programmer) of mappings. Some support nestpd ma
pings, though in more procedural languages. However, nifasbt
all, of the work done to express such mappings is manual. Ggoe
of mappings (with no nesting) has been considered in theSkEan
system [20], Clio [19, 24] and HePToX [5]. Also, Bohannon lef4]
consider the generation of information preserving mappitigsed
on path mappings). Our work extends the Clio mapping geioerat
algorithm to produce nested mappings.

As part of our generation algorithm, we identify common espr
sions within mappings. Our goal is to identify possible etations
between mappings that can be exploited to produce more atecur
mapping specifications. Our techniques are in the same spivork
on identifying common expressions within complex quergase in
query optimization [25]. However, unlike query optimizatiwhich
must necessarily preserve query equivalence, our tecbsilpad to
mappings with better semantics, and so do not preserveaenee.

Notably the generation of efficient queries for data excleadagot
considered in work like Piazza [12] and HePToX [5] which é&sd
focus on query generation for data integration. In model agen
ment [18, 3], query or code generation for data exchange &ées b
considered for embedded dependencies. Clio [24] genexQestry,
XSLT, SQL/XML, and SQL queries for basic mappings.

2. MAPPINGS WITHIN MAPPINGS

In this section, we fix the notation and terminology for schsrand
mappings based on our previous work [24, 28]. Furthermoegtake
a closer look at the qualitative differences between basippimgs
and nested mappings.

2.1 Basic Mappings

Consider the mapping scenario illustrated in Figure 3. Ve t
schemas in the figure (source and target) are shown in a nested
lational representation that can be used as a common atixstréar



relational and XML schemas (and other hierarchical setrbeid data
formats). This representation is based on sets and redoati€an
be arbitrarily nested. In the source schemaj is a set of records
with two atomic componentslname (department name) anqmhame
(project name), and a set-valued componentps, that represents a
(nested) set of employee records. The target schema is gargor
zation of the source: at the top-level we have a set of degattm
records, with two nested sets of employee and project recdfdre-
over, each employee can have its own set of project ids (pidsth
must appear at the department level (this is required byaheign
key shown in the figure with an arrow).

Formally, aschema is a set of labels (also called roots), each with
an associategype 7, defined by:r ::=Str | Int| SetOf 7 | [ {1 : 71,. . -,
In : ], Wherely, ..., L, are label€. We point out that this is only a
simplified abstraction: in the system that we implemented,algo
deal with choice types, optional elements, nullable elés)eetc.
However, the presence of these additional features doesssein-
tially change the formalism.

Source data: Target data:

dept: P;:
proj: CSB, E P, X, uSearch
CS uSearch E, {my,m,} dept:
E. C—> SBEP,
o
Alice 120K SBEPs
John 90K E,: P,: P,"
Alice 120K P, X, uSearch X;
E;: Pyt P5":
John 90K Py’ X3 uSearch X3

Figure 4: Source and target instances satisfyingmi, m2}.

tuple(d, p, Es) inproj , and for every tuplée, s) in the setFs, there
must exist four tuples in the target as follows. First, we tiave a
tuple (d, b, E, P) in dept , whereb is some “unknown” budgetf
identifies a set of employee records, ahddentifies a set of project

In Figure 3, we also show two basic mappings that can be used torecords. Then, there must exist a tugles, P’) in E, whereP' iden-

describe the relationship between the source and the tsecgetnas.

tifies a set of project ids. Furthermore, there must exisptet{x) in

The first one;m1, is a constraint that maps department and project P’, wherez is an “unknown” project id. Finally, there must exist a

names in the source (independently of whether there exisean

tuple (z, p) in the previously mentioned sét, wherez is the same

ployees inemps) to corresponding elements in the target. The sec- project id used inP’. Notice that all data required to be in the target
ond onejma, is a constraint that maps department and project names by the mapping satisfies the foreign key for the projects.

and their employees (whenever such employees exist).

In the figure, we use a “query-like” notation, with variabtesund
to set-type elements. Each variable can be a record and ktenee
tain multiple components. Correspondences between scleéana
ments (e.g.dname to dname) are captured by equalities between
such components (e.gl,.dname = p.dname). These equalities are
grouped in thevhere clause that follows thexists clause of a map-
ping. Moreover, equalities can also be used to express guidittons
(or other predicates) in the source or in the target. For gkansee
the requirement opid in m that appears in the sanahere clause.
Logic-based notationAlternatively, we will use a “logic-based” no-
tation for mappings that quantifies each individual commporie a
record as a variable. In particular, nested sets are ettplidentified
by variables. Each mapping is an implication between a satoofic
formulas over the source schema and a set of atomic formukrs o
the target schema. Each atomic formula is of the fefnn, . .., z,)
wheree denotes a set, and, . . ., z,, are variables. The main differ-
ence from the traditional relational atomic formulas istthanay be
a top-level set (e.gproj ), or it may be a variable (in order to denote
sets that are nested inside other sets). We will write thmiateari-
ables in lower-case and the set variables in upper-casefofinelas
corresponding to the mappings; andm. of Figure 3 are:

proj(d,p, Es) — dept(d,?b,?E,?P) A P(?z,p)
pr03 (d.p. E.) A By (e, s)
— dept(d, 70, ?E,?P) A E(e, s,7P") A P'(?z) A P(z,p)

ma :
ma

For each formula, the variables on the left of the implicatiwe as-
sumed to be universally quantified. The variables on the thgit do
not appear on the left are assumed to be existentially diethtiFor
clarity, we omit the quantifiers and use a question mark intfod the
first occurrence of an existentially-quantified variable.

To illustrate, inmo2, the variableE; denotes the nested set of em-
ployee records (inside a tuple in the top-level gedj ). The vari-
ablesE, P, andP’ are also set variables, but existentially quantified.
The variabled (for budget) and: (project id) are existentially quan-
tified as well (but atomic). The meaning of; is: for every source

2In Figure 3, we do not show any of the atomic types.
3For simplicity of presentation, we assume strict alteoranf set
and record types in a schema.
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2.2 Correlating Mappings via Nesting

We now take a look at actual data in order to understand tharsem
tics of basic mappings, and to see why such specificatiorubymyis
not entirely satisfactory. In Figure 4, we show source angetain-
stances that satisfy the constraimts andms. In the sourceFEy
is a “name”, orset id, for the nested set of employee records corre-
sponding to the tuple given proj . We assume that every nested set
has such an id. SimilarlyZ,, Pi, Es, ..., Pj are setids in the target
instance. The top two target tuples, fiept and P;, respectively,
ensure thatn; is satisfied; the rest are used to satisfy.

In general, for a given source instance, there may be setegat
instances satisfying the constraints imposed by the mgpgpecifi-
cation. Given the specificatiohni, m2}, the target instance shown
in Figure 4 can be considered to be the most general that carobe
duced (auniversal solution [9]), because it is the one that makes the
least assumptions. For example, it does not assumethand E
are equal (since this is not required by the specificatiorwever,
this target instance may not be satisfactory for a numbeeadans.
First, there is redundancy in the output: there are thieget tuples
generated for “CS”, for different instantiations of thetiend sides
of m; andmes. Also, there are three project tuples for “uSearch” (al-
though in different sets). Second, there is no grouping td dathe
target: > and E’5 are different singleton sets, generated for different
instantiations of the left-hand side of. (same forP, and P;). This
does not violate the constraints, however, since the mgpgpecifi-
cation does not requirg, andE’; to be equal.

In Figure 5, we show a target instance that is more “desitable
This instance has no redundant departments or projectst arain-
tains the grouping of employees that exists in the sourceiléftis
instance satisfies the constraints andmg, for the given source
instance, it is notequired by these mappings. In particular, the spec-
ification given by{m., m2} does not rule out the undesired target
instance of Figure 4.

We would like to have a specification that “enforces” cottieles
such as the ones that appear in the more “desirable” targetnice
(e.g., that the two source employees appear instimae set in the
target). In particular, we would like to correlate the magapin.
with m; so that itreuses the set idE for employees that is already
asserted byn; (along with other existentially-quantified elements in



P,"
dept: P,: E;: ;
CSB; E;P; X, uSearch  Alice 120K P,’ ,
John 9ok P, Py
Xl

Figure 5: Target data required by the nested mappingn.

ms1), Without repeating the common part, whichnig itself. This can
be done using the followingested mapping:
n: Proj(d7p7 E.s) -
[ dept(d,?b,7E,7P) A P(?x,p)
A [ Es(e,s) — E(e,s,7P") AN P'(z) ] ]

The inner implication inn (the third line) is asubmapping. We
refer to the rest ofi as theouter mapping. The submapping is corre-
lated to the outer mapping because it reuses the existeatiables
E andz. In particular, the submapping requires that for every em-
ployee tuple in the s€fs (whereE is bound by the outer mapping),
there must exist an employee tuple in the Eetvhich is also bound
by the outer mapping. Also, there must exist a project tuptbé set
P’ associated to this employee, and the project id must begaigci
the one £) already required by the outer mapping. Note tRatis
now existentially quantified and bound in the inner mapping.

A fundamental observation about the nested mapping that
the “undesirable” target instance of Figure 4 does not fyatis re-
quirements. For example, when we apply the outer mappingtof
proj(CS, uSearch, Ep), we requiredept(C'S, B1, E1, P1) to bein
the target. Now, when we apply the submappin@dAlice, 120K)
andEq(John, 90K), wemust have tuples forlice andJohn within
the same sef;. The nested mapping explicitly rules out the target in-
stance of Figure 4, and is a tighter specification for therddsichema
mapping.

Another important observation is that there is no set ofdaip-
pings that is equivalent to the above nested mapping. (titivard to
show this and we leave the details for a larger version ofghfger.)
Thus, the language of nested mappings is strictly more ezwe
than that of basic mappings.

Finally, we show below the nested mapping in query-like tiota
Notice that the variableg, d’ andp’ from the outer level are being
reused in the inner level.

n: for p in proj =
exists d’ in dept,p’ in d'.projects
where d’.dnames.dnamen p’.pnamep.pnamein
(for e in p.emps =
exists ¢’ in d’.empsp” in e’.projects
where p”.pid=p’.pid A
¢’.enamez.enamen ¢’ .salary=.salary )

2.3 Grouping and Skolem Functions

As seen in the above example, nested mappings can take ageant
of the grouping that exists in the source, and require thgetatata
to have a similar grouping. In the example, all the employtbes
are nested inside one source tuple are required to be nesidd the
corresponding target tuple. In this section, we show howsaioted
form of Skolem functions can be used to model groupings of data that
may not be present in the source.

To illustrate, consider again the source schema in Figuhe Big-
ure 6, we show source and target data for this schema. Onfthede
show a source instance that extends the one of Figure 4. tioydar,
the “CS” department is associated with two different prtgeastead
of one. On the right, we show a desired target instance, wivejects
are grouped by department name. This target instance igqoired
by the nested mapping which allows target instances where we may
have multiple department tuples (with the satimame value), each
with a singleton set containing one project. In other wotidls source
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data is flat and, consequently, the target data is flat (assféreare-
lationship between departments and projects goes). Faortne, the
above nested mapping does not merge sets of employees fearap
in different source tuples with the same department namenirast
with the target instance shown in Figure 6.

Suppose now that wdo want to group into one set all the projects
of a department, and also all the projects for each employeedie-
partment. Also, we want to merge all the employees for a gien
partment. To generate such new groupings of data, we neeattlto a
something else to the specification, since nesting of magpitone is
not flexible enough to describe such groupings. The mecimattiat
we add is that of Skolem functions feet elements. Intuitively, such
functions can express that certain sets in the target musincéions
of certain values from the source. For our example, to espties
desired grouping, we enrich the nested mapping with threxde8k
functions for the three nested set types in the target, &l

n':for p in proj =

exists d’ in dept,p’ in d’.projects
where d’.dnamep.dnameA p’.pnamep.pname
d’ .emps=Ep.dname] A d’'.projects=P[p.dname] A
(for e in p.emps =
exists ¢’ in d’.empsp” in €'.projects
where p”.pid=p’.pid A
e’.enamez.enamen ¢’.salary=.salaryA
e’ .projects=P’[p.dnamege.ename))

The new mapping constrains the target set of projects to baa f
tion of only department name: Pfiname]. Also, there must be only
one set of employees per department namg.,déame], meaning that
multiple sets of employees (for different source tupleslie same
department name) must be merged into one. Similarly, ajepts of
an employee in a department must be merged into one set.

More concretely, for the source tupbleoj(CS, uSearch, Ey) of
Figure 6, the outer mapping of requires that the target contains
dept(CS, B1, F1, P). In addition, E[*CS"] (the result of applying
the Skolem function E to the value “CS”) correspondsfta Due
to the inner mapping, the two employeesif (“Alice” and “John”)
must be inE;. Now consider the source tupl€'S, iMap, E;). The
mappingn’ requires the employees working on the “iMap” project
(Bob and Alice) to also be within the sét;. The reason for this
is that, according ta’, the employees of “iMap” must also be in
E[*CS"], which is E}.

Due to lack of space, we omit the precise definition of nestag-m
pings, which is straightforward and follows the exampled aru-
ition given above. We do point out the following natural region.
The for clause of a submapping can use a correlation variable (i.e.,
bound in an upper-level mapping) only if that variable is hduin a
for clause of the upper-level mapping. (A similar restrictiahds for
the usage of correlation variablesdrists clauses.)

Every nested mapping (with no explicit Skolem functionsdsiiv-
alent to one in which default Skolem functions are assigoedl the
existentially-quantified set variables (using here thecldmased no-
tation). The default arguments to such Skolem functionsalirthe
universally quantified variables that appear before theaséble.

As an example, the previous nested mapping equivalent to
one in which the target set of projects nested under daph tuple
is determined by a Skolem function of all three componentthef
input proj tuple (i.e,dname, pname, andemps). In other words,
there must be a set of target projects for each impaj tuple. Of
course, this does not require any grouping of projects badements.
However, once we expose them to a user, the Skolem functams c
be customized, in order to achieve different grouping bingguch
as the one seen with the earlier mappiriyy This is the approach that
we follow in our system: we first generate nested mappinggh(mo
Skolem functions), then apply default Skolemization, iahtan then
be altered in a GUI by a user.




Source data:

proj:

Target data: Pl'(=P’ [°Cs", "Alice"]):

Xy

dept:

CS uSearch E, n E,(=E["CS"]): %,
CSiMap n? SBEP e 120K X .

. - John 90K P, 2
Ey: Eo Bob 75K Py’ 1
Alice 120K Bob 75K Py (=P["CS"]): .
John 90K Alice 120K X, uSearch Py’
X, iMap X

Figure 6: Example data for the nested mapping’.

Skolem functions and data mergingOur example illustrates how
one occurrence of a Skolem function permits data to be aclatetu
into the same set. Furthermore, the same Skolem functionbmaay
used in multiple places of a mapping or even across multie-m
pings. Thus, different mappings (correlated via Skolencfioms)
may contribute to the same target sets, effectively achiptata merg-
ing. This is a typical requirement in data integration. Her8kolem
functions are a declarative representation of a powerfalyasf data
merging semantics.

As an interesting example of a set being shared from mulpiplees
consider the case when “Alice” has different salaried{” and130K)
in the two tuples in the source of Figure 6. Then our mappihge-
quires that there be two different “Alice” tuples in the tardboth
in the setF; = E[“CS"]). Moreover, the same set of projects will
be constructed for the two Alice tuples since the (projestt)id is
a Skolem function (B of “CS” and “Alice” (and does not take into
accountsalary ). This showcases an interesting feature of the map-
ping language, which is the ability to merge several comptmef a
piece of data while still keeping other components sepdi@erhaps
until further resolution).

3. GENERATION OF NESTED MAPPINGS

In this section, we describe our algorithm for the generatib
nested mappings. Given two schemas, a source and a tardet, an
set of correspondences between atomic elements in the ashtime
algorithm generates a set of nested mappings that “beséctdfie
given schemas and correspondences. The first two steps afgihe
rithm (Section 3.1) follow the generation of basic mappittys we
introduced in our previous work [24]. We then describe (BecB.2)
an additional step in which unlikely basic mappings are pdurThis
significantly reduces the number of basic mappings. We defiren
a basic mapping can be nested under another basic mappirgin S
tion 3.3. The pruned basic mappings are then input to thedtealin
the algorithm to generate nested mappings (Section 3.4).

3.1 Basic Mapping Generation

We now review the generation algorithm for basic mappind§.[2
The main concept is that oftableau. Intuitively, tableaux are a way
of describing all the “basic” concepts and relationshigt #xist in
a schema. There is a set of tableaux for the source schemasand a
of tableaux for the target schema. Each tableau is primarilgn-
coding of one concept of a schema (here, concept is synorg/toau
set type). In addition, each tableau includesekted concepts, that
is, concepts that must exist together according to theeefial con-
straints of the schema or the parent-child relationshiplsérschema.
This will allow the subsequent generation of mappings thesgrve
the basic relationships between concepts. Such presamnatne of
the main properties of our previous algorithm [24], and wilhtinue
to apply for the new algorithm as well.

Step 1. Computation of tableauxGiven the two schemas, the sets of
tableaux are generated as follows. For each setfjipea schema, we
first create grimary path that spells out the navigation path from the
root to elements of . For each intermediate set, there is a variable
to denote elements of the intermediate set. To illustrateall the
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B, ={dindept;}

B, = {dindept, ein d.emps; }

B; = { d in dept, e in d.emps, p in e.projects,
p’ in d.projects ; p.pid=p’.pid }

B, = { d in dept, p in d.projects ; }

Ay ={pinproj;}
A, ={pinproj, e in p.emps ; }

(@)

Bl
Ay AN
N B, B,
Ay \W
B

3

(b)
Figure 7: (a) Source and target tableaux (b) Tableaux hierachies

earlier schemas in Figure 3. In Figure 7(d), and A, are primary
paths corresponding to the two set types associatedpsith and
emps in the source schema. Note thath, the parent seproj
is also included, since it is needed in order to refer to atairee of
emps. Similarly, B1, Bz, and B4 are primary paths in the target.

In addition to the structural constraints (parent-chiltttare part
of the primary paths, the computation of tableaux also takesac-
count the integrity constraints that may exist in schemasr dur
example, the target schema includes the following comtfgimi-
lar to a keyref in an XML Schema): every project id of an empley
within a department must appear as the id of a project listei@uthe
department. This constraint is explicitly enforced in thbléauBs
in Figure 7(a). The tableau is constructed by enhancingheiehase
[16, 23] with constraints, the primary paifb, that corresponds to the
set typeprojects  underemps:

B} = {dindept eind.emps pin e.projects }

The tableauBs encodes, intuitively, that the concept of a project-
of-an-employee-of-a-department requires the followingaepts to
exist: the concept of an employee-of-a-department, theerof a
department, and the concept of a project-of-a-department.

For each schema, the set of its tableaux is obtained by iaglac
each primary path with the result of its chase (with all thpliep-
ble integrity constraints). For our example, only one priyraath is
changed by the chase (inis). The rest remain unchanged (since no
constraints are applicable). For each tableau, for mappimgoses,
we will consider all the atomic type elements that can berreteto
from the variables in the tableau. For examghg,includesdname,
budget , ename, salary , pid ,* pname. We say that such ele-
ments arecovered by the tableau. Let us cajenerators the variable
bindings that appear in a tableau. Thus, a tableau condistse-
guence of generators and a conjunction of conditions.

Step 2. Generation of basic mapping# the second step of the al-
gorithm, basic mappings are generated by pairing in alliptessays
the source and the target tableaux that were generatedfinsttep.
For each pai( A, B) of tableaux, letV be the set of all correspon-
dences for which the source element is coveredilgnd for which
the target element is covered B, For our example, if we consider
the pair(A:, By) thenV consists of one correspondencitame to
dname, identified byd in the earlier Figure 3. If we consider the pair
(A1, Bs) then there is one more correspondence covepadme to
pname (or p).

Every triple(A, B, V') encodes a possible basic mapping: fibre
and the associateghere clause are given by the generators and the
conditions inA, the exists clause is given by the generators fih
and the subsequenthere clause includes all the conditions i
along with conditions that encode the correspondencesf(ireevery
v in V, there is an equality between the source element ahd

“We include only ongid , sincep.pid is equal tg’.pid.



the target element of). We may write the basic mapping repre-
sented by(A, B,V) asVA — 3B.V, with the meaning described
above. For our example, the basic mapping: — 3Bas.{d,p}
is precisely the mapping:; of Figure 3. Also, the basic mapping
VA — 3Bs.{d, p, e, s} is the mappingn: of the same figure.
Among all the possible triplegA, B, V'), not all of them generate
actual mappings. We generate a basic mapping only if it issuimt
sumed and notimplied by other basic mappings. This optimization
procedure is described in the next subsection.

3.2 Subtableaux and Optimization

The following concept of subtableau plays an important imtea-
soning about basic mappings, and in particular in pruningiolikely
mappings during generation (see the following Step 3). Tames
concept also turns out to be very useful in the subsequemrraton
of nested mappings.

DEFINITION 3.1. Atableaw is asubtableau of a tableaud’ (no-
tationA < A’) if the generators il form a superset of the generators
in A’ (possibly after some renaming of variables) and also theieon
tions in A are a superset of those if or they imply them (modulo
the renaming of variables). We say thats astrict subtableau of A’
(A< A)if A < A’ and the generators i form a strict superset of
those inA’.

For each schema, the subtableau relationship inducescéatiracyclic
graph of tableaux, with an edge fromto A’ wheneverd < A’
Such a graph can be seen as a hierarchy where the tableaaxehat
smaller in size are at the top. Intuitively, the tableauxhattop cor-
respond to the more general concepts in the schema, whie thio
the bottom correspond to the more specific ones. Althougisibe
tableau relationship is reflexive and transitive, most efttme we are
concerned with the “direct” subtableau edges. For our exantipe
two hierarchies (with no transitive edges) are shown in FEgi(b).
Step 3. Pruning of basic mapping3Ve now complete the algorithm
for generation of basic mappings with an additional step pnanes
unlikely mappings. This step is especially important beeait re-
duces the number of candidate mappings that the nestingtaigo
will have to explore.

A basic mapping7A — 3B.V is subsumed [11] by a basic map-
pingvVA’ — 3B’.V'if A andB are respective subtableaux4fand
B’, with at least one being strict, and = V’. Note that ifA and B
are respective subtableaux.4f andB’, then necessarily includes

V' (since A and B cover all the atomic elements that are covered
by A’ and B’, and possibly more). The subsumption condition says

that we should not consid¢rl, B, V') since it covers the same set of
correspondences that are covered by the smaller (and moesadje
tableauxA’ and B’. For our exampley A; — 3B5.{d} is subsumed
A basic mapping may be logicaliynplied by another basic map-
ping. Testing logical implication of basic mappings can bealusing
the chase [16, 23], since basic mappings are tuple-gengra¢ipen-
dencies (albeit extended over a hierarchical model). Aigioin our
implementation we use the chase (for completeness), ofanger
test suffices: a basic mapping is implied by a basic mapping:’
wheneverm is of the formvVA — 3B.V andm’ is of the form
VA — 3BV’ and B’ is a subtableau of3. Intuitively, all the
target components (with their equalities) that are asddayen are

asserted byn’ as well (with the same equalities). As an example,

VA, — 3B:.{d} is implied byVA, — 3B4.{d, p}.
We note that subsumption also eliminates some of the impiigo-
pings. In the earlier definition of subsumption, in the gatér case

whenB and B’ are the same tableaux then the subsumed mapping is

also implied (by the other one). For exampted, — IB:.{d} is
subsumed and implied byA; — 3B:.{d}.
The generation algorithm for basic mappings stops aftemieéit-

73

ing all the subsumed and implied mappifigsor our example, we are
left with only the two basic mappings;: andmz, from Figure 3.

3.3 When Can We Nest?

We now give a formal definition of the notion of a basic mapping
beingnestable under another basic mapping. This definition follows
the intuition given in Section 2.2: we nesty inside m, if my is
“part” of ms; morever the nesting is done by factoring out the com-
mon part {n1) and adding the “remainder” ofi; as a submapping.
Based on this definition, we will construct a graph (hiergjaf basic
mappings that will be used by the actual generation algorithhich
is described in Section 3.4.

DEFINITION 3.2. A basic mappiny A, — 3Bs.V> is nestable
inside a basic mappingA; — 3B;.V; if the following hold:

(1) A2 andB- are strict subtableaux of; and B;, respectively,
(2) V- is a strict superset df;, and

(3) there is no correspondenedn V> — V7 whose target element is
covered byB;.

For our example, the basic mapping, = VA, — 3Bs.{d,p, e, s}

is nestable insiden; = VA; — 3B4.{d,p}. In particular,A, and
B3 are strict subtableaux of; and By; also there are two correspon-
dences inn2 but not inm; (e ands) and their target elements are not
covered byBy.

DEFINITION 3.3. Letmy = VA, — 3Bs.V; benestable inside
m1 = VA1 — 3B;.Vi. Without loss of generality assume that all
variable renamings have been applied so that the geneiiatots
(Bh1) are literally a subset of those i (B2). Theresult of nesting
maz insidem; is a nested mapping of the form:

VAl g ElBl [ Vl A
V(Ay — A1) — (B2 — By).(Va — V1) ]

whereV(A; — A1) — 3(B2 — By1).(V2 — Vi) is a shorthand for

a submapping constructed as follows. Tibe clause contains the
generators imM» that are not in4;. The subsequenthere clause (if
needed) contains all the conditionsAn that are not among (and not
implied by) the conditions ofi;. Theexists clause and subsequent
where clause satisfy similar properties with respectB¢ and B;.
Finally, the lastwhere clause also includes the equalities encoding
the correspondences 3 — V;.

It can easily be verified that, for our example, the resultesfting
my insidem; is precisely the nested mappimg We next explain
conditions (1) and (3) in Definition 3.2 (condition (2) is theore
obvious one). Assume that, andm; are as in Definition 3.2. The
condition thatA- is a strict subtableau ofl; ensures that théor
clause in the submapping that appears in the result of gestin
insidem; is non-empty.

Assume now thaBs is not a strict subtableau @&; and it is equal
to B; (the case when there are additional condition®&ndoes not
affect the discussion). Then, the submapping that appe#s result
of nesting ofm; insidem; is a formula of the formy(A; — A;) —
(Va2 — V1) (i.e., the equalities on the right are implied by the leftitha
side). There is at least one correspondenicelz — Vi, and its source
element is not covered hy; (otherwise it would be irfi/;). Hence,
in the right-hand side of the above implication, there iseaist one
equality asserting that a target element coveredbyis equal to a
source element covered by, — A;. The problem with this is that
there aremany instances of such a source elementdne instance
of the target element (sind®, is outside the scope 6f( A2 — A1)).
This constraint would effectively require that all suchtareces of the
source element be equal (and equal to the one instance cirtyet t

SAlthough our original algorithm did not include the elimtien of
implied mappings, this step can remove many unnecessanufas.



m; =08, -~ OA;. {d} ’&KR\
m, =08, - CA;.{d,p} m, mg
mg=0B, - A,.{d, es} A\

mg=0B; - OA,.{d,p,es} mf?,

() (b)

Figure 8: (a) Reverse basic mappings; (b) Nestable relation

element). Such a constraint is unlikely to be desired (evleanait
is satisfiable). Although condition (3) is a bit more sub#ezareful
analysis yields a similar justification.

We illustrate this discussion by considering the revergb@mMmap-
ping scenario shown in Figure 3. The schema on the right offigra
ure is now the source schema, while the schema on the leé tathet
schema. The correspondences are the same. Also, the talbéeau
main the same as in Figure 7, with the difference BatB;, Bs, Ba
are now source tableaux, arid and A, are target tableaux.

There are four basic mappings (not implied and not subsuthatl)
are generated by the algorithm described in Section 3.1s€ heap-
pings are shown in Figure 8(a). We have thai is nestable inside
ms andmg is nestable insidens. However,m4 is not nestable in-
sidems (because the target tableaux is the same). Similatlyjs
not nestable insidens. If we try to nestmy insidems, we would
obtain the following nested mapping:

ns4: for d in dept =
exists p’ in proj
where p’.dnamed.dnamen
(for p in d.projects= p’.pnames.pname )

This constraint says that if there are multiple projectsria@ept
tuple (which is possible according to the source schema)dt¢hese
projects are required to have the sgon@ame value (which must also
equal thepname value in the corresponding targaebj tuple). This
puts a constraint on theource data that is unlikely to be satisfied.
Our algorithm does not generate such mappings.

3.4 Nesting Algorithm

In the next step of the algorithm, we use thestable relation of
Definitions 3.2 and 3.3 to create a set of nested mappingsinpg
to this step is the set of basic mappings that result aftgr Ste
Step 4. Generation of nested mappingk this step, the algorithm
first constructs a DAGY = (M, E) that represents all possible ways
in which basic mappings can be nested under other basic mggpi
Here, M is the set of basic mappings generated in Step 3, while
contains edges:; — m; with the property thatn; is nestable under
m; according to Definition 3.2. To create nested mappings out of
G, theroot mappings ofG are identified and &ree of mappings is
extracted fromG for each root. Each such tree of mappings becomes
a separate nested mapping.

To understand the shape 6fand the issues involved in its con-
struction, we examine the properties of tiestable relation of De-
finition 3.2. Given two basic mappings:; and m;, let us write
m; = my; if m; is nestable insidex;. We note that:

(1) Thenestable relation is not reflexive and not symmetric. In fact,
stronger statements hold: (a) for all;, m; % m,;, and (b) if
m; = mj, thenm; # m;. This follows from the strict sub-
tableaux requirement in condition (1) of Definition 3.2.

(2) Thenestable relation is transitive: ifm; = mj; andm; = my
thenm; = my. This again follows from condition (1) of Defini-
tion 3.2 and, further, from conditions (2) and (3).

Because of (1) and (2) abow@,is necessarily acyclic. If there is a
pathm; ~» m; in G, then no pathn; ~» m; exists inG. Condition
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(2) tells us that a naive algorithm for creati6gmight add too many
edges and hence form unnecessary nestings. Indeed, suppbse
m; = my; andm; = my, Which also implies thain;, = my.
Thenm,; can be nested undet; which can be nested undert;. At
the same timem,; can be nested directly undet;. However, we
prefer the former, deeper, nesting strategy because tieapistation
preserves all source data together with its structure.

To illustrate this point, consider the mapping in Figure hefe,
we have thains = mo = m1, and alsans = mi. We prefer the
deepest nesting which results in a nested mapping with thenfo
ing pattern: first maglept tuples, then map themps tuples under
the currentdept tuple, and then map théependents tuples of
the currenemps tuple. The other interpretation, obtained by nesting
ms directly insidem, is not semantically equivalent to the first one.
Indeed, this second interpretation mapsdalpt tuples but then, for
eachdept tuple, it maps the join ofmps anddependents tuples
(thus,emps tuples with no dependents are not mapped). In order not
to lose data, we can “fix” this second interpretation by mesboth
mg andms directly insidem; (using the fact thatn, = m, and
ms = ma). This would have the effect of mapping all tuples of
emps. However, this choice still does not model any correlatien b
tween the two submappings, andms. Hence, there is no merging
of employee tuples and no grouping of dependents within eyegis.
The first interpretation solves the issue by utilizing, itively, all the
available nesting.

To implement the above nesting strategy, which perform&téep-
est” nesting possible, our algorithm for construct{rgnakes sure not
to include any transitively implied edges. More formallyetDAG
G = (M, E) of mappings is constructed so that its set of edges satis-
fies the following:

E = {(mL — mj) | m; = mj A (ﬂmk)(mz ~ MEp/A\my = mj)}

The creation of5 proceeds in two steps. First, for all paira.{, m;)
of mappings inV/, we add an edge @ if m; = m;. Then, for every
edgem; — m; in E, we try finding donger pathm,; ~> m;. If such
a path exists, we remove; — m; from E. This is implemented
using a variation of the all-pairs shortest-path algoriffexcept that
we are looking for the longest path) and its complexit@ig A/ |*).

The next step is to extrattees of mappings from&. Each such
tree becomes a nested mapping expression. These treesmrated
in two simple steps. First, atbot mappingsR in G are identified:
R={m,|m, € M AN(AM)(m' € M A(m, —m') € E)}.
Then, for each mapping roet, € R, we do a depth-first traversal of
G (following the reverse direction of the edges). Mappingtected
during this visit become part of the tree rootedrat.

Constructing nested mappings from a tree of mappings rases
eral issues. First, in Definition 3.3 we explained the meguoiinest-
ing two basic mappings, one under the other. But, in a tree, one map-
ping can have multiple children that each can be nesteddrisie
parent. And also, we must apply the definition recursively &hit
the extensions to Definition 3.3 that are needed to definesthdtrof
nesting a tree of mappings as they are straightforward.

The second, more important issue is that, since these treexa
tracted from a DAG, it is possible that they share mappingstter
words, a mapping can be nested under more than one mapping.

Consider, for example, a mapping scenario that involvesetbets:
employees , worksOn, andprojects . TheworksOn set con-
tains references temployees andprojects  tuples, capturing an
N:M relationship. Assume that. is a basic mapping foemplo-
yees , m, is a basic mapping foprojects , andm,, is a basic
mapping that mapsmployees andprojects by joining them via
worksOn . The resulting grapl of mappings contains two mapping
trees (i.e., two nested mappings), which both yield valiérpreta-
tions: 71 = {me. < my } andTz = {m, < m, }. Both trees share



m., as a leaf. If we arbitrarily use only one tree and ignore theot
then source data can be lost: the nested mapping bas@d waps
all the employees; however, it only maps projects that ssecated
with an employee viavorksOn (the situation is reversed far,).
However, the inclusion of the shared subtrees in all thearépt”
trees will create nested mappings that lead to redundaneyeaou-
tion as well as in the generated data. To avoid this, we adsiptple
strategy to keep a shared subtree only in one of the paress &med
prune it from all the other. For our example, we can k&gpntact
and cut the common subtree frdf, yielding 7y = {m,}. In gen-
eral, however, the algorithm should not make a choice of wtriees
to prune and which to keep intact. This is a semantic and egtpin-
dependent decision. The various choices lead to inequivabep-
pings that do not lose data but give preference to certairelztions
in the data (e.g., group projects by employees as opposaduipigg
employees by projects). Furthermore, there can be diffeem the
performance of the subsequent execution of the data tnranafimn.
Ideally, a human user could suggest which mapping to genefat
exposed to all the possible choices of mappings with sharechap-
pings. We have implemented a strategy that selects one pftinéng
choices whenever there is such choice, but in future vessiérour
prototype we will allow users to explore the space of suchag®

4. QUERY GENERATION

One of the main reasons for creating mappings is to be able-to
tomatically create a query or program that transforms ataime of
the source schema into an instance of the target schema4,li?
we described how to generate queries from basic mappindfispec
tions. Here we extend that work to cover nested mappingsalec
they start from the more expressive nested mapping speificshe
queries that we now generate often perform better, have foae
tionality in terms of grouping and restructuring, and atshene time
are closer to the mapping specification (thus, easier torstated).

We first present in Section 4.1 a general query generatiamitign
that works for nested mappings with arbitrary Skolem fuorcdi for
the set elements (and hence for arbitrary regrouping amdiotsring
of the source data). In Section 4.2 we present an optimizaktiat
simplifies the query and can significantly improve perforoeaim the
case of nested mappings with default Skolemization, whiehtlae
mappings that we produce with our mapping generation dtguari
In particular, this optimization greatly impacts the sa@smwhere
no complex restructuring of the source is needed (many salem+
lution scenarios follow this pattern).

4.1 Two-Phase Query

The general algorithm for query generation produces gsi¢hiat

process source data in two phases. The first-phase quemd&shr

source data into flat (or relational) views of ttaget schema. The
definition of this query is based on the target schema and @mth
formation encoded in the mappings. The second-phase gsexy
wrapping query that is independent of the actual mappingsuaes
the shape of the target schema to nest the data from the fles une
the actual target format.

First-phase queryWe now describe the construction of the flat views

and of the first-phase query. For each target set type forhithire is
some mapping that asserts some tuple for it, there will bews, wvith
an associated schema and a query defining it. To illustrageyi
use the earlier schemas of Figure 3 and the earlier nestegimgap
The view schema for our example includes the following défins:

dept(dname, budget, empsID, projectsID)
emps(setID, ename, salary, projects1ID)
projectsi(setID, pid)

projects(setID, pid, pname)

As it can be seen, the view for each set type includes the attype
elements that are directly under the set type. Additionélgiso in-
cludes setID columns for each of the set types that are tineested
under the given set type. Finally, for each set type that istop
level (dept is the only top-level set type in this example), there is
an additional columisetlD . The explanation for this column is the
following (we useemps to illustrate). While in the target schema
there is only one set typemps, in an actual instance there may be
many sets of employee tuples, nested under the vadeps tuples.
However, the tuples of these nested sets will all be mappedoime
single table €mps). In order to remember the association between
employee tuples and the sets they belong to, we ussettB col-
umn to record the identity of the set for each employee tuplas
column will then later be used to join with tlempsID column un-
der the “parent” tablelept , to construct the correct nesting.

We next describe the queries defining the views and how they ar
generated. The algorithm starts by Skolemizing each nesggxqbing
and decoupling it into a set of single-headed constrairstsh €on-
sisting of one implication and one atom in the right-hanc: ©ifithe
implication. For our example, the nested mappingenerates the
following four constraints (one for each target atomin

r1: proj(d,p, Eo) — dept(d,null, E[d, p, Eo], P[d, p, Eo])

)
T2 pT’Oj(d,p, EO) - P[d7p7 EO} (X[d7p7 EOLP)
T3 pTOj(d,p, EO) A E0(67S) - E[d,p, EO] (6737P,[d7p7 Ey, e,SD
ra: proj(d,p, Eo) A Eo(e,s) — P'[d,p, Eo,e, s] (X[d,p, Eo])

a
Skolemization replaces every existentially-quantifiedialde by a
Skolem function that depends on all the universally-quiativari-
ables that appear before the existential variable (in thggnad map-
ping). For example, the atomic variabte: (along with all of its
occurences) is replaced by|[d, p, Eo], where X is a new Skolem
function name® Atomic variables that do not play an important role
(e.g., not a key or a foreign key) can be replacechhil (see?b
above). Finally, all existential set variables are repdalog Skolem
terms (if they are not already given by the mapping). Eachhef t
above constraints can be seen as an assertion of “factselage tu-
ples and setids. For examplg,above asserts a fact relating the tuple
(e, s, P'ld,p, Eo, e, s]) and the setidZ[d, p, Fo].

Next, the queries defining the contents of the flat views hhee t
role of “storing” the facts asserted by the above constsaimtb the
corresponding flat views. For example, all the facts assdyers
will be stored intoemps, where thesetID column is used to store
the set ID (as explained earlier). The following is the setjoéry
definitions for our four views:

let dept := for p in proj
return [ dname = p.dname,
budget = null,
empsID = E[p.dname, p.pname, p.emps],
projectsID = P[p.dname, p.pname, p.emps]]
emps :=for p inproj, e in p.emps
return [ setlD = E[p.dname.p.pname,p.emps],
ename = e.ename,
salary = e.salary,
projects1ID = P’[p.dname, p.pname, p.emps,
e.ename, e.salary]]
projectsl :=for p in proj, e in p.emps
return [ setlD = P’[p.dname, p.pname, p.emps,
e.ename, e.salary]],
pid = X[p.dname, p.pname, p.emps]],
projects := for p in proj
return [ setlD = P[p.dname,p.pname,p.emps],
pid = X[p.dname, p.pname, p.emps]],
pname = p.pname]

We note that if multiple mappings contribute tuples to a¢agget

type, then each such mapping will contribute with a queryresgion

Swe really mean here thd, is the set id and not the contents. Thus,
the Skolem function does not depend on the actual values unde
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and the corresponding view is defined by the union of all theszy
expressions. In the case when the same Skolem functiondsiase
multiple mappings to define the same set instance (as destuss
Section 2.3), then the union of queries defining the view efiléc-
tively accumulate all the tuples of this set instance witttia view
(moreover, all these tuples will have the same set id).
Second-phase queryinally, the previously defined views are used
within a query that combines and nests the data accorditg tshape
of the target schema. Notice that the nesting of data on tigetta
is controlled by the Skolem function values computed forgaeid
columns in the views.
(g) dept=ford in dept
return [
dname = d.dname,
budget = d.budget,
emps =fore in emps
where e.setID = d.empsID
return [
ename = e.ename,
salary = e.salary,
projects = for p in projectsl
where p.setlD = e.projects1ID
return [ pid = p.pid ]],
projects = for p in projects
where p.setID = d.projectsID
return [ pid = p.pid,
pname = p.pname ] ]

4.2 Query Inlining for Default Skolemization

The two-phase algorithm is general in the sense that it cak wo
for arbitrary restructuring of the data. However, it doeguiee the
data to be flattened before being re-nested in the targetaforim
cases where the source and target schemas have similaigssipe
and the grouping behavior given by the default Skolem famstiis
sufficient, the two-phase strategy can be inefficient.

For example, the nested mappingused in Section 4.1 falls in
this category of nested mappings with default Skolemiratidnder
default Skolemization, all the set ids that are created (igyfirst-
phase query) depend amtire source tuples rather than individual
pieces of these tuples. Toillustrate, the default SkolemtionE for
emps depends op.dname, p.pname andp.emps, which is equiv-
alent to say that¥ is a function of the source tuple. Similarly,
the Skolem functio® for projects under departments dependgon
Also, the Skolem functio®’ for projects under employees depends
onp.dname, p.pname, p.emps and e.ename ande.salary, which
means that it is a function of the source tupteande. Under such
scenario, wenline the views defined by the first-phase query into the
places where they occur in the second-phase query. For aorp&
(while taking care of renaming conflicting variable names) obtain
the following rewrite ofy:

() dept = for pin proj
return [

emps =ifor p’ in proj, ie_in p’
where E[p]=E[p']..
return [

ename = e.ename, salary = e.salary,

projects =ffor p” in proj, € in p’.emps
where P’[p’,e] = P’[p".e’]
return [

pid = X[p”.dname, p”.pname, p”.emps] ] ],

.emps

projects =ifor p’ in proj
where P[p] = P[p’]
retirn T pid = X[p".dname, p’.pname, p’.emps],
pname = p’.pname ] ]
Since the Skolem functions aome-to-one id generators, we can
now replace the equalities of the function terms with theaditjas of
the arguments. Thus we can repl&p] = E[p’] with p = p’. We
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can also replac®’[p’, e] = P’[p”, ¢'] with the conjunction op’ =
p" ande = ¢, and alsdP[p] = P[p'] with p = p’. Hence, we obtain
a rewriting where some of the inner loops are unnecessag/b®kes
in ¢’ above highlight the “redundant” parts. We can then rewyite
by removing the declaration @f and the self-join conditiop = p'.
If we do this at all levels where setlD equalities are usednthll
the highlighted parts of the query can be redacted. (In scmes;
the loops are completely replaced by singleton set exmnessthis
happens for botprojects  sets in our example.) The final query is
shown below. It tightly follows the expressions (and op#aiions)
encoded in the nested mapping

(9) dept = for p in proj

return [
dname = p.dname, budget = null,
emps =for e in p.emps
return [
ename = e.ename, salary = e.salary,
projects = { [ pid = X[p.dname, p.pname, p.emps] ] }],
projects = { [
pid = X[p.dname, p.pname, p.emps],
pname = p.pname ] }]

5. EXPERIMENTS

We conducted a number of experiments to understand therperfo
mance of (a) the nested mapping queries described in Settol
(b) the nested mapping creation algorithm of Section 3. (&sted
mapping prototype is implemented in Java, on top of Clio [THe
experiments were performed on a PC-compatible machink argin-
gle 2.0GHz P4 CPU and 1GB RAM, running Windows XP (SP1) and
JRE 1.4.2. Each experiment was repeated three times, anddtage
of the three trials is reported.

5.1 Query Evaluation

We first compare the performance of queries generated uestgeh
mappings with queries generated from basic mappings. Wasfoc
on a schema evolution scenario where nested mappings wihlte
Skolemization suffice to express the desired transformaiial inlin-
ing is applied to optimize the nested mapping query (as degtin
Section 4.2). We created a nested scheunthorDB, based on the
DBLP structure, but with four levels of nesting. The first leveheo
tais anauthor set. Eachauthor tuple has an attributeame and a
nested set ofonfJournal tuples. Eacttonflournal tuple has an at-
tribute name and a set ofyear tuples. Eactyear tuple contains gr
attribute and a set gdub elements, each with five attributegubld,
title, pages, cdrom, url.

We ran the basic and nested mapping algorithms on four differ
settings to create four pairs of mappings (one basic and estea).
We usedauthorDB as the source and target schema and added dif-
ferent sets of correspondences to create the four diffeettings. In
the first,m1, we only mapped the top-levauthor set (this means
we used only one correspondence betweeménee attributes ofau-
thor). In the second mapping, we mapped the first and the second
level of authorDB (i.e, author and confJournal). Since we mapped
levels 1 and 2, we will refer to this mapping as 2. We proceeded
in the same fashion adding correspondences for the thirdcamth
levelsauthorDB, creating mappingsii2s andmi2s4, respectively.

For each mapping, we created two XQuery scripts: one gesterat
using the basic mappings (using the original Clio query ggimn
algorithm [24, 11]), and another generated from the nestgopings
(as described in Sections 4.1 and 4.2). Figure 9 comparegetie
erated queries fomi2. To simplify the experiment, we considered
input instances where eaelithor has at least oneonfJournal ele-
ment under it, and similarly, eaaonfJournal contains at least one

"http://www.informatik.uni-trier.de/ ley/db/



let $docO := fn:doc("instance.xml") return
<authorDB>
{for $x0 in $docO/authorDB/author,
$x1 in $x0/confJournal
return

let $docO := fn:doc("instance.xml") return
<authorDB>
{for $x0 in $docO/authorDB/author
return
<author>

<author>
<name> { $x0/namef/text() } </name>
{for $x0L1 in $docO/authorDB/author,
$x1L1 in $x0L1/conflournal
where $x0/name/text()=$x0L1/name/text()
return
<confJournal>
<name> { $x1L1/name/text() } </name>
</confJournal> }
</author>}
</authorDB>

<name> { $x0/namef/text() } </name>

{ for $x1 in $x0/confJournal
return
<confJournal>

<name>{ $x1/name/text() }</name>

</confJournal>}

</author>}

</authorDB>

Figure 9: Basic (left) and nested (right) query form ..
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Figure 10: Execution time (upper) and output file size factos.

year subelement and eaglear contains at least orfaub subelement.

As a consequence, only one basic mapping is enough to mapeall t
source data. Otherwise we would have to consider additioasic
mappings (e.g., maguthor elements independently of the existence
of confJournal subelements). This would only make the basic map-
ping query become more complex and have worse performanee. O
the other hand, even in the favorable case where one basjumgap
enough, we show that the nested mapping query is still muttbrbe

We ran the queries using the Saxon XQuery procéssith in-
creasingly larger input files. Figure 10 shows that the mlstapping
queries consistently outperformed the basic mapping gsigooth in
time and in the size of the output instance generatéthe upper
part of Figure 10 plots the execution speed-up for the nestgaping
queries (i.e., the ratio of the execution time for the basapping
query over the execution time for the query generated wimgsted
mapping). The lower chart shows the ratio of the output fite $or
the basic mapping over the output file size for the nested mgpp
Both charts use a logarithmic scale in the y-axis.

A cursory inspection of the queries in Figure 9 reveals tlasoa
for the better execution time of the nested mapping quedess basic
mapping query generation strategy repeats the sourcetablgres-
sion for each target set type. In the casergf, the basic query in-

8saxon.sourceforge.net

®Larger output files for the same mapping indicate more dafsic
tuples in the result.
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Figure 11: The chain (left) and authority (right) scenarios

terates over every souregthor andconfJournal once to create target
author elements (variables0 andx1 in the query). A second loop
is used to compute the nesteahfJournal elements (variablesOL1
andz1L1). Further, since we only want to nest tbanfJournal el-
ements for the currerauthor tuple, the second loop is correlated to
the outer one (thavhere clause in the query). That is, this query
requires two passes over the input data plus a correlatéechssb-
query to correctly nest data. In contrast, the nested mgpgpirery
only does one pass over the souscghor and conflournal data and
does not need any correlation condition since it takes adgenof
existing nesting of the source data.

The basic mapping query strategy can also create a largearumb
of duplicates in the output instance. To illustrate thishpea, we
create a mappingni4 that maps theauthor and pub levels of the
schema. We ran the queries for;4 andmi234 Using an input in-
stance that contains 41#&ithor elements and a total of 646&ib
elements nested within those authors. The count of reguatithor
andpub elements in the output instance is shown in this table:

Mapping | B author | Bpub | NM author | NM pub
mia 6468 18826 4173 6468
mi234 6468 157254 4173 6468

The nested mapping queries do not create duplicates forfahg o
two mappings and produce a copy of the input instance (wisithe
expected output instance in all these mappings). The baspimg
queries, on the other hand, create 2295 dupliaatieor elements. In-
tuitively, a duplicate is created whenever an author haeniam one
publication. Each author duplicate then carries the sarmefsdu-
plicate publications causing an explosion of dupligaib elements.
The nested mapping query \matomatically generate does not suffer
from this common problem.

5.2 Algorithm Evaluation

We now study the performance and scalability of the nesteat ma
ping creation algorithm. We designed two synthetic scesafile-
picted in Figure 11)chain andauthority [27]. The chain scenario
simulates mappings between multiple inter-linked retzdictables
and an XML target with large number of nesting levels. Théatrity
scenario simulates mappings between multiple relatiaidés refer-
encing a central table and a shallow XML target with a larganbh-
ing factor (large number of child tables). For each scenar®used
a schema generator to create schema definitions with varigigirees
of complexity (e.g., number of elements, referential caists, num-
ber of nesting levels). In addition, we also replicated egeherated
source schema a number of times in order to simulate the cdses
multiple data sources mapping into one target.

For the chain scenario we increased the number of differentes
(m) and the number of inter-linked relational tablekfth) (1 <
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Figure 12: Algorithm'’s performance for the authority scenario.

m < 20 and1 < depth < 3). In the worst case, our prototype
took 0.2 seconds to compute the nested mapping. For theréuytho
scenario, we simultaneously increased the number of se@rgeand
the branching factord) (the number of child tables) such that=n
for each trial. Figure 12 shows the results for authority: $&hemas
of small to medium size (whem andn are less than 12), the nesting
algorithm (Step 4 described in Section 3.4) finishes in a fesosds
after the computation of the basic mappings (Steps 1, 2 anB8)
the time degrades exponentially as the mapping complexitgases.
Note, however, that in the largest case we tried£ n = 20), the
nesting algorithm (Step 4) took only about 20 seconds.

Finally, we evaluated the algorithm performance with a niagp
that uses the Mondial schema [17], a database of geograplaitza
Mondial has a relational representation with 28 relatiam @ maxi-
mum branching factor of 9. Its XML Schema counterpart has @ma

imum depth of 5 and a maximum branching factor of 9. We mapped

from the relational into the XML representation and cre&6dasic
mappings in 1.2 seconds. The nesting algorithm then erulatd
nested mappings in 2.8 seconds.

6. CONCLUSION

We have introduced a new, structured mapping formalisnedall

nested mappings that provides a natural way to express correlations
between schema mappings. We demonstrated benefits of this fo

malism including increased specification accuracy, andtility to
specify (and customize) grouping semantics declarativéli pro-
vided an algorithm to generate nested mappings from steisdaema
matchings. We showed how to compile these mappings intsftvan
mation queries that can be much more efficient than theirteoparts
obtained from the earlier basic mappings. The new transftiom
queries also generate much cleaner data. Certainly nestpdings
have important applications in schema evolution where thppimg
must be able to ensure that the grouping of much of the datatis n
changed. Indeed our work here was largely inspired by thailita
of existing mapping formalisms to faithfully represent thaentity
mapping” for many schemas. We are currently evaluating g& u
of nested mappings in other tasks including (virtual) dategration
over large schemas and large collections of schemas.
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