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In this paper we discuss the use of nested parallelism. Our

claim is that if the problem naturally possesses multiple levels

of parallelism, then applying parallelism to all levels may

significantly enhance the scalability of your algorithm. This

claim is sustained by numerical experiments.

We also discuss how to implement multi-level parallelism

using OpenMP. We find current OpenMP implementation,

based on version 1.0, to have severe limitation for implement-

ing nested parallelization. We then show how this can be

circumvented by explicitly assign task to threads.

Load balancing issues become more complicated with two

(or more) levels of parallelism. To handle this problem, we

have designed a distribution algorithm which groups threads

into teams, each team being responsible for one course grain

outer-level task. This algorithm is proven to produce the

optimal load balance, under given assumptions.

Keywords: OpenMP, SMP-parallelism, nested parallelism

1. Introduction

Computational demanding problems, where parallel

computing is needed for finding a solution within rea-
sonable time, also tend to be complex problems. When

breaking complex problems into smaller independent
subproblems for parallel processing, one typically finds

several layers. The first level or outer-level consists of

few, but large tasks. Next each of these outer-level tasks
may split into a number of fine grained tasks, which

again may consist of even finer subtasks, and so on.

In this paper we investigate the advantage and prob-

lems when implementing multi-level parallelism. The

great advantage we claim is enhanced scalability. We

see two main problems. The first is how to achieve

a good load balance. The second problem is that of

increased complexity in implementation. We inves-

tigate the latter in the context of OpenMP, the new

standard for SMP-programming. The popularity of

SMP-programming is mainly due to its ease of pro-

gramming. Its main drawback has been limited scal-

ability. As long as SMP hardware was bus-connected

UMA system with a small number of processors, the

limited scalability of the programming model was re-

flected in the hardware. In the last few years we have,

however, witnessed some great successes for scalable

cc-NUMA systems with distributed shared memory.

These systems support OpenMP program across hun-

dreds of processors. There is no doubt that this trend

will be picked up by an increasing number of vendors

and that future HPC-hardware will as a rule support

SMP-programming across hundreds, and soon thou-

sands, of processors. At this background the limited

scalability of any SMP-programming model becomes

a serious bottleneck.

The poor scalability of SMP-programs is, to a great

extent, due to the fact that most SMP-program is lim-

ited to fine grained loop-level parallelism. An impor-

tant goal for the OpenMP standard is to enhance scala-

bility by encourage more course grain parallelism than

possible with loop-level parallelism. In this paper we

study the possibilities and limitations of OpenMP to

2-level parallelism.

To set the stage we first would like to give a mo-

tivating example. This is meant to illustrate some of

the possibilities and problems of 2-level parallelism.

Suppose that each outer-level task, i, has a parallel part

of sequential computational cost, wi, and a sequential

part of cost, si. The sequential part consists of the code

which is not easily parallelized by inner-level paral-

lelization, but can also consist of parallel overhead. For

N tasks, the total sequential runtime for all the tasks is
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T1 =

N
∑

i=1

(wi + si) = W + S. (1)

Applying inner-level parallelization the runtime us-

ing P threads will be

TP =
N

∑

i=1

(wi

P
+ si

)

=
W

P
+ S. (2)

For nested parallelism (NP) we need to distribute

the threads among the outer-level tasks. Let p i be the

number of threads associated with task i. Now the

runtime for P threads will be

TNP = max
i=1,...,N

(

wi

pi

+ si

)

. (3)

If the load balance in the nested version is perfect,

wi/pi = W/P for the N outer-level tasks. Then the

runtime for 2-level parallelism will be

TNP �
W

P
+ max

i=1,...,N
si. (4)

Optimal 2-level parallelism is achieved when we

have s1 = s2 = . . . = sN = S/N . Then

TNP �
W

P
+

S

N
. (5)

It follows that when TNP is close to W
P

+ S
N

, then

TP > TNP . The level of improvement depends on the

actual numbers for P and N as well as the ratio S/W .

This dependency is illustrated in Fig. 1. As usual we

define speed-up on P threads as Sp = T1/Tp, where

Tp is the runtime on P threads.

This example illustrates that optimal use of nested

parallelism can give significant improvements for a

large number of threads. But it is important to stress

that a necessary requirement for this is an optimal or

near optimal distribution of threads to tasks. Thus

finding an optimal distribution of threads to outer-level

tasks is very important for good efficiency. This ques-

tion is addressed in Section 2, where we give an algo-

rithm which distributes threads to tasks. We prove that

this algorithm gives the optimal solution and give its

complexity.

In Section 3, we discuss how to implement 2-level

parallelism in OpenMP. First we look at the possibilities

and shortcomings of directive based implementations,

and then we show how to implement 2-level parallelism

by explicit programming the tasks of the individual

threads. In Section 4, we test the effect of 2-level

parallelism on two test problems, an artificial problem,

a matrix multiplication code, and a real life problem,

a wavelet based data compression code. In Section 5
we will discuss the extensions to OpenMP 1.0 we find
necessary to express nesting appropriately. Finally the
conclusions will be given.

2. The distribution algorithm

In cases where the number of outer-level tasks are
greater than the number of threads, the most coarse
grain parallelism is achieved by assigning multiple
tasks to each thread and not using any inner-level par-
allelism. If there is no dependencies between the outer
tasks, achieving the optimal load balance reduces to the
standard bin-packing problem in this case. We will not
consider this case here and therefore assume that the
number of available threads is larger than the number
of outer-level tasks.

The threads should be grouped together in teams,
where each team is responsible for doing the work as-
sociated with one task. The allocation of threads to
tasks can be done in the following way: First assign
one thread to each task. Then find the task with highest
‘work-to-thread-ratio’and assign an extra thread to this
task. Repeat until all threads are assigned to a task.

In the sequel we will give a formal definition of our
distribution problem, formalize the above algorithm
and prove its optimality. For efficiency we store the
tasks in a heap with the task having the highest ‘work-
to-thread-ratio’ as the root node. Then finding the task
with highest ‘work-to-thread-ratio’ is done in O(1),
while O(log N) is needed to update the heap.

Notice that the enumeration of the tasks changes dur-
ing the distribution in such a way that the first task al-
ways has the largest work to threads ratio. The work-
load, or parallel part of sequential computational cost,
of a task is given by its weight, denoted wi.

Definition 1: The optimal distribution problem

Find an optimal distribution of P threads to N tasks

such that maxi=1,...,N

(

wi

pi

)

is minimized over all par-

titions {p1, . . . , pN} given the constraints:
∑N

i=1 pi =
P ; ∀pi positive integers.

Algorithm 1: Distribution of threads to tasks

for i = 1, N
pi = 1;

end for

for j = N + 1, P
update the heap such that
w1

p1

� maxi=2,...,N(wi

pi
);

p1 = p1 + 1;
end for
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Fig. 1. Speed-up curves for inner-level parallelism as described by Eq. (2) and 2-level parallelism obeying the r.h.s. of Eq. (5) for the idealized

cases above with N = 10 and S = 0.01W .

This extremely simple algorithm produces not only

a good partition, but the optimal one. The reminder

of this section is devoted to prove the optimality of

Algorithm 1. First we need the following lemma.

Lemma 1: After the update of the heap in any iteration,

j, of Algorithm 1, wi

pi−1 �
w1

p1

∀i.

For simplicity we assume wi

0 to be a well defined

number larger than maxi=1,···,N wi. The proof holds

without this dubious assumption, but without it we need

to treat this as a special case making the proof rather

messy.

Proof: The lemma is proved by induction on j:

A) The lemma is true after the initialization j = N

since by definition wi

0 > w1

1 ∀i.

B) Assume the lemma is true for fixed j. Let {wi, pi}

be the indexing after the heap reordering in step j, and

define rmax(j) = maxi=1,...,N(wi

pi
) = w1

p1

.

Then for j + 1: rmax(j + 1) = max( w1

p1+1 ,

maxi=2,...,N (wi

pi
)) �

w1

p1

= rmax(j).

Then since wi

pi−1 � rmax(j) � rmax(j + 1) for

i = 2, . . . , N by the induction assumption, and w1

p1

=

rmax(j) � rmax(j + 1), the hypothesis is true for

j + 1 as well. ✷

Theorem 1: Algorithm 1 gives the optimal distribution
to the distribution problem, with optimality defined as
in Definition 1.

Proof: Theorem 1 can be proved by self-contradiction
using Lemma 1:

Suppose that there is another distribution q1, . . . , qN

which gives w1

q1

< w1

p1

that implies q1 > p1. Since

P =
∑N

i=1 qi =
∑N

i=1 pi it therefore must exist a
k such that qk < pk for a 1 < k � N . But then
w1

q1

�
wk

qk

�
wk

pk+1 �
w1

p1

, the last inequality coming
from Lemma 1. This obviously contradicts the assump-
tion that q1, . . . , qN is a better distribution. Thus the
assumption must be wrong and the theorem proved ad
absurdum. ✷

The main loop is repeated P − N times. Inside the
loop we extract the top of the heap, update that element
and reorganize the heap. The two first operations are
done in constant time, the second is at worst O(log N).
This gives an overall complexity of O((P−N) log N).

3. Implementation of nested parallelism in

OpenMP

Nested parallelism is possible to implement using
message passing parallelization. In MPI [7], creating
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communicators will make it possible to form groups

of threads working together in teams and sending mes-

sages to other members within the team for fine grain

parallelism, while the coarse grain parallelism implies

communication between communicators.

The distribution of work to multiple threads in SMP

programming is usually done by the compiler. The pro-

grammer’s job is only to insert directives in the code

to assist the compiler with its job. A more explicit

approach, where the programmer explicitly allocates

tasks to threads is also possible. The explicit approach

gives the programmer full control, but does require a

much higher level of programmer intervention. There-

for directive based SMP programming is usually the

recommended approach. Below we discuss the possi-

bilities and limitations of the two approaches for mul-

tilevel parallelism.

3.1. Directives for nested parallelism

Explicit construct for expressing multilevel paral-

lelism is not usually found in directive based, multi-

threaded programming for SMP. OpenMP, the new

industry-standard for SMP-programming, does how-

ever allow some form of nested parallelism. The

OpenMP group released its Fortran standard version 1.0

in October 1997 [1,2], and the first commercial im-

plementations of this were available in the spring of

1998. It is supported by all major vendors of SMP-

systems and has now become the de facto standard for

SMP-programming.

In OpenMP a parallel region in Fortran starts by

the directive !$OMP PARALLEL and ends by !$OMP

END PARALLEL. The standard allows these to be

nested, as shown in Example 1. To enable the nesting

one has to set the environment variable OMP NESTED

to TRUE or call the subroutine OMP SET NESTED.

Example 1:

!$OMP PARALLEL DO PRIVATE(i)

do i = 1, N

!$OMP PARALLEL DO PRIVATE(j)

!$OMP& SHARED(i)

do j = 1, w(i)

< WORK(i,j) >

end do

!$OMP END PARALLEL DO

end do

!$OMP END PARALLEL DO

If nothing else is specified, all variables used in a

parallel region gets SHARED by default if they are not

put in lists of other clauses. It is not well explained

in the 1.0 spec. how the variables should be declared

in nested regions. Nevertheless, we find it naturally to

declare the i index as PRIVATE in the outer loop, and

as SHARED in the inner loop, since it should be private

to each team and shared among the threads within the

same team.

When nested parallelism is enabled, the number of

threads used to execute nested parallel regions is imple-

mentation dependent. As a result, OpenMP-compliant

implementations are allowed to serialize nested parallel

regions even when nested parallelism is enabled. As far

as we know, none of the vendors supporting OpenMP

Fortran version 1.0 have implemented nesting.

SGI’s MIPSpro compiler has a restricted form for

nested parallelism. This does however not follow the

OpenMP 1.0 standard. It applies only to do-loops in

Fortran and demands the loops to be perfectly nested

(Loops are perfectly nested in Fortran if there is no

code between the DO statements and between the END

DO statements.). The following example shows how

the SGI nesting is supposed to work. In this case, 2

threads will be created in the outer-loop. These will act

as masters for two teams of threads working together

on the inner-loop.

Example 2:

!$OMP PARALLEL DO

!$SGI+NEST(i,j) ONTO(2,*)

do i = 1, N

do j = 1, w(i)

< WORK(i,j) >

end do

end do

!$OMP END PARALLEL DO

3.2. Explicit thread programming

In this approach the user has to manually change

the code to distribute tasks to threads. Here we show

a simple example of how this can be done, and then

parallelize the code in Example 1 in two levels.

Suppose a problem consists of N = 4 outer-level

tasks, each of them with a different amount of work.

The work in each task is given as weights wi. The prob-

lem can be illustrated as in Fig. 2, where the balls sym-

bol fine grain tasks of unit weight. Having P = 8 avail-

able threads and the weights w
T = (10, 8, 2, 7), using

Algorithm 1 will give the distribution p
T = (3, 2, 1, 2)
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Fig. 2. Problem which consist of four tasks of work, each with a

different amount of work.

Table 1

‘thread’ will work on ‘mytask’ and do the iterations from ‘jbegin’ to

‘jend’

thread mytask jbegin jend

0 1 1 4

1 1 5 7

2 1 8 10

3 2 1 4
4 2 5 8

5 3 1 2

6 4 1 4

7 4 5 7

of threads to outer-level tasks. In the next step the

threads within each team have to divide the work within

each task among each other. If one weight unit equals

the work associated with one inner loop iterations, the
threads will divide the iterations as shown in Table 1.

thread will then work on mytask, and do the iter-

ations from jbegin to jend. The data in Table 1

describe exactly the mapping of threads to outer-level
tasks and the portion of inner-level task to be carried out

of each thread. With this information in hand, nested

parallelism in Example 1 can now be implemented as:

Example 3:

P = OMP GET MAX THREADS

!$OMP PARALLEL DO PRIVATE(thread,i,j)

do thread = 0, P-1

i = mytask(thread)

do j = jbegin(thread), &

jend(thread)
< WORK(i,j) >

end do

end do

!$OMP END PARALLEL DO

The values of the arrays mytask, jbegin and

jend have to be carefully decided by the user in ad-

vance in order to make sure that the exact same com-

putations are done in parallel as in sequential. Since

the values of these arrays decide the distribution of

work to threads, they dictates the load balancing. In

the example above and the test cases presented in the

next section, each item of WORK(i,j) require the same

amount of work. This means that good load balance

is achieved if jend(thread) – jbegin(thread) is

approximately the same for all threads. In our test

cases, mytask is computed using Algorithm 1.

The kind of programmer interventions needed for

these changes are to some degree similar to the work

needed when parallelization using MPI [7], except for

the fact that no explicit communication is needed in

OpenMP. In both cases the programmer has to split

the work and data and allocate it to specific threads by

carefully rewriting the program. The correctness of the

program is her full responsibility.

4. Experiments

In this section we report on two experiments on 2-

level parallelism. The load balancing is done using

the work allocation algorithm presented in Section 2.

For implementation we have used the explicit thread

programming technique outlined in Section 3.2. The

first experiment is done on a synthetic test example, a

matrix multiplication test code. Our second example

is a real application, a wavelet based data compression

routine.

4.1. Matrix-multiplication

To test our ideas on the importance of utilizing multi-

level parallelism, we made an artificial test code, using

a simple matrix multiply as the computational kernel.

Suppose we have N tasks, where a task, i =
1, · · · , N is a multiplication of the matrices Am×wi

and

Bwi×m. Each task has an amount of work proportional

to the weight wi. Again we assume that the number of

threads is larger than N , the number of tasks. 1-level

parallelization of the matrix-multiplication where we

parallelize each of the N matrix-multiplications can be

implemented like in Example 4, assuming N < P .

Example 4:

C = 0

do i = 1, N

!$OMPPARALLEL DO PRIVATE(j,k,l)

do j = 1, w(i)

do k = 1, m
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do l = 1, m

C(l,j,i) = C(l,j,i) &

+ A(l,k,i) * B(k,j,i)

end do

end do

end do

!$OMPEND PARALLEL DO

end do

Parallelizing Example 4 by explicit thread program-

ming, as explained in Section 3.2, we get:

Example 5:

C = 0

!$OMP PARALLEL DO

!$OMP& PRIVATE(thread,i,j,k,l)

do thread = 0, P-1

i = mytask(thread)

do j = jbegin(thread), &

jend(thread)

do k = 1, m

do l = 1, m

C(l,j,i) = C(l,j,i) &

+ A(l,k,i) * B(k,j,i)

end do

end do

end do

end do

!$OMP END PARALLEL DO

These two cases have been tested for m = 700 and

for N = 1, 10. wi is chosen uniformly random from

the interval 700 � wi � 7000.

In Fig. 3 we display the linear speed-up, together with

the speed-up achieved for 2-level nested parallelization

and 1-level parallelization as a function of threads. For

this particular case the number of outer-level tasks is

N = 4. The runs are on a dedicated Origin 2000 using

MIPSpro Fortran Compilers, Version 7.3.1.1m. For

the other values of N the details are different, but the

overall picture is the same as for N = 4.

For up to about 20 threads the 1-level parallelization

shows super linear speed-up, probably due to cache ef-

fects. However, as the number of threads increases,

some unavoidable overhead starts to creep in for the 1-

level parallelism. The 2-level parallelization speed-up

is for up to 50 threads lower than the 1-level speedup.

This is naturally since the load balance among the tasks

in 2-level parallelism is bad for a low number of threads.

However, adding CPU/threads beyond 50, the 2-level

parallelism still increases the speed-up, while the 1-

level speed-up starts to fall below. The 2-level paral-

lelization speedup increases until 100 threads, where

its speedup is about 50.

The reason for sub-linear speed-up in this case is not

sequential execution of part of our application program.

But most likely the extra cost of forking and joining

threads in OpenMP and the increased number of syn-

chronization points. The difference in the two imple-

mentations than is that in the inner-level parallelism P
threads are forked N times, while they in the 2-level

case only is forked once. The cost for this saving is

some extra index juggling and a slightly lower bound

for theoretical speed-up. The later having a measurable

effect on small number of threads. See [10] for docu-

mentation on the cost of fork-join and synchronization

in OpenMP.

This example modify slightly the assumption in the

introduction. It does not have a perfect load balance in

the 2-level case. But even with this (realistic!) modifi-

cation it confirms our fundamental hypothesis: 2-level

parallelism scales better and for high thread-numbers

it shows better speed-up than 1-level parallelism!

4.2. Data compression

To try our ideas on a more realistic test case, we

moved on to a data compression routine which are used

in an out-of-core earthquake simulator.

The underlying idea of the compression algorithm is

to first transform the data into wavelet-space using a 2d-

wavelet transform and then storing only the non-zero

wavelet coefficients [9]. To increase the compression

rate, two more techniques are used.

Thresholding: What we have is approximate values

to inaccurate data. Thus all data less than a certain value

should be regarded as noise and could be represented

by zero without loss of significance.

Quantization: In essence thresholding says that only

the M first binary digits are significant. Thus without

any further loss of accuracy the wavelet coefficients

can be represented by only M bits, giving us an extra

saving factor of M/64.

After the wavelet coefficients have been massaged by

thresholding and quantization they are encoded. In the

parallel version this is done by dividing the data in P
separate streams, making this an embarrassing parallel

operation.

The wavelet routine only works for arrays m × n
where m and n are integers power of 2. Thus we first

chop up the array in N blocks of (different) power of 2

sizes. For each of these blocks a 2d-wavelet transform

is carried out. A 2d-wavelet transform is done by ap-
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Fig. 3. Linear speed-up, speed-up for 1-level inner-loop parallelization and speed-up for 2-level parallelization for N = 4 outer-level tasks of

matrix multiplication.

plying multiple, independent 1d-wavelet transform to
each row in the block matrix, and next on the columns.

The overall compression algorithm is displayed in
Algorithm 2.

Algorithm 2: Compression

input: UU, N, M

/*The wavelet transform for all UU blocks*/

for i = 1, N

wavelet2d(block no. i of UU);

end for

Umax = max∀(i,j) | UU(i, j) |;
where(| UU |< Umax × 2−M ) UU = 0 ;

/* Thresholding */

end where

UUI = UU; /* quantization */

encode (UUI);

The time consuming part is the wavelet transform

(typical 60–70%). This is also the only part having
2-level parallelism.

As our test case we have chosen a 2d array of size
1792 × 1792. For the wavelet transforms this is di-

vided into 9 pieces of unequal sizes. We are using a
fast wavelet transform which is known to have linear
complexity. Thus the work is proportional to the size

of the corresponding array.

In this example we can not expect perfect load bal-

ance due to the integer restriction on the number of

threads. If we assume no extra parallel overhead and

perfect load balancing within an outer-level task, but

not necessarily between outer level tasks, we obtain a

sharper bound on the 2-level speed-up. We may define

T̂p = maxi Ti/pi as the theoretical bound on the run-

time of 2-level parallelism. The theoretical bound on

the 2-level speed-up is then given as Ŝp = T1/T̂p. (In

the example displayed in Table 1 and Fig. 2, T̂8 = 4
and Ŝ8 = 27

4 = 6.75.)

In Fig. 4 we display the linear speed-up and theo-

retical upper bound on the 2-level speed-up, together

with the speed-up achieved for 2-level and 1-level

parallelization. The runs are done on a dedicated

Origin 2000 using MIPSpro Fortran Compilers, Ver-

sion 7.3.1.1m. It is not possible to run the nested ver-

sion on less than 9 threads, which is the reason why the

curve starts at this point. The 1-level parallelized code

reaches its maximum speed-up at about 20 threads,

while the 2-level parallelized code increases its speed-

up up to at least 64 threads, where the speed-up is 33. In

particular notice that for less than about 40 threads, the

speed-up curve of the 2-level parallelized code mimics

the shape of the theoretical upper bound.
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Fig. 4. Linear speed-up, theoretical bound for 2-level speed-up, speed-up for 1-level inner-loop parallelization and 2-level parallelization for a

1792 × 1792 data compression problem.

We find that these results to be very encouraging,
in particular the fact that the 2-level parallelism shows
the same improvements in scaling as indicated for the
theoretical case displayed in Fig. 1.

5. Shortcomings of the OpenMP directives

In Section 3 we showed how to implement multi-
level parallelism in OpenMP using explicit thread pro-
gramming. But as we argued in Section 3, for sim-
plicity we would prefer programming this with direc-
tives and/or function calls only. In this section we
will discuss briefly some of the current shortcomings
of OpenMP 1.0 and the needed extensions to enable
directive based multilevel parallelism.

The work described in this paper was done in the
spring of year 2000. At that time only version 1.0 of the
OpenMP Fortran compiler was available to us. Nov 3,
2000 the OpenMP ARB released version 2.0 [3] of the
Fortran specification. As of writing, still no working
version of 2.0 is available. Thus our experiences is with
version 1.0, but we’ll try to comment on whether or not
version 2.0 will cure the problems we describe.

Setting the number of threads by call to the
OMP SET NUM THREADS routine in OpenMP is only

legal outside a parallel region. If nesting is imple-
mented, and nested directives are applied in 2 levels,
the total number of threads created in the inner-level
becomes the same as the number set outside the outer-
level, say P. But as a PARALLEL DO directive at the
outer-level will apply to all the threads set, no addi-
tional threads is available at the inner-level, and nested
parallelism is not obtained.

In the recent released OpenMP 2.0 there is a new
clause, NUM THREADS(scalar integer expression), to
the parallel regions directives. This clause requests that
a specific number of threads are used in the region.
This also works for nested regions, and as far as we can
see, it solves the problem described above. The code
in Example 1, 2 and 3 can now be written as:

Example 6:

!$OMP PARALLEL DO PRIVATE(i)
!$OMP& NUM THREADS(N)

do i = 1, N

!$OMP PARALLEL DO PRIVATE(j)
!$OMP& SHARED(i), NUM THREADS(p(i))

do j = 1, w(i)
< WORK(i,j) >

end do

!$OMP END PARALLEL DO
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end do

!$OMP END PARALLEL DO

When parallelizing the data compression code in 2

levels, it was necessary to have two inner-level loops

with a synchronization barrier in between, like this:

Example 7:

P = OMP GET MAX THREADS

!$OMP PARALLEL DO PRIVATE(thread,i,j)

do thread = 0, P-1

i = mytask(thread)

do j = jbegin(thread), &

jend(thread)

< WORK1(i,j) >

end do

< . . .>
< BARRIER >

< . . .>
do j = jbegin(thread), &

jend(thread)

< WORK2(i,j) >

end do

end do

!$OMP END PARALLEL DO

When a !$OMP PARALLEL DO directive is used

on a loop in 1-level parallelism the loop iterations must

be data independent, and consequently synchronization

inside the region makes no sence. Since version 1.0

of OpenMP seems to be targeting 1-level parallelism

only, the !$OMP BARRIER is not, allowed inside of a

!$OMP PARALLEL DO-directive.

In explicit thread programming the !$OMP PARA-

LLEL DO directive is used in combination with

changes in the code to create nesting, and in the data

compression code a barrier is needed between the inner-

levels, as indicated in example 7. We therefore run

into problems since a barrier is not allowed inside of

a PARALLEL DO region. Calling the SGI’s global

barrier routine mp barrier partly solved our prob-

lem, but what we really needed for this construct, was

a team barrier synchronizing only threads within the

same team.

If OpenMP 2.0 was available and nesting was imple-

mented, the code in Example 7 could have been written

as in Example 8. Notice that computing jbegin and

jend will not be needed. Only the number of threads

working in each team p(:) has to be computed by Al-

gorithm 1 to get the optimal load balance. But best of

all, no changes in the code will be needed!

Example 8:

!$OMP PARALLEL DO PRIVATE(i)

!$OMP& NUM THREADS(N)

do i = 1, N

!$OMP PARALLEL PRIVATE(j) SHARED(i)

!$OMP& NUM THREADS(p(i))
!$OMP DO

do j = 1, w(i)

< WORK1(i,j) >

end do

< . . .>
!$OMP BARRIER

< . . .>
!$OMP DO

do j = 1, w(i)

< WORK2(i,j) >

end do

!$OMP END PARALLEL

end do

!$OMP END PARALLEL DO

In OpenMP 2.0 the !$OMP BARRIER-directive

binds to the closest enclosing PARALLEL directive.

This implementation will therefore create barriers for

teams of threads.
Unfortunately, also in 2.0 of the Fortran version

nested parallelism still is implementation dependent.

We are afraid this will imply that many (most?) ven-

dors still will choose to serialize nested parallelism.

But at least one vendor promise to have this feature
available in near future [8]. The effect of making true

2-level parallelism implementation dependent is that

programs which relies on nesting for scalability, will

not be ‘performance portable’ when coded in OpenMP,

and since performance is at the very heart of parallel

programming, while portability and ease of program-
ming is the selling argument of OpenMP, we are afraid

the lack of performance portability will be held as a

strong argument against OpenMP!

The OpenMP Nanos Compiler [4] is a source-to-

source parallelizing compiler implemented around a hi-
erarchical internal program representation that captures

the parallelism expressed by the user through OpenMP

directives and extensions, and the parallelism automat-

ically discovered by the compiler. One of the main fea-

tures of this compiler is the ability to exploit multiple

levels of parallelism. In [4] two sets of extensions to
OpenMP is described. One of them is oriented towards

the definition of threads groups. These proposed exten-

sions allow 1) the definition of the groups (how many

groups, and how many thread in each group); and 2)

the assignment of work to the groups (user controlled).
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The GROUP clause can be applied to any parallel con-

struct. We find this an interesting concept which should

work well on our problem. It also shows that when

nested parallelism is possible to implement for a small

research group, with limited resources, there should be

no excuses for large vendors not to implement it.

6. Conclusions and future work

The main purpose of this paper has been to examine

the possible gain of utilizing nested parallelism when

available in the problem. Our findings is very encour-

aging. Using the two levels of parallelism turned out

to be imperative for good scaling on our test cases.

As always good load balancing is essential in achiev-

ing good scalability. This becomes more difficult when

applying multilevel parallelism. In Section 2 we give an

algorithm which, under some well-defined assumptions

compute the optimal allocation of threads to tasks. We

also show how 2-level parallelism can be implemented

in OpenMP, using explicit thread programming, and

discuss some of the shortcoming of the current OpenMP

directives for implementing the same algorithm using

directives.

As we see more and more large SMP-systems being

installed, the scalability of OpenMP becomes increas-

ingly important. Utilizing multilevel parallelism will

become an important issue in this context. The sug-

gested extension for OpenMP 2.0 points in the right di-

rection. We are, however, very unhappy with with the

fact that serializing nested parallelism is still compliant

with the OpenMP spec.

Our ultimate target application for nested parallelism

is the numerical simulation of PDE’s, using adaptive

mesh refinement (AMR) [5,6]. In AMR grid points

are clustered adaptively in regions where they are most

needed. Refined grids are created or existing ones re-

moved based upon estimates of the truncation error.

Finer grids consists of independent patches, and the

work associated with each patch can be done by a team

of threads. This problem has the kind of multilevel

parallelism discussed in this paper. It also lends itself

naturally to SMP-programming as refined patches are

created and dismissed as the computation proceeds in

an unpredictable way. This makes distributing data

evenly hard and expensive, and a (virtually) shared

memory programming much more attractive.
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