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We address the problem of approximating the posterior probability distribution of the fixed parameters of a
state-space dynamical system using a sequential Monte Carlo method. The proposed approach relies on a
nested structure that employs two layers of particle filters to approximate the posterior probability measure
of the static parameters and the dynamic state variables of the system of interest, in a vein similar to the re-
cent “sequential Monte Carlo square” (SMC2) algorithm. However, unlike the SMC2 scheme, the proposed
technique operates in a purely recursive manner. In particular, the computational complexity of the recursive
steps of the method introduced herein is constant over time. We analyse the approximation of integrals of
real bounded functions with respect to the posterior distribution of the system parameters computed via the
proposed scheme. As a result, we prove, under regularity assumptions, that the approximation errors vanish
asymptotically in Lp (p ≥ 1) with convergence rate proportional to 1√

N
+ 1√

M
, where N is the number

of Monte Carlo samples in the parameter space and N × M is the number of samples in the state space.
This result also holds for the approximation of the joint posterior distribution of the parameters and the
state variables. We discuss the relationship between the SMC2 algorithm and the new recursive method and
present a simple example in order to illustrate some of the theoretical findings with computer simulations.

Keywords: error bounds; model inference; Monte Carlo; parameter estimation; particle filtering; recursive
algorithms; state space models

1. Introduction

1.1. Problem statement

The problem of parameter estimation in state-space dynamical systems has received considerable
attention, from different viewpoints [2,7,23,25,30], as it is almost ubiquitous in practical appli-
cations. In this paper, we investigate the use of particle filtering methods for the online Bayesian
estimation of the static parameters of a state-space system.

In order to ease the discussion, let us consider two (possibly vector-valued) random sequences
{Xt }t=0,1,... and {Yt }t=1,2,... representing the (hidden) state of a dynamical system and some re-
lated observations, respectively, with t denoting discrete time. We assume that the state process is
Markov and the observation Yt is independent of any other observations {Yk; k �= t}, conditional
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on the state Xt . Both the conditional probability distribution of Xt given the value of the previous
state, Xt−1 = xt−1, and the probability density function (p.d.f.) of Yt given Xt = xt are assumed
to be known up to a vector of static (random) parameters, denoted by �. These assumptions are
commonly made in the literature and actually hold for many practical systems of interest (see,
e.g., [5,39]). Given a sequence of actual observations, Y1 = y1, . . . , Yt = yt , . . . , the goal is to
track the posterior probability distributions of the state Xt , t ≥ 0, and the parameter vector �

over time.
In the sequel, we briefly review various existing approaches to the parameter estimation prob-

lem that involve particle filtering in some relevant manner. See [23] for a more detailed survey
of the field.

1.2. Particle filters and parameter estimation

When the parameter vector is given, that is, � = θ is known, the problem reduces to the standard
stochastic filtering setting, which consists in tracking the posterior probability distribution of the
state Xt , given the record of observations up to time t > 0. In a few special cases (e.g., if the
system is linear and Gaussian or the state-space is discrete and finite) there exist closed form
solutions for the probability distribution of Xt given Y1 = y1, . . . , Yt = yt , which is often termed
the filtering distribution. However, analytical solutions do not exist for general, possibly non-
linear and non-Gaussian, systems and numerical approximation methods are then needed. One
popular class of such methods are the so-called particle filters [19,22,24,31]. This is a family of
recursive Monte Carlo algorithms that generate discrete random approximations of the sequence
of probability measures associated to the filtering distributions at discrete time t ≥ 0.

Particle filters are well suited for solving the standard stochastic filtering problem. However,
the design of particle filters that can account for a random vector of parameters in the dynamic
system (i.e., a static but unknown �) has been an open issue for the past two decades.

When the system of interest is endowed with some structure, there are some elegant techniques
to handle the unknown parameters efficiently. For example, there are various conditionally-linear
and Gaussian models that admit the analytical integration of � using the Kalman filter as an
auxiliary tool, see, for example, [8,19]. A similar approach can be taken with some non-Gaussian
models appearing, for example, in signal processing [4]. In other cases, the analytical integration
may not be feasible but the structure of the model can be such that the conditional probability
law of � given X0 = x0, . . . ,Xt = xt and Y1 = y1, . . . , Yt = yt is tractable. In particular, if �

depends on X1:t = {X1, . . . ,Xt } through a low-dimensional sufficient statistic then it is possible
to draw efficiently from the posterior distribution of � (given X0:t = x0:t and Y1:t = y1:t ) [7,40]
and then integrate the parameters out numerically.

For arbitrary systems, with no particular structure, the more straightforward approach is to
augment the state-space by including � as a constant-in-time state variable. This has been pro-
posed in a number of forms and in various applications1 but it can be shown that standard particle
filters working on this augmented state-space do not necessarily converge in general because the

1It has also been proposed to use Markov chain Monte Carlo (MCMC) steps to prevent the collapse of the population
representing the parameter posterior, that otherwise occurs due to the resampling steps [20,21].
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resulting systems are non-ergodic [2,37]. Another popular technique to handle static parameters
within particle filtering consists in building a suitable kernel estimator of the posterior probability
density function (p.d.f.) of � given Y1:t = y1:t from where new samples in the parameter space
can be drawn [30]. The latter step is often called “rejuvenation” or “jittering” (we adopt the latter
term in the sequel). One key feature of this technique is the “shrinkage” of the density estimator
in order to control the variance of the jittered particles. This method has been shown to work in
some examples with low-dimensional �, but has also been found to deliver poor performance in
other simple setups [34]. A rigorous analysis of this technique is missing as well.

Finally, there exists a large body of research on maximum likelihood estimation (MLE) for un-
known parameters. Instead of handling � as a random variable and building an approximation of
its posterior distribution, MLE techniques aim at computing a single-point estimate of the param-
eters. This is typically done by way of gradient optimisation methods, that lend themselves natu-
rally to online implementations. A popular example is the recursive maximum likelihood (RML)
algorithm [15,29,38]. As an alternative to gradient search methods, expectation maximization
(EM) techniques have also been proposed for the optimisation of the parameter likelihood, both
in offline and online versions [2,23]. These techniques use particle filtering as an ancillary tool
to approximate either the gradient of the likelihood function [15] or some sufficient statistics [2]
and have been advocated as more robust than those based on state-space augmentation, artificial
evolution or kernel density estimation [2,23].

1.3. Non-recursive methods

A number of new methods related to particle filtering have been proposed in the past few years
that tackle the problem of approximating the distribution of the parameter vector � given the ob-
servations Y1:T = y1:T . These techniques include the iterated batch importance sampling (IBIS)
algorithm of [9] and extensions of it that rely on the nesting of particle methods (such as in [37] or
[10]), combinations of Markov chain Monte Carlo (MCMC) and particle filtering [1], variations
of the population Monte Carlo methodology [26] and particle methods for the approximation of
the parameter likelihood function [36].

The IBIS method is a sequential Monte Carlo (SMC) algorithm that updates a population
of samples θ

(i)
t , i = 1, . . . ,N , in the space of �, with associated importance weights, at every

time step. The technique involves regular MCMC steps, in order to rejuvenate the population of
samples, and the ability to compute the p.d.f. of every observation variable Yt , given the previous
observation record Y1:t−1 = y1:t−1 and a fixed value of the parameters, � = θ . Let us denote
such densities as d(yt |y1:t−1, θ) for the sake of conciseness. The need to obtain d(yt |y1:t−1, θ)

in closed-form has two important implications. First, IBIS is not a recursive algorithm, since each
time we need to compute d(yt |y1:t−1, θ) for a new sample point � = θ in the parameter space it
is necessary to process the entire sequence of observations Y1:t−1 = y1:t−1. Second, the algorithm
can only be applied when the dynamic model has some suitable structure (e.g., the system may
be linear and Gaussian conditional on �) that enables us to actually find d(yt |y1:t−1, θ) in closed
form.

In [37], these difficulties with the IBIS method are addressed by using two layers of Monte
Carlo methods. First, a random grid of points in the space of �, say θ (1), . . . , θ (N), is gener-
ated. Then, for each � = θ (i), i = 1, . . . ,N , a particle filter is employed targeting the signal
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{Xt }t=0,1,.... The latter particle filters provide approximations of d(yt |y1:t−1, θ
(i)), i = 1, . . . ,N ,

and, since the grid in the parameter space is fixed, a single sweep over the observations
Y1:T = y1:T , T < ∞, is sufficient, hence the algorithm is recursive. The practical weakness of
this approach is that the random grid over the parameter space is generated a priori (irrespective
of the observations Y1:T = y1:T ) and it is not updated as the observations are processed. There-
fore, when the prior distribution of � differs from the posterior distribution (of � conditional on
Y1:T = y1:T ) significantly, a very large number, N , of samples in the parameter space is needed
to guarantee a fair performance.

The methodology proposed in [10] is also an extension of the IBIS technique. Similarly to the
method in [37], a random grid is created over the parameter space and a particle filter is run for
every node in the grid. However, unlike the technique in [37], the grid of samples in the space
of � is updated over time, as the batch of observations Y1:T = y1:T is processed. In particular, if
{θ (i)

t−1, i = 1, . . . ,N} is the grid at time t − 1, a particle filter is used to process yt and then a new

grid {θ (i)
t , i = 1, . . . ,N} can be generated. This filter involves the computation of weights that

depend on the densities d(yt |y1:t−1, θ
(i)
t ), i = 1, . . . ,N (similar to the original IBIS). For each

point � = θ
(i)
t , a particle filter is run to approximate d(yt |y1:t−1, θ

(i)
t ). The resulting method is

called SMC2 in [10] because of the two nested layers of particle filters. It is more flexible and
general than the original IBIS and its extension in [37], but it is not a recursive algorithm. New
samples in the parameter space are generated by way of particle MCMC [1] (see below) moves
and resampling steps in order to avoid the degeneracy of the particle filter. However, each time
a new point in the parameter space is generated at time t , say θ ′

t , a new filter has to be run from
time 0 to time t . Therefore, the computationally complexity of the method grows quadratically
with time. A major advantage of the SMC2 algorithm is that the approximation errors vanish
asymptotically as the number of samples N on the parameter space increases, independently of
the number of particles used to approximate the densities d(yt |y1:t−1, θ

(i)
t ) in the second layer of

particle filters, which can stay fixed. This is shown in [10] resorting to a well known unbiasedness
property proved in [14].

A technique that has quickly gained popularity for parameter estimation is the particle MCMC
method of [1] (employed as a building block for the SMC2 method described above). It es-
sentially consists in an MCMC algorithm to approximate the posterior distribution of � given
Y1:t = y1:t . Such construction is intractable if addressed directly because the likelihoods d(y1:t |θ)

cannot be computed exactly. To circumvent this difficulty, it was proposed in [1] to use particle
filters in order to approximate them. The same trick has been used in the population Monte Carlo
[6] framework to tackle the approximation of the posterior distribution of � using particles with
nonlinearly transformed weights [26]. The latter technique has been reported to be computa-
tionally more efficient than particle MCMC methods in some examples. These two types of
algorithms, as well as the SMC2 scheme, revolve around the ability to approximate the factors
d(yt |y1:t−1, θ) using particle filtering.

An alternative, and conceptually simple, approach to compute the likelihood of � given Y1:t
has been proposed in [36]. The problem is addressed by generating a random grid over the pa-
rameter space (either random or deterministic, but fixed), then using particle filters to compute
the value of the likelihood at each node and finally obtaining an approximation of the whole
function by interpolating the nodes. If a point estimate of the parameters is needed, standard op-
timisation techniques can be applied to the interpolated approximation. Convergence of the Lp
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error norms is proved in [36] for problems where both the parameter space and the state space
are compact.

1.4. Contributions

We introduce a particle filtering method for the approximation of the joint posterior distribution
of the signal and the unknown parameters, Xt and �, respectively, given the data Y1:t = y1:t .
Similar to [37] and [10], the algorithm consists of two nested layers of particle filters: an “outer”
filter that approximates the probability measure of � given the observations and a set of “inner”
filters, one per sample generated in the outer filter, that yield approximations of the posterior mea-
sures that result for Xt conditional on the observations and each specific sample of �. The outer
filter directly provides an approximation of the marginal posterior distribution of �, whereas a
suitable combination of the latter with the outcomes of the inner filters yields an approximation
of the joint posterior probability measure of Xt and �.

The method is very similar to the SMC2 scheme of [10] in its structure. However, unlike
SMC2, it is a purely recursive procedure and, therefore, it is more suitable for an online imple-
mentation. At every time step, all the probability measure approximations (both marginal and
joint) are updated recursively, with a fixed computational cost. Also, the jittering of particles in
the SMC2 algorithm is carried out using a particle MCMC kernel [10], that leaves the target
distribution invariant but cannot be implemented recursively, while the proposed scheme works
with simpler Markov kernels easily amenable to online implementations. A detailed comparison
between the proposed algorithm and the SMC2 method of [10] is presented in Section 4.3.

The core of the paper is devoted to the analysis of the proposed algorithm. We study the
approximation, via the nested particle filtering scheme, of 1-dimensional statistics of the posterior
distribution of the system parameters. Under regularity assumptions, we prove that the Lp norms
of the approximation errors vanish with rate proportional to 1√

N
+ 1√

M
, where N and N × M

are the number of samples in the parameter space and the number of particles in the state space,
respectively. This result also holds for the approximation of the joint posterior distribution of the
parameters and the state variables.

The analysis builds upon two basic assumptions, which determine the applicability of the
algorithm. The most important one is that the optimal filter for the state space model of interest
is continuous with respect to (w.r.t.) the parameter θ , that is, small changes to the parameter lead
to small changes to the posterior probability measure of the state given the available observations.
It is this continuity property that makes the implementation of the proposed recursive algorithm
feasible and determines some key practical elements of the algorithm, including the magnitude
of the jittering of the particles. Non-recursive methods, such as particle MCMC or SMC2, are not
subject to this constraint. The second basic assumption is that the parameter space is a compact
set and the the conditional p.d.f. of the observations is well behaved (positive and upper bounded)
uniformly over that set. The proposed technique is not guaranteed to work if the parameters
have to be searched over an infinite support or, most importantly, if the conditional p.d.f. of the
observations has some singularity (e.g., it becomes unbounded) for some parameter values.

To complement the analysis, we also provide a numerical example, where we apply the pro-
posed algorithm to jointly track the state variables and estimate the fixed parameters of a (stochas-
tic version of the) Lorenz 63 system. The length of the observation periods for this example
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(∼40 000 discrete time steps) is large enough to make the application of the non-recursive SMC2

method impractical, while the proposed technique attains accurate estimates of the unknown
parameters and tracks the state variables closely.

1.5. Organisation of the paper

We present a general description of the random state-space Markov models of interest in this
paper in Section 2, including a brief review of the standard particle filter with known parameters.
The recursive nested particle filter scheme is introduced in Section 3. In Section 4, we provide a
summary of the main theoretical properties of the proposed algorithm and discuss how it com-
pares to the (non recursive) SMC2 method of [10]. The analysis of the approximation errors in
Lp is contained in Section 5, together with a brief discussion on the computation of an effective
sample size for the proposed algorithm. Section 6 presents some illustrative numerical results for
a simple example and, finally, Section 7 is devoted to the conclusions.

2. Background

2.1. Notation and preliminaries

We first introduce some common notation to be used through the paper, broadly classified by

topics. Below, R denotes the real line, while for an integer d ≥ 1, Rd =
d times︷ ︸︸ ︷

R× · · · ×R.

• Functions. Let S ⊆R
d be a subset of Rd .

– The supremum norm of a real function f : S →R is denoted as ‖f ‖∞ = supx∈S |f (x)|.
– B(S) is the set of bounded real functions over S, that is, f ∈ B(S) if, and only if, ‖f ‖∞ <

∞.
• Measures and integrals.

– B(S) is the σ -algebra of Borel subsets of S.
– P(S) is the set of probability measures over the measurable space (B(S), S).
– (f,μ) �

∫
f (x)μ(dx) is the integral of a real function f : S → R w.r.t. a measure μ ∈

P(S).
– Given a probability measure μ ∈ P(S), a Borel set A ∈ B(S) and the indicator function

IA(x) =
{

1, if x ∈ A,

0, otherwise,

μ(A) = (IA,μ) =
∫

IA(x)μ(dx) is the probability of A.
• Sequences, vectors and random variables (r.v.).

– We use a subscript notation for finite sequences, namely xt1:t2 � {xt1 , . . . , xt2}.
– For an element x = (x1, . . . , xd) ∈ R

d of an Euclidean space, its norm is denoted as

‖x‖ =
√

x2
1 + · · · + x2

d .
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– Let Z be a r.v. taking values on R
d , with associated probability measure P ∈ P(Rd).

The Lp norm of Z, with p ≥ 1, is ‖Z‖p � E[|Z|p]1/p = (
∫

|z|pP(dz))
1
p (where E[·]

denotes expectation).

Remark 1. Let α,β, ᾱ, β̄ ∈ P(S) be probability measures and let f,h ∈ B(S) be two real
bounded functions on S such that (h, ᾱ) > 0 and (h, β̄) > 0. If the identities

(f,α) = (f h, ᾱ)

(h, ᾱ)
and (f,β) = (f h, β̄)

(h, β̄)

hold, then it is straightforward to show (see, e.g., [12]) that

∣∣(f,α) − (f,β)
∣∣ ≤ 1

(h, ᾱ)

∣∣(f h, ᾱ) − (f h, β̄)
∣∣ + ‖f ‖∞

(h, ᾱ)

∣∣(h, ᾱ) − (h, β̄)
∣∣. (2.1)

2.2. State-space Markov models in discrete time

Consider two random sequences, {Xt }t≥0 and {Yt }t≥1 taking values in R
dx and R

dy , respectively,
and a r.v. � taking values on a compact set Dθ ⊂ R

dθ . Let Pt be the joint probability measure
for the triple ({Xk}0≤k≤t , {Yk}0<k<t ,�), that we assume to be absolutely continuous w.r.t. the
Lebesgue measure on B(Rdx(t+1) ×R

dy t × Dθ ).
We refer to the sequence {Xt }t≥0 as the state (or signal) process and we assume that it is an

inhomogeneous Markov chain governed by an initial probability measure τ0 ∈ P(Rdx ) and a
sequence of transition kernels τt,θ : B(Rdx ) × R

dx → [0,1] indexed by a realisation of the r.v.
� = θ . To be specific, we define

τ0(A) � P0{X0 ∈ A}, (2.2)

τt,θ (A|xt−1) � Pt {Xt ∈ A|Xt−1 = xt−1,� = θ}, t ≥ 1, (2.3)

where A ∈ B(Rdx ) is a Borel set. The sequence {Yt }t≥1 is termed the observation process. Each
r.v. Yt is assumed to be conditionally independent of other observations given Xt and �, namely

Pt

{
Yt ∈ A|X0:t = x0:t ,� = θ, {Yk = yk}k �=t

}
= Pt {Yt ∈ A|Xt = xt ,� = θ}

for any A ∈ B(Rdy ). Additionally, we assume that every probability measure γt,θ ∈ P(Rdy ) in
the family

γt,θ (A|xt )� Pt {Yt ∈ A|Xt = xt ,� = θ}, A ∈ B
(
R

dx
)
, θ ∈ Dθ , t ≥ 1, (2.4)

has a nonnegative density w.r.t. the Lebesgue measure. The function gt,θ (y|x) ≥ 0 is proportional
to this density, hence we write

γt,θ (A|xt ) =
∫

cIA(y)gt,θ (y|xt ) dy, (2.5)
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where c is a (possibly unknown) normalisation constant, assumed independent of y, x and θ .
The prior τ0, the kernels {τt,θ }t≥1, and the functions {gt,θ }t≥1, describe a stochastic Markov

state-space model in discrete time. Note that the model is indexed by θ ∈ Dθ , which is henceforth
termed the system parameter. The a priori probability measure of the r.v. � is denoted μ0, that
is, for any A ∈ B(Dθ ), μ0(A) � P0{θ ∈ A}.

If � = θ (the parameter is given), then the stochastic filtering problem consists in the compu-
tation of the posterior probability measure of the state Xt given the parameter and a sequence
of observations up to time t . Specifically, for a given observation record {yt }t≥1, we seek the
measures

φt,θ (A) � Pt {Xt ∈ A|Y1:t = y1:t ,� = θ}, t = 0,1,2, . . . ,

where A ∈ B(Rdx ). For many practical problems, the interest actually lies in the computation of
statistics of the form (f,φt,θ ) for some integrable function f : Rdx →R. Note that, for t = 0, we
recover the prior signal measure, hence φ0,θ = τ0 independently of θ .

There are many applications in which the parameter � is unknown and the goal is to fit the
model using a given sequence of observations. In that case, the sequence of probability measures
of interest is

μt (A) � Pt {� ∈ A|Y1:t = y1:t }, t = 0,1,2, . . . , where A ∈ B(Dθ ).

If both the fitting of the model and the tracking of the state variables {Xt }t≥0 are sought, then we
need to approximate the joint probability measures

πt

(
A × A′)� Pt

{
Xt ∈ A,� ∈ A′|Y1:t = y1:t

}
, t = 0,1,2, . . . ,

where A ∈ B(Rdx ) and A′ ∈ B(Dθ ). Note that we can write the joint measure πt as a function of
the marginals φt,θ and μt . Indeed, if given A ∈ B(Rdx ) we introduce the real function fAt : Dθ →
[0,1], where fAt (θ) = φt,θ (A), then

πt

(
A × A′) =

(
IA′ fAt ,μt

)
=

∫
IA′(θ)fAt (θ)μt (dθ) =

∫∫
IA′(θ)IA(x)φt,θ (dx)μt (dθ). (2.6)

2.3. Standard particle filter

Assume that both the parameter � = θ and a sequence of observations Y1:T = y1:T , T < ∞, are
fixed. Then, the sequence of measures {φt,θ }t≥1 can be numerically approximated using particle
filtering. Particle filters are numerical methods based on the recursive relationship between φt,θ

and φt−1,θ . In particular, let us introduce the predictive measure ξt,θ � τt,θφt−1,θ such that, for
any integrable function f :Rdx →R, we obtain

(f, ξt,θ ) =
∫∫

f (x)τt,θ

(
dx|x′)φt−1,θ

(
dx′) =

(
(f, τt,θ ),φt−1,θ

)
, (2.7)
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where we note that
∫

f (x)τt,θ (dx|x′) is itself a map R
dx → R. Integrals w.r.t. the filter measure

φt,θ can be rewritten by way of ξt,θ as

(f,φt,θ ) =
(fg

yt

t,θ , ξt,θ )

(g
yt

t,θ , ξt,θ )
, (2.8)

where g
yt

t,θ (x) � gt,θ (yt |x) is the likelihood of x ∈R
dx . Eqs. (2.7) and (2.8) are used extensively

through the paper. They are instances of the Chapman–Kolmogorov equation and the Bayes
theorem, respectively.

The simplest particle filter, often called “standard particle filter” or “bootstrap filter” [22] (see
also [18]), can be described as follows.

Algorithm 1. Bootstrap filter conditional on � = θ .

1. Initialisation. At time t = 0, draw N i.i.d. samples, x
(i)
0 , n = 1, . . . ,N , from the prior τ0.

2. Recursive step. Let {x(n)
t−1}1≤n≤N be the particles (Monte Carlo samples) generated at time

t − 1. At time t , proceed with the two steps below.

(a) For n = 1, . . . ,N , draw a sample x̄
(n)
t from the probability distribution τt,θ (·|x(n)

t−1)

and compute the normalised weight

w
(n)
t =

g
yt

t,θ (x̄
(n)
t )

∑N
k=1 g

yt

t,θ (x̄
(k)
t )

. (2.9)

(b) For n = 1, . . . ,N , let x
(n)
t = x̄

(k)
t with probability w

(k)
t , k ∈ {1, . . . ,N}.

Step 2(b) is referred to as resampling or selection. In the form stated here, it reduces to the
so-called multinomial resampling algorithm [17,19] but convergence of the filter can be easily
proved for various other schemes (see, e.g., the treatment of the resampling step in [12]). Using
the set {x(n)

t }1≤n≤N , we construct random approximations of ξt,θ and φt,θ , namely

ξN
t,θ (dxt ) = 1

N

N∑

n=1

δ
x̄

(n)
t

(dxt ) and φN
t,θ (dxt ) = 1

N

N∑

n=1

δ
x

(n)
t

(dxt ), (2.10)

where δ
x

(n)
t

is the Dirac delta measure located at Xt = x
(n)
t . For any integrable function f in the

state space, it is straightforward to approximate the integrals (f, ξt,θ ) and (f,φt,θ ) as

(f, ξt,θ ) ≈
(
f, ξN

t,θ

)
= 1

N

N∑

n=1

f
(
x̄

(n)
t

)
and (f,φt,θ ) ≈

(
f,φN

t,θ

)
= 1

N

N∑

n=1

f
(
x

(n)
t

)
, (2.11)

respectively.
The convergence of particle filters has been analysed in a number of different ways. Here we

use results for the convergence of the Lp norms (p ≥ 1) of the approximation errors.
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Theorem 1. Assume that both the system parameter � = θ and the sequence of observations

Y1:T = y1:T are fixed (with T < ∞), g
yt

t,θ ∈ B(Rdx ) and g
yt

t,θ > 0 (in particular, (g
yt

t,θ , ξt,θ ) > 0)

for every t = 1,2, . . . , T . Then for any f ∈ B(Rdx ), any p ≥ 1 and every t = 1, . . . , T ,

∥∥(
f, ξN

t,θ

)
− (f, ξt,θ )

∥∥
p

≤ c̄t,θ‖f ‖∞√
N

and
∥∥(

f,φN
t,θ

)
− (f,φt,θ )

∥∥
p

≤ ct,θ‖f ‖∞√
N

,

where c̄t,θ , ct,θ < ∞ are constants independent of N , ‖f ‖∞ = supx∈Rdx |f (x)| and the expecta-

tions are taken over the distributions of the random measures ξN
t,θ and φN

t,θ , respectively.

Proof. This result is a special case of, for example, Lemma 1 in [35]. �

Theorem 1 is fairly standard. A similar proposition was already proved in [16], albeit under
additional assumptions on the state-space model, and bounds for p = 2 and p = 4 can also be
found in a number of references (see, e.g., [12–14]). It is also possible to establish conditions
that make the convergence result of Theorem 1 uniform over the parameter space. Recall that the
r.v. � has compact support Dθ ⊂R

dθ and denote

∥∥g
yt
t

∥∥
∞ � sup

θ∈Dθ

∥∥g
yt

t,θ

∥∥
∞, (2.12)

ut (θ) �
(
g

yt

t,θ , ξt,θ

)
and (2.13)

ut,inf � inf
θ∈Dθ

ut (θ). (2.14)

We can state a result very similar to Theorem 1, but with the constant in the upper bound of the
approximation error being independent of the parameter θ . For convenience in the exposition of
the rest of the paper, we first establish the convergence, uniform over the parameter space Dθ , of
the recursive step in the particle filter.

Lemma 1. Choose any θ ∈ Dθ and any f ∈ B(Rdx ). Assume that the sequence of observa-

tions Y1:t = y1:t is fixed (for some t < ∞) and a discrete random measure φN
t−1,θ (dxt−1) =

1
N

∑N
n=1 δ

x
(n)
t−1

(dxt−1) is available such that, for any p ≥ 1,

∥∥(
f,φN

t−1,θ

)
− (f,φt−1,θ )

∥∥
p

≤ ct−1‖f ‖∞√
N

+ c̄t−1‖f ‖∞√
M

, (2.15)

where M ≥ 1 is an integer and ct−1, c̄t−1 < ∞ are constants independent of N , M and θ .
If g

yt

t,θ > 0, ‖gyt
t ‖ < ∞ and ut,inf > 0, then, for any p ≥ 1,

∥∥(
f, ξN

t,θ

)
− (f, ξt,θ )

∥∥
p

≤ c̃t‖f ‖∞√
N

+
¯̃ct‖f ‖∞√

M
and

∥∥(
f,φN

t,θ

)
− (f,φt,θ )

∥∥
p

≤ ct‖f ‖∞√
N

+ c̄t‖f ‖∞√
M

,
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where ξN
t,θ and φN

t,θ are computed as in the recursive step of the standard particle filter, c̃t , ¯̃ct , ct

and c̄t are finite constants independent of N , M and θ , and the expectations are taken over the

distributions of the random measures ξN
t,θ and φN

t,θ . If c̄t−1 = 0, then c̄t = ¯̃ct = 0.

Proof. See Appendix A. �

The (arbitrary) integer M introduced for notational convenience and the error term ∝ 1√
M

plays no role in the proof of Lemma 2 below. It is included exclusively to ease the exposition
of some proofs in Section 5. Given Lemma 1, it is straightforward to establish the convergence,
uniform over Dθ , of the standard particle filter.

Lemma 2. Assume that the sequence of observations Y1:T = y1:T is fixed (for some T < ∞),
g

yt

t,θ > 0, ‖gyt
t ‖ < ∞ and ut,inf > 0 for every t = 1,2, . . . , T . Then, for any f ∈ B(Rdx ), any

θ ∈ Dθ and any p ≥ 1,

∥∥(
f, ξN

t,θ

)
− (f, ξt,θ )

∥∥
p

≤ c̃t‖f ‖∞√
N

and
∥∥(

f,φN
t,θ

)
− (f,φt,θ )

∥∥
p

≤ ct‖f ‖∞√
N

for t = 0,1, . . . , T , where c̃t (f ) and ct (f ) are finite constants, independent of both N and θ ,
and the expectations are taken over the distributions of the random measures ξN

t,θ and φN
t,θ .

Proof. See Appendix B. �

Remark 2. Lemmas 1 and 2 also hold for any test function f θ : Rdx → R (i.e., dependent on θ )
as long as the upper bounds

‖f ‖∞ = sup
θ∈Dθ

∥∥f θ
∥∥

∞, and
∥∥g

yt
t

∥∥
∞ = sup

θ∈Dθ

∥∥g
yt

t,θ

∥∥
∞

are finite and the lower bound infθ∈Dθ g
yt

t,θ (x) is positive for every x ∈ R
dx and every t =

1, . . . , T . Note that infθ∈Dθ g
yt

t,θ (x) > 0 implies that ut,inf = infθ∈Dθ ut (θ) > 0. Under these as-
sumptions the constants ct and c̄t in the statement of Lemma 1 are independent of θ (they depend
on ut,inf and ‖gyt

t ‖∞, though).

3. Nested particle filter

3.1. Sequential importance sampling in the parameter space

We aim at devising a recursive algorithm that generates approximations of the posterior proba-
bility measures μt (dθ), t = 1,2, . . . , using a sequential importance sampling scheme. The key
object needed to attain this goal is the marginal likelihood of the parameter � at time t , that is,
the conditional probability density of the observation Yt given a parameter value � = θ and a
record of observations Y1:t−1 = y1:t−1.
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To be specific, assume that the observations Y1:t−1 = y1:t−1 are fixed and let

υt,θ (A) � Pt {Yt ∈ A|Y1:t−1 = y1:t−1,� = θ}, A ∈ B
(
R

dy
)
,

be the probability measure associated to the (random) observation Yt conditional on Y1:t−1 =
y1:t−1 and the parameter vector � = θ . Let us assume that υt,θ has a density ut,θ : Rdy →
[0,+∞) w.r.t. the Lebesgue measure, then we can write

υt,θ (A) =
∫

IA(y)ut,θ (y) dy, for any A ∈ B
(
R

dy
)
.

When the actual observation Yt = yt is collected, the density ut,θ (yt ) can be evaluated as an
integral, namely ut,θ (yt ) = (g

yt

t,θ , ξt,θ ), and it yields the marginal likelihood of the parameter
value θ , denoted as

ut (θ) � ut,θ (yt ) =
(
g

yt

t,θ , ξt,θ

)
.

A straightforward Monte Carlo approximation of μt could be obtained in two steps, namely,

• drawing N i.i.d. samples {θ̄ (i)
t }1≤i≤N from the posterior measure at time t − 1, μt−1,

• and then computing normalised importance weights proportional to the marginal likelihoods
ut (θ̄

(i)
t ).

Unfortunately, neither sampling from μt−1 nor the computation of the likelihood ut (θ) can be
carried out exactly, hence some approximations are in order.

3.2. Jittering

Let us consider the problem of sampling first. Assume that a particle approximation μN
t−1 =

1
N

∑N
i=1 δ

θ
(i)
t−1

of μt−1 is available. In order to track the variations in μt , it is convenient to have a

procedure to generate a new set {θ̄ (i)
t−1}1≤i≤N which still yields an approximation of μt−1 similar

to μN
t−1. A simple and practically appealing way to generate the new samples is to mutate the

particles θ
(1)
t−1, . . . , θ

(N)
t−1 independently using a jittering kernel κN : B(Dθ ) × Dθ → [0,1], that

we denote as

κN

(
dθ |θ (i)

t−1

)
= κ

θ
(i)
t−1

N (dθ), i = 1,2, . . . ,N. (3.1)

The subscript N in κN indicates that the kernel may depend on the sample size N . This is a key
feature in order to keep the distortion introduced by this mutation step sufficiently small, as will
be made explicit in Section 5 (see also Section 4.2).

3.3. Conditional bootstrap filter and marginal likelihoods

Let θ̄
(i)
t be a Monte Carlo sample from κN (dθ |θ (i)

t−1), i.e., a random mutation of θ
(i)
t−1 as described

above. The likelihood ut (θ̄
(i)
t ) can be approximated using Algorithm 1 (the standard particle
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filter), conditional on � = θ̄
(i)
t . For notational convenience, we introduce two random transfor-

mations of discrete sample sets on R
dx , that will later be used to write down the conditional

bootstrap filter.

Definition 1. Let {x(j)}1≤j≤M be a set of M points on the state space R
dx . The set

{
x̄(j)

}
1≤j≤M

= ϒn,θ

({
x(j)

}
1≤j≤M

)

is obtained by sampling each x̄(j) from the corresponding transition kernel τn,θ (dx|x(j)), for
j = 1, . . . ,M .

Definition 2. Let {x̄(j)}1≤j≤M be a set of M points on the state space R
dx . The set

{
x(j)

}
1≤j≤M

= ϒ
yn

n,θ

({
x̄(j)

}
1≤j≤M

)

is obtained by

• computing normalised weights proportional to the likelihoods,

v
(j)
n =

g
yn

n,θ (x̄
(j)
n )

∑M
k=1 g

yn

n,θ (x̄
(k)
n )

, j = 1, . . . ,M.

• and then resampling with replacement the set {x̄(j)}1≤j≤M according to the weights

{v(j)
n }1≤j≤M , that is, assigning x(j) = x̄(k) with probability v(k), for j = 1, . . . ,M and

k ∈ {1, . . . ,M}.

Let us now rewrite the bootstrap filter algorithm using this new notation.

Algorithm 2. Bootstrap filter conditional on � = θ
(i)
t .

1. Initialisation. Draw M i.i.d. samples x
(i,j)

0 , j = 1, . . . ,M , from the prior distribution τ0.

2. Recursive step. Let {x(i,j)

n−1 }1≤j≤M be the set of available samples at time n − 1, with n ≤ t .
The particle set is updated at time n in two steps:

(a) Compute {x̄(i,j)
n }1≤j≤M = ϒ

n,θ
(i)
t

({x(i,j)

n−1 }1≤j≤M ).

(b) Compute {x(i,j)
n }1≤j≤M = ϒ

yn

n,θ
(i)
t

({x̄(i,j)
n }1≤j≤M ).

For n = t , we obtain approximations of the posterior measures ξ
t,θ̄

(i)
t

(dxt ) and φ
t,θ̄

(i)
t

(dxt ) of

the form

ξM

t,θ̄
(i)
t

(dxt ) = 1

M

M∑

j=1

δ
x̄

(i,j)
t

(dxt ) and φM

t,θ̄
(i)
t

(dxt ) = 1

M

M∑

j=1

δ
x

(i,j)
t

(dxt ), (3.2)
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respectively, hence the likelihood ut (θ̄
(i)
t ) can be approximated as

uM
t

(
θ̄

(i)
t

)
=

(
g

yt

t,θ̄
(i)
t

, ξM

t,θ̄
(i)
t

)
= 1

M

M∑

j=1

g
yt

t,θ̄
(i)
t

(
x̄

(i,j)
t

)
. (3.3)

3.4. Recursive algorithm

If a new sample θ
(i)
t ∈ Dθ is produced at time t , one can approximate the likelihood uM

t (θ̄
(i)
t ) =

(g
yt

t,θ̄
(i)
t

, ξM

t,θ̄
(i)
t

) by running a standard particle filter from time 0 to time t , as shown in Section 3.3.

However, the computational cost of this procedure obviously increases with time. We need to
avoid this limitation in order to design a recursive algorithm.

Let us assume that the optimal filters φt,θ (dx) are continuous w.r.t the parameter θ . This means
that if we have two candidate parameters θ and θ̃ such that θ ≈ θ̃ , then φt−1,θ ≈ φt−1,θ̃ . If the
latter approximation holds, then we can naturally expect that the predictive measure at time t

for the parameter θ̃ , namely ξt,θ̃ , can also be approximated using φt−1,θ instead of φt−1,θ̃ . To be
specific, we can expect that

ξt,θ̃ = τt,θ̃φt−1,θ̃ ≈ τt,θ̃φt−1,θ

and, hence, the likelihood of the parameter ut (θ̃) = (g
yt

t,θ̃
, ξt,θ̃ ), can be approximated from the

filter at time t − 1 computed for the mismatched parameter value θ (instead of the actual θ̃ ), that
is,

ut (θ̃) =
(
g

yt

t,θ̃
, ξt,θ̃

)
≈

(
g

yt

t,θ̃
, τt,θ̃φt−1,θ

)
. (3.4)

If we accept the approximation in Eq. (3.4), then it is possible to devise a truly recursive
particle filter for the approximation of the posterior probability measures μt (dθ). Assume that,
at time t − 1, we have been able to generate a set of particles in the parameter space {θ (i)

t−1}1≤i≤N

and, for each θ
(i)
t−1, we have the set of particles in the state space {x(i,j)

t−1 }1≤j≤M . The latter set

yields an approximation of the optimal filter conditional on θ
(i)
t−1, i.e., we have

φ
t−1,θ

(i)
t−1

≈ φM

t−1,θ
(i)
t−1

= 1

M

M∑

j=1

δ
x

(i,j)
t−1

.

Now we generate a new parameter sample θ̄
(i)
t by jittering the previous sample θ

(i)
t−1 in a con-

trolled manner (as suggested in Section 3.2). If the modulus of the difference, ‖θ̄ (i)
t − θ

(i)
t−1‖, is

small enough, then we can expect that

φ
t−1,θ̄

(i)
t

≈ φ
t−1,θ

(i)
t−1

≈ φM

t−1,θ
(i)
t−1

= 1

M

M∑

j=1

δ
x

(i,j)
t−1

, (3.5)
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and we can use the particle approximation of the filter computed for θ
(i)
t−1 as a particle approxima-

tion of the filter for the new sample θ̄
(i)
t . Once we have this approximation, it is straightforward

to sample from the Markov kernels τ
t,θ̄

(i)
t

(dxt |x(i,j)

t−1 ) (this is the transformation ϒ
n,θ̄

(i)
t

applied to

the set {x(i,j)

t−1 }1≤j≤M from which φM

t−1,θ
(i)
t−1

is constructed) in order to obtain the new predictive

measure ξM

t,θ̄
(i)
t

and then approximate the likelihood of θ̄
(i)
t as uM

t (θ̄
(i)
t ) = (g

yt

t,θ̄
(i)
t

, ξM

t,θ̄
(i)
t

). In this

process, we do not need to run a new particle filter from scratch, but simply to take a recursive
step at time t . The price to pay is the introduction of an additional approximation error, that arises
from (3.5) and needs to be quantified.

The complete recursive algorithm for the particle approximation of the sequence of measures
μt is described below.

Algorithm 3. Nested particle filtering for the approximation of μt , t = 0,1,2, . . . .

1. Initialisation. Draw N i.i.d. samples {θ (i)
0 }1≤i≤N from the prior distribution π0(dθ) and

N × M i.i.d. samples {x(i,j)

0 }1≤i≤N;1≤j≤M from the prior distribution τ0.

2. Recursive step. For t ≥ 1, assume the particle set {θ (i)
t−1, {x

(i,j)

t−1 }1≤j≤M }1≤i≤N is available
and update it taking the following steps.

(a) For each i = 1, . . . ,N

– draw θ̄
(i)
t from κ

θ
(i)
t−1

N (dθ),

– update {x̄(i,j)
t }1≤j≤M = ϒ

t,θ̄
(i)
t

({x(i,j)

t−1 }1≤j≤M ) and construct ξM

t,θ̄
(i)
t

= 1
M

×
∑M

j=1 δ
x̄

(i,j)
t

,

– compute the approximate likelihood uM
t (θ̄

(i)
t ) = (g

yt

t,θ̄
(i)
t

, ξM

t,θ̄
(i)
t

), and

– update the particle set {x̃(i,j)
t }1≤j≤M = ϒ

yt

t,θ̄
(i)
t

({x̄(i,j)
t }1≤j≤M ).

(b) Compute normalised weights w
(i)
t ∝ uM

t (θ̄
(i)
t ), i = 1, . . . ,N .

(c) Resample: for each i = 1, . . . ,N , set {θ (i)
t , x

(i,j)
t }1≤j≤M = {θ̄ (l)

t , x̃
(l,j)
t }1≤j≤M with

probability w
(l)
t , where l ∈ {1, . . . ,N}.

Step 2(a) in Algorithm 3 involves jittering the samples in the parameter space and then taking
a single recursive step of a bank of N standard particle filters. In particular, for each θ̄

(i)
t , 1 ≤ i ≤

N , we have to propagate the particles {x(i,j)

t−1 }1≤j≤M so as to obtain a new set {x̃(i,j)
t }1≤j≤M .

Remark 3. The cost of the recursive step in Algorithm 3 is independent of t . We only have
to carry out regular “prediction” and “update” operations in a bank of standard particle filters.
Hence, Algorithm 3 is sequential, purely recursive and can be implemented online.

Remark 4. Algorithm 3 yields several approximations. While μ
N,M
t = 1

N

∑N
i=1 δ

θ
(i)
t

is an esti-

mate of μt , the joint posterior measure πt is approximated as π
N,M
t = 1

NM

∑N
i=1

∑M
j=1 δ

θ
(i)
t ,x

(i,j)
t

.
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Conditional predictive and filter measures on the state space are also computed by the inner fil-
ters, namely ξM

t,θ̄
(i)
t

= 1
M

∑M
j=1 δ

x̄
(i,j)
t

and φM

t,θ
(i)
t

= 1
M

∑M
j=1 δ

x
(i,j)
t

.

4. Summary of results

4.1. Convergence of the approximation errors in Lp

We pursue a characterisation of the Lp norms of the approximation errors for μ
N,M
t , φM

t,θ
(i)
t

(i = 1, . . . ,N ) and π
N,M
t which can be stated in a form similar to Lemma 2. Towards this aim, we

prove in Section 5 that, under regularity assumptions on the state-space model and the jittering
kernel κθ

N , the Lp norms of the errors asymptotically decrease toward 0, and provide explicit
convergence rates. To be specific, our analysis relies on the following basic assumptions (to be
stated in a precise manner in Section 5):

• The optimal filters φt,θ are continuous w.r.t. the parameter θ .
• The jittering steps are “small enough” and, in particular, the variance of the jittering kernel

is a decreasing function of the number of particles N .
• The parameter θ is restricted to take values on a compact set Dθ , and the conditional p.d.f.

of the observations, g
yt

t,θ (xt ) is positive and uniformly bounded over Dθ .

The continuity of the optimal filters and the constraint on the variance of the jittering kernel are
at the core of Algorithm 3. If these conditions are not satisfied, it cannot be expected to converge,
as the errors due to the jittering steps may grow without bound. Under the assumptions above, we
have proved the results below, that hold true for an arbitrary-but-fixed sequence of observations
y1:T , with T < ∞, and arbitrary test functions h ∈ B(Dθ ) and f ∈ B(Dθ ×R

dx ).

Result 1 (Theorem 2, Section 5). There exist constants ct , c̄t < ∞, independent of N and M ,
such that

∥∥(
h,μ

N,M
t

)
− (h,μt )

∥∥
p

≤ ct‖h‖∞√
N

+ c̄t‖h‖∞√
M

for any p ≥ 1 and every t = 0, . . . , T .

Result 2 (Theorem 3, Section 5). There exist constants ct , c̄t < ∞, independent of N and M ,
such that

∥∥(
f,π

N,M
t

)
− (f,πt )

∥∥
p

≤ ct‖h‖∞√
N

+ c̄t‖h‖∞√
M

for any p ≥ 1 and every t = 0, . . . , T .

Additionally, Algorithm 3 yields explicit approximations of the conditional filter measures (for
� = θ

(i)
t , i = 1, . . . ,N ). In particular, we will show that the statement below also holds under

mild assumptions.
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Result 3 (Remark 10, Section 5). For any l ∈ B(Rdx ) there exist constants kt , k̄t < ∞, inde-
pendent of M and N , such that

sup
1≤i≤N

∥∥(
l, φM

t,θ
(i)
t

)
− (l, φ

t,θ
(i)
t

)
∥∥

p
≤ kt‖l‖∞√

N
+ k̄t‖l‖∞√

M

for any p ≥ 1 and every t = 0, . . . , T .

Remark 5. In most practical applications, we can expect constraints on the computational effort
that can be invested at each time step. Typically, this occurs because a full sequential step of
the algorithm must be completed before a new observation is received. This is likely to impose a
limitation on the overall number of samples that can be generated, namely the product K = MN .
For a given value of K (say with integer

√
K), Results 1 and 2 above indicate that the choice

of M and N that minimises the error rate is M = N =
√

K . In this case, we obtain approximate
measures

μ̂K
t �

1√
K

√
K∑

i=1

δ
θ

(i)
t

and π̂K
t �

1

K

√
K∑

i=1

√
K∑

j=1

δ
θ

(i)
t ,x

(i,j)
t

such that

∥∥(
h, μ̂K

t

)
− (h,μt )

∥∥
p

≤ ĉt‖h‖∞

K
1
4

and
∥∥(

f, π̂K
t

)
− (f,πt )

∥∥
p

≤ ĉt‖f ‖∞

K
1
4

,

for any test functions h ∈ B(Dθ ) and f ∈ B(Dθ ×R
dx ), and some finite constants ĉt and ĉt .

4.2. Jittering

The main choice to be made when implementing the algorithm is the type of jittering kernel, as in
Eq. (3.1), to be used. This can actually be very simple. Assume for instance a standard Gaussian
kernel κ̂θ ′

, with mean θ ′ and covariance matrix C = Idθ , where Idθ is the dθ ×dθ identity matrix,
and let κθ ′

the corresponding kernel truncated within the parameter support set Dθ . Any kernel
of the form

κθ ′
N = (1 − εN )δθ ′ + εNκθ ′

, (4.1)

with εN ≤ 1

N
p
2

is sufficient to make Results 1 and 2 hold with a prescribed value of p. Note

that the choice of κN in (4.1) amounts to perturbing each particle with probability εN (or leave
it unchanged with probability 1 − εN ). The perturbations applied can be large, but not many
particles are actually perturbed.

Alternatively, we can choose a standard Gaussian kernel κ̂θ ′
N , with mean θ ′ and covariance

matrix CN ∝ 1

N
p+2
p

Idθ . The jittering kernel κθ ′
N is then obtained by truncating κ̂θ ′

N within the

parameter support set Dθ . In this case, we perturb every particle, but each single perturbation
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is small. This choice of κN is also sufficient for Results 1 and 2 to hold. See Section 5.1 and
Appendix C for a detailed description.

In practice, the magnitude of the jittering introduced by the kernel κN is relevant for the perfor-
mance of the algorithm, because it determines how fast the support of the approximating measure
μ

N,M
t can be adapted over time to track changes.2 If the jittering variance is too small, it may turn

out hard to track large changes in the posterior measure μt . Such large changes can be expected
for small t (when the amount of accumulated data is still limited), in the presence of outliers, due
to change-points not accounted for by the model, etc. Some specific techniques can be adapted
from [33] to deal with outliers, and we show a simple numerical example at the end of Section 6
to illustrate the effect of change-points. On the other hand, if the jittering variance is made too
large, the adaptivity of the algorithm can be improved but its converge rate can be compromised
(see Remark 9 in Section 5.2).

4.3. Comparison with the SMC2 method

The natural benchmark for the algorithm introduced in this paper is the SMC2 method of [10].
This technique is similar in structure to Algorithm 3 and, in particular, it generates and maintains
over time N particles in the parameter space and, for each one of them, M particles in the state
space. However, it displays two key differences w.r.t. Algorithm 3:

• The particles in the parameter space are jittered using a particle MCMC kernel, with the aim
of leaving the approximate posterior distribution of the parameters invariant.

• The weights for the particles in the parameter space at time t are computed using the com-
plete sequence of observations y1:t .

The SMC2 algorithm is consistent [10], Proposition 1, as it targets a sequence of probability
measures (of increasing dimension) that have the parameter posterior measures, {μt }t≥0, as
marginals. Although this is not explicitly proved in [10], under adequate assumptions it can be
shown that the SMC2 method produces approximate measures μ

N,M
t,SMC such that the Lp norms of

the approximation errors can be bounded as

∥∥(h,μ
N,M
t,SMC) − (h,μt )

∥∥
p

≤ Ct√
N

(4.2)

for some constant Ct , independent of N and M . This implies that the approximation errors vanish
asymptotically as N → ∞, even if M < ∞ is kept fixed. Also, if K = NM is the total number of
particles in the state space generated by the SMC2 algorithm, and M is assumed to be constant,

the the inequality (4.2) implies that the approximation errors converge as K− 1
2 .

The obvious drawback of the SMC2 method is that it is not recursive: both the use of a particle
MCMC kernel3 and the computation of the particle weights at time t involve the processing of

2The jittering step enables the adaptation of the support set {θ (i)
t }1≤N . The shape of the posterior distribution is tracked

by computing the importance weights.
3Particularly note that if we replace the jittering kernel in the proposed Algorithm 3 by a particle MCMC kernel, the
resulting procedure is not recursive anymore.
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the whole sequence of observations y1:t . In particular, a straightforward implementation of the
SMC2 algorithm with periodic resampling steps and a sequence of T observations, y1:T , yields
complexity O(NMT2). In comparison, Algorithm 3 is purely recursive, hence for a sequence of
observations y1:T the computational cost is O(NMT), that is, linear in T versus the quadratic
complexity of the original SMC2 approach.

The linear complexity O(NMT) of Algorithm 3, however, comes at the expense of some lim-
itations compared to the SMC2 technique. The most important one is that the approximation
errors converge with 1√

N
+ 1√

M
(see Result 1), hence we need to let N → ∞ and M → ∞

for the errors to vanish, while in the SMC2 method it is enough to have N → ∞ (and keep M

fixed). If K = NM is the total number of particles in the state space, the optimal allocation for

Algorithm 3 is N = M =
√

K and the convergence rate is K− 1
4 (see Remark 5) while the SMC2

attains a rate K− 1
2 .

We finally remark that the conditional optimal filters φt,θ need to be continuous w.r.t. θ ∈ Dθ

in order to ensure the convergence of Algorithm 3, while this is not necessary for the SMC2, the
particle MCMC [1] or the nonlinear population Monte Carlo [27] methods. This limitation of
the proposed scheme is a direct consequence of not using the full sequence of observations to
compute the weights.

5. Convergence analysis

We split the analysis of the recursive Algorithm 3 in three steps: jittering, weight computation
and resampling. At the beginning of time step t , the approximation μ

N,M
t−1 of μt−1 is available.

After the jittering step, we have a new approximation,

μ̄
N,M
t−1 = 1

N

N∑

i=1

δ
θ̄

(i)
t

,

and we need to prove that it converges to μt−1. After the computation of the weights, the measure

μ̃
N,M
t =

N∑

i=1

w
(i)
t δ

θ̄
(i)
t

is obtained (note that the weights w
(i)
t ∝ (g

yt

t,θ̄
(i)
t

, ξM

t,θ̄
(i)
t

) depend on M , although we skip this

dependence for notational simplicity) and its convergence toward μt must be established. Finally,
after the resampling step, we need to prove that

μ
N,M
t = 1

N

N∑

i=1

δ
θ

(i)
t

converges to μt in an appropriate manner. We prove the convergence of μ̄N
t−1, μ̃N

t and μN
t in

three corresponding lemmas and then combine them to prove the asymptotic convergence of
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Algorithm 3. Splitting the proof has the advantage that we can “reuse” these partial lemmas
easily in order to prove different statements. For example, it is straightforward to show that
π

N,M
t → πt , when N,M → ∞, as well (see Section 5.5).

5.1. Jittering step

In the jittering step, a rejuvenated cloud of particles is generated by propagating the existing

samples across the kernels κ
θ

(i)
t−1

N , i = 1, . . . ,N . For the analysis, we abide by the following as-
sumption.

A.1. The family of kernels κθ ′
N , θ ′ ∈ Dθ , used in the jittering step satisfy the inequality

sup
θ ′∈Dθ

∫ ∣∣h(θ) − h
(
θ ′)∣∣κθ ′

N (dθ) ≤ cκ‖h‖∞√
N

(5.1)

for any h ∈ B(Dθ ) and some constant cκ < ∞.

Remark 6. One simple class of kernels that complies with A.1 has the form

κθ ′
N (dθ) = (1 − εN )δθ ′(dθ) + εN κ̄θ ′

N (dθ), (5.2)

where 0 ≤ εN ≤ 1√
N

and κ̄θ ′
N ∈ P(Dθ ) for every θ ′ ∈ Dθ . Note that substituting (5.2) into (5.1)

yields

sup
θ ′∈Dθ

∫ ∣∣h(θ) − h
(
θ ′)∣∣κθ ′

N (dθ) ≤ 2εN‖h‖∞ ≤ 2‖h‖∞√
N

,

hence A.1 is satisfied with cκ = 2.
When using a kernel of the form in (5.2) only a small fraction of particles are actually changed

in the jittering step. However, when a particle is actually jittered, the move can be large. Note
that the variance of κ̄θ ′

N (dθ) can be independent of N and possibly large, since the variance of

κθ ′
N (dθ) is controlled by the choice of εN ≤ 1√

N
alone.

Remark 7. Assume that h ∈ B(Dθ ) is Lipschitz, that is, there is a constant cL < ∞ such that
∣∣h(θ) − h

(
θ ′)∣∣ ≤ cL‖h‖∞

∥∥θ − θ ′∥∥

for any θ, θ ′ ∈ Dθ . If there exists a constant c̆ < ∞ independent of N such that the inequality

σ 2
κ,N = sup

θ ′∈Dθ

∫ ∥∥θ − θ ′∥∥2
κθ ′
N (dθ) ≤ c̆

ε3
NN

3
2

(5.3)

is satisfied, then Eq. (5.1) in A.1 holds with cκ = cL(1 + c̆ supθ1,θ2∈Dθ
‖θ1 − θ2‖) < ∞. A gen-

eralization of this statement is proved in Appendix C. Note that with this class of kernels every
particle is jittered at each time step, but the moves are very small.
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Lemma 3. Let Y1:T = y1:T be arbitrary but fixed and choose any 0 < t ≤ T . If h ∈ B(Dθ ), A.1
holds and

∥∥(
h,μ

N,M
t−1

)
− (h,μt−1)

∥∥
p

≤ ct−1‖h‖∞√
N

+ c̄t−1‖h‖∞√
M

(5.4)

for some p ≥ 1 and some constants ct−1, c̄t−1 < ∞ independent of N and M , then

∥∥(
h, μ̄

N,M
t−1

)
− (h,μt−1)

∥∥
p

≤ c1,t‖h‖∞√
N

+ c̄1,t‖h‖∞√
M

, (5.5)

where the constants c1,t , c̄1,t < ∞ are also independent of N and M .

Proof. Recall that we draw the particles θ̄
(i)
t , i = 1, . . . ,N , independently from the kernels κ

θ
(i)
t−1

N ,
i = 1, . . . ,N , respectively. In order to prove that (5.5) holds, we start from the iterated triangle
inequality

∥∥(
h, μ̄

N,M
t−1

)
− (h,μt−1)

∥∥
p

≤
∥∥(

h, μ̄
N,M
t−1

)
−

(
h,κNμ

N,M
t−1

)∥∥
p

+
∥∥(

h,κNμ
N,M
t−1

)
−

(
h,μ

N,M
t−1

)∥∥
p

(5.6)

+
∥∥(

h,μ
N,M
t−1

)
− (h,μt−1)

∥∥
p
,

where

(
h,κNμ

N,M
t−1

)
= 1

N

N∑

i=1

∫
h(θ)κ

θ
(i)
t−1

N (dθ),

and then analyse each of the terms on the right-hand side of (5.6) separately. Note that the last
term, in particular, is straightforward: its bound follows directly from the assumption in Eq. (5.4).

Let Gt−1 be the σ -algebra generated by the random particles {θ̄ (i)
1:t−1, θ

(i)
0:t−1}1≤i≤N . Then

E
[(

h, μ̄
N,M
t−1

)
|Gt−1

]
= 1

N

N∑

i=1

∫
h(θ)κ

θ
(i)
t−1

N (dθ) =
(
h,κNμ

N,M
t−1

)

and the difference (h, μ̄
N,M
t−1 ) − (h, κNμ

N,M
t−1 ) can be written as

(
h, μ̄

N,M
t−1

)
−

(
h,κNμ

N,M
t−1

)
= 1

N

N∑

i=1

Z̄
(i)
t−1,

where the random variables Z̄
(i)
t−1 = h(θ̄

(i)
t ) − E[h(θ̄

(i)
t )|Gt−1], i = 1, . . . ,N , are conditionally

independent (given Gt−1), have zero mean and can be bounded as |Z̄(i)
t−1| ≤ 2‖h‖∞. It is an
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exercise in combinatorics to show that the number of non-zero terms in

E

[(
N∑

i=1

Z̄
(i)
t−1

)p∣∣∣Gt−1

]
=

∑

i1

· · ·
∑

ip

E
[
Z̄

(i1)
t−1 · · · Z̄(ip)

t−1|Gt−1
]

is a polynomial of order no greater than N
p
2 with coefficients independent of N . As a con-

sequence, there exists a constant c̃1, independent of N , M and h (actually independent of the
distribution of the Z̄

(i)
t−1’s) such that

E
[∣∣(h, μ̄

N,M
t−1

)
−

(
h,κNμ

N,M
t−1

)∣∣p|Gt−1
]
= E

[∣∣∣∣∣
1

N

N∑

i=1

Z̄
(i)
t−1

∣∣∣∣∣

p∣∣∣Gt−1

]
≤

c̃
p

1 ‖h‖p
∞

N
p
2

. (5.7)

From (5.7), we readily obtain that

∥∥(
h, μ̄

N,M
t−1

)
−

(
h,κNμ

N,M
t−1

)∥∥
p

≤ c̃1‖h‖∞√
N

. (5.8)

For the remaining term in (5.6), namely, ‖(h, κNμ
N,M
t−1 ) − (h,μ

N,M
t−1 )‖p , we simply note that

∣∣(h,κNμ
N,M
t−1

)
−

(
h,μ

N,M
t−1

)∣∣ =
∣∣∣∣∣

1

N

N∑

i=1

∫ (
h(θ) − h

(
θ

(i)
t−1

))
κ

θ
(i)
t−1

N (dθ)

∣∣∣∣∣
(5.9)

≤ 1

N

N∑

i=1

∫ ∣∣h(θ) − h
(
θ

(i)
t−1

)∣∣κθ
(i)
t−1

N (dθ) ≤ cκ‖h‖∞√
N

,

where the last inequality follows from assumption A.1, with the constant cκ < ∞ independent
of N and M .

Substituting the inequalities (5.4), (5.8) and (5.9) into Eq. (5.6) yields the desired conclusion,
viz., Eq. (5.5), with constants c1,t = ct−1 + cκ + c̃1 and c̄1,t = c̄t−1 independent of N and M . �

5.2. Computation of the weights

Since the integral ut (θ) = (g
yt

t,θ , ξt,θ ) is intractable, the importance weights are computed as

w
(i)
t ∝

(
g

yt

t,θ̄
(i)
t

, ξM

t,θ̄
(i)
t

)
= uM

t

(
θ̄

(i)
t

)
, i = 1, . . . ,N.

We also recall that the particles in the set {x(i,j)

t−1 }1≤j≤M , which yield the approximate filter

φM

t−1,θ
(i)
t−1

= 1
M

∑M
j=1 δ

x
(i,j)

t−1
, are propagated through the transition kernels as

x̄
(i,j)
t ∼ τ

t,θ̄
(i)
t

(
dxt |x(i)

t−1

)
, j = 1, . . . ,M, to obtain ξM

t,θ̄
(i)
t

= 1

M

M∑

j=1

δ
x̄

(i,j)
t

.
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This means that we are using φM

t−1,θ
(i)
t−1

as an estimate of φ
t−1,θ̄

(i)
t

in order to compute the pre-

dictive measure ξM

t,θ̄
(i)
t

and, as a consequence, it is necessary to prove that the error introduced at

this step can be bounded in the same way as the approximation errors in Lemma 3. To attain that
result, we need to strengthen slightly our assumptions on the structure of the kernel κN .

A.2. The family of kernels κθ ′
N , θ ′ ∈ Dθ , used in the jittering step satisfies the inequality

sup
θ ′∈Dθ

∫ ∥∥θ − θ ′∥∥p
κθ ′
N (dθ) ≤ c

p
κ

N
p
2

(5.10)

for some prescribed p ≥ 1 and some constant cκ < ∞.

Remark 8. It is simple to prove that kernels of the class

κθ ′
N = (1 − εN )δθ ′ + εN κ̄θ ′

N , (5.11)

with 0 < εN ≤ 1

N
p
2

and κ̄θ ′
N ∈ P(Dθ ), satisfy assumption A.2 for every p ≥ 1. Simply note that

sup
θ ′∈Dθ

∫ ∥∥θ − θ ′∥∥p
κθ ′
N (dθ) ≤ εN Ĉp ≤ Ĉp

N
p
2
,

where Ĉp = supθ1,θ2∈Dθ
‖θ1 − θ2‖p < ∞, since Dθ is compact. The inequality (5.10) also holds

for any kernel κθ ′
N that satisfies the inequality

σ 2
κ,N = sup

θ,θ ′∈Dθ

∫ ∥∥θ − θ ′∥∥2
κθ ′
N (dθ) ≤ c̆

N
p+2

2

(5.12)

for some constant c̆ < ∞ (see Appendix C for a generalisation of this result).
In the first case, εN ≤ 1√

N
, we control the number of particles that are jittered. However, those

which are actually jittered may experience large perturbations. In the second case, we allow for
the jittering of all particles but, in exchange, the second order moment of the perturbation is
controlled. Kernels of the class in (5.11) with εN ≤ 1√

N
trivially satisfy A.1. The inequality (5.1)

in A.1 also holds for any kernel κθ ′
N that satisfies (5.12) for the prescribed value of p.

Remark 9. It is possible to replace the factor N− 1
2 in assumptions A.1 and A.2 by some strictly

decreasing function of N , say r(N), and still prove the convergence of the nested particle filtering
scheme (Algorithm 3). However, the error rates would depend directly on the choice of r(N),

so that if r(N) > N− 1
2 , then convergence would be attained at a slower pace (relative to N ). If

r(N) were chosen to be constant, convergence would not be guaranteed.
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Using φM

t−1,θ
(i)
t−1

as an estimate of φ
t−1,θ̄

(i)
t

can only work consistently if the filter measure

φt−1,θ is continuous in the parameter θ . Here, we assume that φt−1,θ is Lipschitz, as stated
below.

A. 3. The measures φt,θ , t ≥ 1, are Lipschitz in the parameter θ ∈ Dθ . Specifically, for every
function f ∈ B(Rdx ) there exists a constant bt < ∞ such that

∣∣(f,φt,θ ′) − (f,φt,θ ′′)
∣∣ ≤ bt‖f ‖∞

∥∥θ ′ − θ ′′∥∥ for any θ ′, θ ′′ ∈ Dθ .

Assumptions A.2 and A.3 enable us to quantify the error ‖(f,φ
t−1,θ̄

(i)
t

) − (f,φM

t−1,θ
(i)
t−1

)‖p , as

made explicit by the following lemma.

Lemma 4. Assume that:

(a) A.3 holds (i.e., φt−1,θ is Lipschitz in θ );
(b) for any θ ′ ∈ Dθ and f ∈ B(Rdx ), φM

t−1,θ ′ is a random measure that satisfies the inequality

∥∥(
f,φM

t−1,θ ′
)
− (f,φt−1,θ ′)

∥∥
p

≤ ct−1‖f ‖∞√
N

+ c̄t−1‖f ‖∞√
M

,

for some constants ct−1, c̄t−1 < ∞ independent of N , M and θ ′; and

(c) the random parameter θ ′′ is distributed according to a probability measure κθ ′
N (dθ) that

complies with A.2 for some prescribed p ≥ 1.

Then, for every f ∈ B(Rdx ) and every θ ′ ∈ Dθ , there exist constants c̃t−1, ¯̃ct−1 < ∞, independent

of N , M and θ ′, such that

∥∥(
f,φM

t−1,θ ′
)
− (f,φt−1,θ ′′)

∥∥
p

≤ c̃t−1‖f ‖∞√
N

+
¯̃ct−1‖f ‖∞√

M
.

Proof. Consider the triangle inequality
∥∥(

f,φM
t−1,θ ′

)
− (f,φt−1,θ ′′)

∥∥
p

(5.13)
≤

∥∥(
f,φM

t−1,θ ′
)
− (f,φt−1,θ ′)

∥∥
p

+
∥∥(f,φt−1,θ ′) − (f,φt−1,θ ′′)

∥∥
p
.

We aim at bounding the two terms on the right-hand side of (5.13).
For the first term, we simply apply assumption (b) in the statement of Lemma 4, which yields

∥∥(f,φM
t−1,θ ′ − (f,φt−1,θ ′)

∥∥
p

≤ ct−1‖f ‖∞√
N

+ c̄t−1‖f ‖∞√
M

, (5.14)

where ct−1, c̄t−1 < ∞ are constants independent of N , M and θ ′.
To control the second term on the right-hand side of (5.13), we resort to assumption A.3. In

particular, note that for any θ ′, θ ′′ ∈ Dθ and any f ∈ B(Rdx ), we have
∣∣(f,φt−1,θ ′) − (f,φt−1,θ ′′)

∣∣ ≤ bt−1‖f ‖∞
∥∥θ ′ − θ ′′∥∥ (5.15)
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where the constant bt−1 < ∞ is independent of θ ′ and θ ′′. Moreover, if θ ′′ is random with prob-
ability distribution given by κθ ′

N , from assumption A.2 we obtain that

E
[∥∥θ ′ − θ ′′∥∥p]

≤ sup
θ ′∈Dθ

∫ ∥∥θ ′ − θ
∥∥p

κθ ′
N (dθ) ≤ c

p
κ

N
p
2
. (5.16)

Combining the inequalities (5.15) and (5.16) yields

∥∥(f,φt−1,θ ′) − (f,φt−1,θ ′′)
∥∥

p
≤ bt−1cκ‖f ‖∞√

N
. (5.17)

Finally, substituting (5.17) and (5.14) into the triangle inequality (5.13) completes the proof,
with constants c̃t−1 = ct−1 + bt−1cκ and ¯̃ct−1 = c̄t−1. �

Lemma 4 implies that we can “leap” from θ
(i)
t−1 to θ̄

(i)
t and still keep the associated particle filter

in the inner layer running recursively, that is, we do not have to start it over every time the particle
position in the parameter space changes. If we incorporate some regularity assumptions on the
likelihoods g

yt

t,θ , t ≥ 1 (in such a way that we can resort to Lemma 2), then we arrive at an upper

bound for the error ‖(h, μ̃
N,M
t ) − (h,μt )‖p after the weight update step. These assumptions are

made explicit below.

A. 4. Given a fixed sequence Y1:T = y1:T , the family of functions {gyt

t,θ ;1 ≤ t ≤ T , θ ∈ Dθ }
satisfies the following inequalities:

1. ‖gyt
t ‖∞ = supθ∈Dθ

‖gyt

t,θ‖∞ < ∞ (which implies supθ∈Dθ
ut (θ) = supθ∈Dθ

(g
yt

t,θ , ξt,θ ) ≤
‖gyt

t ‖∞), and
2. infθ∈Dθ g

yt

t,θ (x) > 0 (which implies ut,inf = infθ∈Dθ ut (θ) = infθ∈Dθ (g
yt

t,θ , ξt,θ ) > 0)

for every 0 < t ≤ T .

Lemma 5. Let Y1:T = y1:T be fixed and choose any 0 < t ≤ T , any h ∈ B(Dθ ) and any f ∈
B(Rdx ). Let p ≥ 1 and assume that A.2, A.3 and A.4 hold. In Algorithm 3, if

∥∥(
h, μ̄

N,M
t−1

)
− (h,μt−1)

∥∥
p

≤ c1,t‖h‖∞√
N

+ c̄1,t‖h‖∞√
M

(5.18)

for some constants c1,t , c̄1,t < ∞ independent of N and M , and the random measures

{φM

t−1,θ
(i)
t−1

}1≤i≤N satisfy

sup
1≤i≤N

∥∥(
f,φM

t−1,θ
(i)
t−1

)
− (f,φ

t−1,θ
(i)
t−1

)
∥∥

p
≤ k1,t−1‖f ‖∞√

N
+ k̄1,t−1‖f ‖∞√

M
, (5.19)

for some constants k1,t−1, k̄1,t−1 < ∞ independent of N and M , then

∥∥(
h, μ̃

N,M
t

)
− (h,μt )

∥∥
p

≤ c2,t‖h‖∞√
N

+ c̄2,t‖h‖∞√
M

, (5.20)
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sup
1≤i≤N

∥∥(
f, ξM

t,θ̄
(i)
t

)
− (f, ξ

t,θ̄
(i)
t

)
∥∥

p
≤ k̃2,t‖f ‖∞√

N
+

¯̃
k2,t‖f ‖∞√

M
, (5.21)

sup
1≤i≤N

∥∥(
f,φM

t,θ
(i)
t

)
− (f,φ

t,θ
(i)
t

)
∥∥

p
≤ k2,t‖f ‖∞√

N
+ k̄2,t‖f ‖∞√

M
, (5.22)

where the constants c2,t , c̄2,t , k̃2,t ,
¯̃
k2,t , k2,t , k̄2,t < ∞ are independent of N and M .

Proof. Recall that the particle θ̄
(i)
t is drawn from the kernel κ

θ
(i)
t−1

N (dθ). Therefore, the inequality
(5.19) together with Lemma 4 yields

sup
1≤i≤N

∥∥(
f,φM

t−1,θ
(i)
t−1

)
− (f,φ

t−1,θ̄
(i)
t

)
∥∥

p
≤ c̃t−1‖f ‖∞√

N
+

¯̃ct−1‖f ‖∞√
M

, (5.23)

where the constants c̃t−1, ¯̃ct−1 < ∞ are independent of N , M . However, the key feature of Al-
gorithm 3 is to set the approximation

φM

t−1,θ̄
(i)
t

� φM

t−1,θ
(i)
t−1

= 1

M

M∑

j=1

δ
x

(i,j)
t−1

, i = 1, . . . ,N.

This choice of φM

t−1,θ̄
(i)
t

, together with the inequality (5.23) and Lemma 1, yields the inequalities

(5.21) and (5.22) in the statement of Lemma 5.
Now we address the characterisation of the weights and, therefore, of the approximate measure

μ̃
N,M
t =

∑N
i=1 w

(i)
t δ

θ̄
(i)
t

. From the Bayes’ theorem, the integral of h w.r.t. μt can be written as

(h,μt ) = (uth,μt−1)

(ut ,μt−1)
, while

(
h, μ̃

N,M
t

)
=

(uM
t h, μ̄

N,M
t−1 )

(uM
t , μ̄

N,M
t−1 )

. (5.24)

Therefore, from the inequality (2.1) we readily obtain

∣∣(h, μ̃
N,M
t

)
− (h,μt−1)

∣∣ ≤ 1

(ut ,μt−1)

[
‖h‖∞

∣∣(uM
t , μ̄

N,M
t−1

)
− (ut ,μt−1)

∣∣
(5.25)

+
∣∣(huM

t , μ̄
N,M
t−1

)
− (hut ,μt−1)

∣∣],

and (5.25), together with Minkowski’s inequality, yields

∥∥(
h, μ̃

N,M
t

)
− (h,μt−1)

∥∥
p

≤ 1

(ut ,μt−1)

[
‖h‖∞

∥∥(
uM

t , μ̄
N,M
t−1

)
− (ut ,μt−1)

∥∥
p

(5.26)
+

∥∥(
huM

t , μ̄
N,M
t−1

)
− (hut ,μt−1)

∥∥
p

]
,

where (ut ,μt−1) > 0 from assumption A.4-2.
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We need to find upper bounds for the two terms on the right-hand side of (5.26). Consider first
the term ‖(uM

t , μ̄
N,M
t−1 ) − (ut ,μt−1)‖p . A simple triangle inequality yields

∥∥(
uM

t , μ̄
N,M
t−1

)
− (ut ,μt−1)

∥∥
p

(5.27)
≤

∥∥(
uM

t , μ̄
N,M
t−1

)
−

(
ut , μ̄

N,M
t−1

)∥∥
p

+
∥∥(

ut , μ̄
N,M
t−1

)
− (ut ,μt−1)

∥∥
p
.

On one hand, since supθ∈Dθ
|ut (θ)| ≤ ‖gyt

t ‖∞ < ∞ (see A.4), it follows from the assumption in
Eq. (5.18) that

∥∥(
ut , μ̄

N,M
t−1

)
− (ut ,μt−1)

∥∥
p

≤ c1,t‖gyt
t ‖∞√
N

+ c̄1,t‖gyt
t ‖∞√
M

. (5.28)

On the other hand, we may note that

∣∣(uM
t , μ̄

N,M
t−1

)
−

(
ut , μ̄

N,M
t−1

)∣∣p =
∣∣∣∣∣

1

N

N∑

i=1

(
uM

t

(
θ̄

(i)
t

)
− ut

(
θ̄

(i)
t

))
∣∣∣∣∣

p

(5.29)

≤ 1

N

N∑

i=1

∣∣uM
t

(
θ̄

(i)
t

)
− ut

(
θ̄

(i)
t

)∣∣p,

which is readily obtained from Jensen’s inequality. However, the ith term of the summation above
is simply the (pth power of the) approximation error of the integral ut (θ̄

(i)
t ) = (g

yt

t,θ̄
(i)
t

, ξ
t,θ̄

(i)
t

).

Indeed, taking expectations on both sides of the inequality (5.29) yields

E
[∣∣(uM

t , μ̄
N,M
t−1

)
−

(
ut , μ̄

N,M
t−1

)∣∣p]
≤ 1

N

N∑

i=1

E
[∣∣(gyt

t,θ̄
(i)
t

, ξM

t,θ̄
(i)
t

)
−

(
g

yt

t,θ̄
(i)
t

, ξ
t,θ̄

(i)
t

)∣∣p]

(5.30)

≤ 1

N

N∑

i=1

sup
θ∈Dθ

sup
i≤1≤N

E
[∣∣(gyt

t,θ , ξ
M

t,θ̄
(i)
t

)
−

(
g

yt

t,θ , ξt,θ̄
(i)
t

)∣∣p]
.

From assumption A.4, we have supθ∈Dθ
‖gyt

t,θ‖∞ ≤ ‖gyt
t ‖∞ and infθ∈Dθ g

yt

t,θ (x) > 0 for every

t = 1, . . . , T and every x ∈R
dx , hence Lemma 1 (see also Remark 2) readily yields

sup
θ∈Dθ

sup
1≤i≤N

E
[∣∣(gyt

t,θ , ξ
M

t,θ̄
(i)
t

)
−

(
g

yt

t,θ , ξt,θ̄
(i)
t

)∣∣p]
≤

k̂
p

2,t‖g
yt
t ‖p

∞

N
p
2

+
¯̂
k
p

2,t‖g
yt
t ‖p

∞

M
p
2

(5.31)

for some finite constants k̂2,t and ¯̂
k2,t independent of N and M . Substituting (5.31) into (5.30)

yields

E
[∣∣(uM

t , μ̄
N,M
t−1

)
−

(
ut , μ̄

N,M
t−1

)∣∣p]
≤

k̂
p

2,t‖g
yt
t ‖p

∞

N
p
2

+
¯̂
k
p

2,t‖g
yt
t ‖p

∞

M
p
2
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or, equivalently,

∥∥(
uM

t , μ̄
N,M
t−1

)
−

(
ut , μ̄

N,M
t−1

)∥∥
p

≤ k̂2,t‖gyt
t ‖∞√
N

+
¯̃
k2,t‖gyt

t ‖∞√
M

. (5.32)

Substituting (5.32) and (5.28) into (5.27) yields

∥∥(
uM

t , μ̄
N,M
t−1

)
− (ut ,μt−1)

∥∥
p

≤ c′
t‖g

yt
t ‖∞√
N

+ c̄′
t‖g

yt
t ‖∞√
M

, (5.33)

where c′
t = c1,t + k̂2,t and c̄′

t = c̄1,t + ¯̂
k2,t are constants independent of N and M .

Since ‖hut‖∞ ≤ ‖h‖∞‖gyt
t ‖∞ (the bound is independent of θ ), the same argument leading to

the bound in (5.33) can be repeated, step by step, on the norm ‖(huN
t , μ̄N

t−1) − (hut ,μt−1)‖p , to
arrive at

∥∥(
huM

t , μ̄
N,M
t−1

)
− (hut ,μt−1)

∥∥
p

≤ c′′
t ‖h‖∞‖gyt

t ‖∞√
N

+ c̄′′
t ‖h‖∞‖gyt

t ‖∞√
M

, (5.34)

where c′′
t , c̄′′

t < ∞ are constants independent of N and M .
To complete the proof, we substitute (5.33) and (5.34) back into (5.26) and so obtain

∥∥(
h, μ̃

N,M
t

)
− (h,μt−1)

∥∥
p

≤ c2,t‖h‖∞√
N

+ c̄2,t‖h‖∞√
M

,

where the constants c2,t = ‖gyt
t ‖∞(c′

t + c′′
t )/(ut ,μt−1) < ∞ and c̄2,t = ‖gyt

t ‖∞(c̄′
t + c̄′′

t )/(ut ,

μt−1) < ∞ are independent of N and M . �

5.3. Resampling

We quantify the error in the resampling step 2(c) of Algorithm 3.

Lemma 6. Let the sequence Y1:T = y1:T be fixed and choose any 0 < t ≤ T . If h ∈ B(Rdθ ) and

∥∥(
h, μ̃

N,M
t

)
− (h,μt )

∥∥
p

≤ c2,t‖h‖∞√
N

+ c̄2,t‖h‖∞√
M

(5.35)

for some constants c2,t , c̄2,t < ∞ independent of N and M , then

∥∥(
h,μ

N,M
t

)
− (h,μt )

∥∥
p

≤ c3,t‖h‖∞√
N

+ c̄3,t‖h‖∞√
M

,

where the constants c3,t , c̄3,t < ∞ are independent of N and M as well.

Proof. The proof of this Lemma is straightforward. The resampling step is the same as in a
standard particle filter. See, for example, the proof of [35], Lemma 1, or simply the argument
leading from Eq. (A.16) to Eq. (A.19) in Appendix A. �
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5.4. Asymptotic convergence of the errors in Lp

Finally, we can put Lemmas 3, 5 and 6 together in order to prove the convergence of the recursive
Algorithm 3.

Theorem 2. Let the sequence Y1:T = y1:T be fixed (T < ∞), take an arbitrary test function

h ∈ B(Rdθ ), and assume that A.1–A.4 hold. Then, for Algorithm 3,

∥∥(
h,μ

N,M
t

)
− (h,μt )

∥∥
p

≤ ct‖h‖∞√
N

+ c̄t‖h‖∞√
M

, 1 ≤ t ≤ T , (5.36)

where {ct , c̄t }0≤t≤T is a sequence of constants independent of N and M .

Proof. We prove (5.36) by induction in t . At time t = 0, we draw θ
(i)
0 , i = 1, . . . ,N , indepen-

dently from the prior μ0 and it is straightforward to show that ‖(h,μ
N,M
0 )− (h,μ0)‖p ≤ c0‖h‖∞√

N
,

where c0 does not depend on N . Similarly, for each i = 1, . . . ,N we draw M i.i.d. samples
{x(i,j)

0 }1≤j≤M from the distribution with measure τ0 and it is not difficult to check that the ran-

dom measures φM

0,θ
(i)
0

= 1
M

∑M
j=1 δ

x
(i,j)

0
satisfy

∥∥(
f,φM

0,θ
(i)
0

)
− (f,φ

0,θ
(i)
0

)
∥∥

1 ≤ k̄0‖f ‖∞√
M

for every i ∈ {1, . . . ,N} and any f ∈ B(Rdx ). The constant k0 is independent of M and
{θ (i)

0 }1≤i≤N (note that τ0 = φ0,θ is actually independent of θ ).
Assume that, at time t − 1,

∥∥(
h,μ

N,M
t−1

)
− (h,μt−1)

∥∥
p

≤ ct−1‖h‖∞√
N

+ c̄t−1‖h‖∞√
M

,

where ct−1, c̄t−1 < ∞ are independent of N and M , and, for any f ∈ B(Rdx ),

sup
1≤i≤N

∥∥(
f,φM

t−1,θ
(i)
t−1

)
− (f,φ

t−1,θ
(i)
t−1

)
∥∥

p
≤ kt−1‖f ‖∞√

N
+ k̄t−1‖f ‖∞√

M
,

where kt−1, k̄t−1 < ∞ are constants independent of N and M . Then, we simply “concatenate”
Lemmas 3, 5 and 6 (in that order) to obtain

∥∥(
h,μ

N,M
t

)
− (h,μt )

∥∥
p

≤ ct‖h‖∞√
N

+ c̄t‖h‖∞√
M

,

(5.37)

sup
1≤i≤N

∥∥(
f,φM

t,θ
(i)
t

)
− (f,φ

t,θ
(i)
t

)
∥∥

p
≤ kt‖f ‖∞√

N
+ k̄t‖f ‖∞√

M
,

for some constants ct , c̄t , kt , k̄t < ∞ independent of N and M . �
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Remark 10. The argument of the proof of Theorem 2 also yields, as a by-product, error rates for
the (approximate) conditional filters φM

t,θ
(i)
t

computed for each particle in the parameter space, as

shown by the inequality in (5.37). These rates are uniform for any θ ∈ Dθ .

5.5. Approximation of the joint measure πt

Integrals w.r.t. the joint measure πt introduced in (2.6) can be written naturally in terms
of the marginal measures φt,θ and μt . To be specific, choose any integrable function f :
Dθ × R

dx → R and define f θ : Rdx → R, where f θ (xt ) � f (θ, xt ), and ft : Dθ → R, where
ft (θ) �

∫
f θ (xt )φt,θ (dxt ) = (f θ , φt,θ ). Then we can write

(f,πt ) =
∫∫

f (θ, xt )πt (dθ, dxt ) =
∫

ft (θ)μt (dθ) = (ft ,μt ). (5.38)

It is straightforward to approximate πt as

π
N,M
t (dθ × dxt ) = 1

NM

N∑

i=1

M∑

j=1

δ
θ

(i)
t ,x

(i,j)
t

(dθ × dxt ),

which yields

(
f,π

N,M
t

)
= 1

NM

N∑

i=1

M∑

j=1

f
(
θ

(i)
t , x

(i,j)
t

)
=

(
fMt ,μN

t

)
, (5.39)

where fMt (θ
(i)
t ) = (f θ

(i)
t , φM

t,θ
(i)
t

).

It is relatively easy to use the results obtained earlier in this section in order to show that, for
any f ∈ B(Dθ × R

dx ), the Lp error norm ‖(f,π
N,M
t ) − (f,πt )‖p has an upper bound of order

1√
N

+ 1√
M

.

Theorem 3. Let the sequence Y1:T = y1:T be fixed, take an arbitrary test function f ∈ B(Dθ ×
R

dθ ) and assume that A.1–A.4 hold. Then, for any p ≥ 1, Algorithm 3 yields

∥∥(
f,π

N,M
t

)
− (f,πt )

∥∥
p

≤ ct‖f ‖∞√
N

+ c̄t‖f ‖∞√
M

, 1 ≤ t ≤ T , (5.40)

where {ct , c̄t }1≤t≤T is a sequence of finite constants independent of N and M .

Proof. From Eqs. (5.38) and (5.39), (f,π
N,M
t ) − (f,πt ) = (fMt ,μ

N,M
t ) − (ft ,μt ) and a triangle

inequality yields

∥∥(
fMt ,μ

N,M
t

)
− (ft ,μt )

∥∥
p

≤
∥∥(

fMt ,μ
N,M
t

)
−

(
ft ,μ

N,M
t

)∥∥
p

+
∥∥(

ft ,μ
N,M
t

)
− (ft ,μt )

∥∥
p
. (5.41)
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Since ft ∈ B(Dθ ) (namely, ‖ft‖∞ ≤ ‖f ‖∞), Theorem 2 yields a bound for the second term on
the right-hand side of (5.41), that is,

∥∥(
ft ,μ

N,M
t

)
− (ft ,μt )

∥∥
p

≤ ĉt‖f ‖∞√
N

+
¯̂ct‖f ‖∞√

M
, (5.42)

where ĉt , ¯̂ct < ∞ are constants independent of N and M .
In order to control the first term on the right-hand side of (5.41), we note that

E
[∣∣(fMt ,μ

N,M
t

)
−

(
ft ,μ

N,M
t

)∣∣p]
≤ 1

N

N∑

i=1

E
[∣∣(f θ

(i)
t , φM

t,θ
(i)
t

)
−

(
f θ

(i)
t , φ

t,θ
(i)
t

)∣∣p]

(5.43)
≤ sup

θ∈Dθ

sup
1≤i≤N

E
[∣∣(f θ , φM

t,θ
(i)
t

)
−

(
f θ , φ

t,θ
(i)
t

)∣∣p]
,

where (5.43) follows from Jensen’s inequality. However, since f θ ≤ ‖f ‖∞ < ∞, we can resort
to Remark 10 in order to obtain

sup
1≤i≤N

E
[∣∣(f θ , φN

t,θ
(i)
t

)
−

(
f θ , φ

t,θ
(i)
t

)∣∣p]
≤ k

p
t ‖f ‖p

∞

N
p
2

+ k̄
p
t ‖f ‖p

∞

M
p
2

,

where the constants kt , k̄t < ∞ are independent of N and M . Since the latter upper bound is
uniform over Dθ (recall Remark 2), it follows that

E
[∣∣(fMt ,μ

N,M
t

)
−

(
ft ,μ

N,M
t

)∣∣p]
≤ sup

θ∈Dθ

sup
1≤i≤N

E
[∣∣(f θ , φN

t,θ
(i)
t

)
−

(
f θ , φ

t,θ
(i)
t

)∣∣p]

≤ k
p
t ‖f ‖p

∞

N
p
2

+ k̄
p
t ‖f ‖p

∞

M
p
2

as well or, equivalently,

∥∥(
fMt ,μ

N,M
t

)
−

(
ft ,μ

N,M
t

)∥∥
p

≤ kt‖f ‖∞√
N

+ k̄t‖f ‖∞√
M

. (5.44)

Substituting (5.44) and (5.42) into the triangle inequality (5.41) yields the desired result, with
constants ct = ĉt + kt and c̄t = ¯̂ct + k̄t , 1 ≤ t ≤ T , independent of N and M . �

5.6. Effective sample size

After completing all operations at time t − 1, Algorithm 3 produces a system of particles
{θ (i)

t−1}1≤i≤N , where many of its elements may be located at the same position in the parameter
space because of the resampling step. At time t , the first operation of Algorithm 3 is the jittering
of the particles in order to restore their diversity. After jittering, the new system {θ̄ (i)

t }1≤i≤N is
available. However, depending on the choice of kernel κN , it is possible that not every particle in
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{θ (i)
t−1}1≤i≤N has actually been changed, hence the jittered system {θ̄ (i)

t }1≤i≤N may still contain
replicated elements, that is, particles with different indices that correspond to the same position
in the parameter space Dθ .

Let N̂t denote the number of distinct particles in the system {θ̄ (i)
t }1≤i≤N and let {θ̃ (i)

t }1≤i≤N̂t

be the set of those distinct particles. Obviously, 1 ≤ N̂t ≤ N . We use n
(i)
t to denote the number

of replicas of θ̃
(i)
t included in the original system {θ̄ (i)

t }1≤i≤N . It is straightforward to check that,
for every i = 1, . . . , N̂t ,

1 ≤ n
(i)
t ≤ N − N̂t + 1,

while
∑N̂t

i=1 n
(i)
t = N .

The size of the set {θ̃ (i)
t }1≤i≤N̂t

is particularly relevant to the computation of the so-called
effective sample size (ESS) [28] (see also [19]) of the particle approximation produced by Al-
gorithm 3. The ESS, which is commonly used to assess the numerical stability of particle filters
[3,10], was defined in [28] as

ESSt (N) = N

1 + V 2
t

,

where V 2
t denotes the variance of the non-normalised importance weights (namely, the variance

of uM
t (θ) in the case of Algorithm 3). Since this variance cannot be computed in closed form,

the ESS has to be estimated and the most commonly used estimator takes the form [19,28]

ÊSSt (N) = 1
∑N

i=1 w
(i)2

t

= (
∑N

i=1 uM
t (θ̄

(i)
t ))2

∑N
i=1 uM

t (θ̄
(i)
t )2

(5.45)

=
(
∑N̂t

i=1 n
(i)
t uM

t (θ̃
(i)
t ))2

∑N̂t

i=1 n
(i)
t uM

t (θ̃
(i)
t )2

, (5.46)

where (5.45) follows from the construction of the normalised weights in Algorithm 3 and in
(5.46) we write the estimator explicitly in terms of the system of distinct particles4 {θ̃ (i)

t }1≤i≤N̂t
.

The estimator of the ESS in Eq. (5.46) takes values between 1 and N , with 1 being the worst
and N being the best outcome. However, it can become uninformative when we actually have
replicated particles, i.e., when N̂t < N . To see the problem, let us consider the extreme case in
which N̂t = 1 and, as a consequence, n

(1)
t = N . If we substitute these values in (5.46) and realise

4We assume that the algorithm is implemented efficiently, meaning that when a subset of particles is found to correspond
to the same position in the parameter space the likelihood of that position is estimated only once. In other words, if we

have indices i0, i1, . . . , i
n
(i0)
t

such that θ̃
(i0)
t = θ̄

(i1)
t = · · · = θ̄

(i
n
(io)
t

)

t , then we compute uM
t (θ̃

(i0)
t ) only once.
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that
∑N̂t

i=1 n
(i)
t uM

t (θ̃
(i)
t ) = NuM

t (θ̃
(1)
t ), then we readily obtain that ÊSSt (N) = N . This seems to

indicate that we have an “optimal” set of particles, as the maximum ESS is attained, when it is
actually a fully degenerate set with one single particle replicated N times. This difficulty does
not arise in standard particle filtering applications because the ESS is typically estimated after
the weight update step, before resampling, when all particles are different with probability 1.

To overcome this problem, we propose to use a different estimator of the ESS. Recall that

w
(i)
t = uM

t (θ̄
(i)
t )∑N

k=1 uM
t (θ̄

(k)
t

, 1 ≤ i ≤ N , are the normalised weights. When there are multiple samples at

the same position in Dθ , the resulting probability measure

μ
N,M
t =

N∑

i=1

w
(i)
t δ

θ̄
(i)
t

can be rewritten as

μ
N,M
t =

N̂t∑

i=1

v
(i)
t δ

θ̃
(i)
t

, (5.47)

where v
(i)
t = n

(i)
t w

(i)
t is the probability mass that μ

N,M
t allocates at position θ̃

(i)
t . If we are given

μ
N,M
t in the form of (5.47), a fairly natural estimator the ESS is

ESSt (N) = 1
∑N̂t

i=1(v
(i)
t )2

= (
∑N

k=1 uM
t (θ̄

(k)
t ))2

∑N̂t

i=(n
(i)
t uM

t (θ̃
(i)
t ))2

(5.48)

where we note that
∑N̂t

k=1 n
(i)
t ut (θ̃

(k)
t ) =

∑N
k=1 ut (θ̄

(k)
t ).

When all the particles are distinct, N̂t = N and n
(i)
t = 1 for every i, the estimator in (5.48)

reduces to the standard one in (5.46). On the other hand, when N̂t = 1 and n
(1)
t = N , the formula

in (5.48) yields ESSt (N) = 1, which is the minimal ESS and the expected result in this fully
degenerate case. We recall that ÊSSt (N) = N in the same scenario. Finally, if we divide the
expression in (5.48) by N then we obtain an estimate of the normalised ESS (NESS) [19] of the
form

NESSt (N) = (
∑N

k=1 uM
t (θ̄

(k)
t ))2

N
∑N̂t

i=1(n
(i)
t uM

t (θ̃
(i)
t ))2

(5.49)

that takes values in the interval [N−1,1].

6. A numerical example

Let us consider the problem of jointly tracking the dynamic variables and estimating the fixed
parameters of a 3-dimensional Lorenz system [32] with additive dynamical noise and partial ob-
servations [11]. To be specific, consider a 3-dimensional stochastic process {X(s)}s∈(0,∞) taking
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values on R
3, whose dynamics is described by the system of stochastic differential equations

dX1 = −S(X1 − Y1) + dW1, dX2 = RX1 − X2 − X1X3 + dW2,

dX3 = X1X2 − BX3 + dW3,

where {Wi(s)}s∈(0,∞), i = 1,2,3, are independent 1-dimensional Wiener processes and
(S,R,B) ∈ R are static model parameters. A discrete-time version of the latter system using
the Euler-Maruyama method with integration step Te > 0 is straightforward to obtain and yields
the model

X1,t = X1,t−1 − TeS(X1,t−1 − X2,t−1) +
√

TeU1,t , (6.1)

X2,t = X2,t−1 + Te(RX1,t−1 − X2,t−1 − X1,t−1X3,t−1) +
√

TeU2,t , (6.2)

X3,t = X3,t−1 + Te(X1,t−1X2,t−1 − BX3,t−1) +
√

TeU3,t , (6.3)

where {Ui,t }t=0,1,..., i = 1,2,3, are independent sequences of i.i.d. normal random variables with
0 mean and variance 1. System (6.1)–(6.3) is partially observed every 40 discrete-time steps, i.e.,
we collect a sequence of 2-dimensional observations {Yn = (Y1,n, Y3,n)}n=1,2,..., of the form

Y1,n = koX1,40n + V1,n, Y3,n = koX3,40n + V3,n, (6.4)

where ko > 0 is a fixed scale parameter and {Vi,n}n=1,2,..., i = 1,3, are independent sequences of
i.i.d. normal random variables with zero mean and variance σ 2 = 1

10 .
Let Xt = (X1,t ,X2,t ,X3,t ) be the state vector, let Yn = (Y1,n, Y3,n) be the observation vector

and let � = (S,R,B, ko) be the set of model parameters to be estimated. The dynamic model
given by Eqs. (6.1)–(6.3) yields the family of kernels τt,θ (dx|xt−1) and the observation model of
Eq. (6.4) yields the likelihood function g

yn

n,θ (xn), both in a straightforward manner. The goal is

to track the sequence of joint posterior probability measures πn, n = 1,2, . . . , for {X̂n,�}n=1,...,
where X̂n = X40n. Note that one can draw a sample X̂n = x̂n conditional on some θ and X̂n−1 =
x̂n−1 by successively simulating

x̃t ∼ τt,θ (dx|x̃t−1), t = 40(n − 1) + 1, . . . ,40n,

where x̃40(n−1) = x̂n−1 and x̂n = x̃40n. For the sake of the example, the prior probability measure
for the parameters, μ0(dθ), is chosen to be uniform, namely

S ∼ U(5,20), R ∼ U(18,50), R ∼ U(1,8) and ko ∈ U(0.5,3),

where U(a, b) is the uniform probability distribution in the interval (a, b). The prior measure
for the state variables is normal, namely X0 ∼N (x∗, v2

0I3), where x∗ = (−5.91652;−5.52332;
24.5723) is the mean and v2

0I3 is the covariance matrix, with v2
0 = 10. (The value x∗ is taken

from a typical run of the deterministic Lorenz 63 model, once in its stationary regime.)
We have applied the nested particle filter (Algorithm 3), with N = M (i.e., the same number

of particles in the outer and inner filters, following Remark 5), to estimate the fixed parameters
S,R,B and ko. Besides selecting the total number of particles K = NM , the only “tuning”
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necessary for the algorithm is the choice of the jittering kernel. One of the simplest possible
choices is to jitter each parameter independently from the others, using Gaussian distributions
truncated to fit the support of each parameter. To be specific, let TN(μ,σ 2,A,B) denote the
Gaussian distribution with mean μ and variance σ 2 truncated to have support on the interval
(A,B), that is, the distribution with p.d.f.

pTN

(
x;μ,σ 2,A,B

)
=

exp{ 1
2σ 2 (x − μ)2}

∫ B

A
exp{ 1

2σ 2 (z − μ)2}dz
.

We choose the jittering kernel κθ ′
N , with θ ′ = (S′,R′,B ′, k′

o), to be the conditional probability
distribution with density

κ
S′,R′,B ′,k′

o

N (S,R,B, ko) = pTN

(
S;S′, σ 2

N,S,5,20
)
× pTN

(
R;R′, σ 2

N,R,18,50
)

× pTN

(
B;B ′, σ 2

N,B ,1,8
)
× pTN

(
ko; k′

o, σ
2
N,ko

,0.5,3
)
.

This choice of kernel is possibly far from optimal (in terms or estimation accuracy) but it is simple
and enables us to show that Algorithm 3 works without having to fit a sophisticated kernel.

If we are merely interested in estimating the parameter values, then the test function h ∈ B(Dθ )

in Theorem 2 is simply the projection of the parameter vector on the desired component, that is,
for θ = (θ1, . . . , θ4) = (S,R,B, ko) we are interested in the functions hi(θ) = θi, i = 1, . . . ,4.
Therefore, the estimator of the parameter θi at time t has the form

θ
N,N
i,t =

(
hi,μ

N,N
t

)
= 1

N

N∑

j=1

hi

(
θ

(j)
t

)
, i = 1, . . . ,4.

Furthermore, if we aim at the minimising the L1 errors, E[|θN
i,t − θi |], Proposition 1 in Ap-

pendix C shows that it is enough to choose the jittering variances as

(
σ 2

N,S, σ 2
N,R, σ 2

N,B , σ 2
N,ko

)
= 1

N
3
2

(cS, cR, cB , cko)

for arbitrary positive constants cS, cR, cB and cko in order to satisfy the assumptions A.1 and A.2.
For the simulations in this section, we have set (cS, cR, cB , cko) = (60,60,10,1) (we roughly
choose bigger constants for the parameters with bigger support).

Figure 1 shows the average, over 50 independent simulations, of the normalised absolute
errors |θN,N

i,t − θi |/θi versus continuous time when we run Algorithm 3 with N = M = 300.
The figure shows how the errors converge over time (as μt concentrates around the true value
θ = (10,28,8/3,0.8)). We have also included the errors attained by a modified version of Algo-
rithm 3 in which the jittering step is removed. It is seen that the particle representation of μt soon
collapses and the algorithm without jittering turns out unable to estimate the parameters. The in-
tegration period for all the simulations shown in this section is Te = 10−3, hence 100 × 103

discrete-time steps amount to 100 continuous time units. Observations are collected every 40
discrete steps. Even for this relatively simple system, running a non-recursive algorithm such
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Figure 1. Average of the absolute parameter estimation errors over 50 independent simulation runs using
Algorithm 3 with N = M = 300 particles (K = N2 = 90 × 103 particles overall). The absolute errors are
normalised w.r.t. the true parameter values, S = 10,R = 28,B = 8

3 and ko = 4
5 . The results obtained when

jittering is suppressed in Algorithm 3 (labeled as no jitter) are shown for comparison. The horizontal axis
is in discrete-time units. As the integration period is Te = 10−3, 100 000 discrete-time steps amount 100
continuous time units. Observations are collected every 40 discrete-time steps.

as SMC2 becomes impractical (recall that the computational complexity of the SMC2 method
increases quadratically with the number of discrete-time steps).

In Figure 2, we plot the average of the normalised errors versus the number of particles in
Algorithm 3 (namely, for N = 150,300,600). We have carried out 20 independent simulation
trials (per point in the plot). In each simulation, the Lorenz system is run from continuous time
0 to 24 (i.e., 24 000 discrete time steps), with the errors computed by averaging |θN,N

i,t − θi |/θi

over the continuous time interval (22,24). As in Figure 1, the performance of Algorithm 3 with
the jittering step removed is also displayed, and again we observe how it fails to yield accurate
parameter estimates. For the outputs of Algorithm 3 with jittering, we also display a least squares
fit of the function e(N) = c√

N
to the averaged errors (with c constant w.r.t. N ), as suggested by

Theorem 2.
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Figure 2. Average of the absolute parameter estimation errors over 20 independent simulation runs using
Algorithm 3 with N = M = 150, N = M = 300 and N = M = 600 (the total number of particles is N2).
The errors are normalised w.r.t. the true parameter values, S = 10,R = 28,B = 8

3 and ko = 4
5 . The curves

labeled error fit have the form c√
N

, where the constant c is a least squares estimate computed independently

for each parameter. The results obtained when jittering is suppressed in Algorithm 3 (labeled as no jitter)
are also shown for comparison. In each simulation, the Lorenz system was run for 24 000 discrete-time
steps (24 continuous–time steps, for Te = 10−3), with observations collected every 40 discrete steps.

Figure 3 displays the empirical variance for the average errors of Figure 2, with and without
jittering. It shows that the variability of the estimators is relatively large for small t and it reduces
considerably as a longer observation record is accumulated.

Finally, we have carried out a simple computer experiment to test the effect of a change-point
in one of the parameters (the observation scale factor ko). The simulation setup is the same as in
the rest of this section except that we extend the support of the parameter ko to be the interval
[ 1

2 ,8], with uniform a priori probability distribution, and artificially introduce a change-point
at continuous time instant 30, where ko changes its value from 0.8 to 5. This change-point is
not described by the model, that represents ko as strictly constant. We have run Algorithm 3
once, with N = M = 500 particles, and observed the evolution over time of the posterior-mean
estimators for S, B , R and ko.
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Figure 3. Empirical variance of the absolute parameter estimation errors over 20 independent simulation
runs using Algorithm 3 with N = M = 150, N = M = 300 and N = M = 600 (the total number of particles
is N2). The errors are normalised w.r.t. the true parameter values, S = 10,R = 28,B = 8

3 and ko = 4
5 . The

results obtained when jittering is suppressed in Algorithm 3 (labeled as no jitter) are also shown for com-
parison. In each simulation, the Lorenz system was run for 24 000 discrete-time steps (24 continuous–time
steps, for Te = 10−3), with observations collected every 40 discrete steps.

Figure 4 shows that the posterior-mean estimates fluctuate considerably for (relatively) small t ,
as we concluded from observing their empirical variance. The value of ko is changed at discrete
time 3 × 104, which corresponds to continuous time 30 and a sequence of 750 observations.
The change is instantaneous, yielding a step function for ko as plotted in Figure 4(d). Before
the change-point, the random support of the posterior distribution of ko concentrates around the
original value ko = 0.8. After the change-point, this support has to be adapted. However, the
pace of this adaptation is limited by the variance of the jittering kernel and, hence, we observe
a transition in the sequence of estimates that lasts for nearly 104 time steps (10 continuous time
units, 250 observations). Eventually, the posterior mean settles around the new value of ko in this
simulation; however, further investigation is needed regarding the speed at which the random
support of μ

N,N
t can be adapted and its interplay with estimation errors.
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Figure 4. Evolution over time of the posterior-mean estimates of the parameters S, B , R and ko for a single
run of Algorithm 3 with N = M = 500. The actual parameter values of S, R, and B are indicated with a
horizontal solid line. The value of ko is also indicated, however it has a change-point at discrete time 3×104

(from 0.8 to 5). The change-point itself is marked by a vertical dashed line in the four plots. The algorithm
is capable of tracking the change in ko , however the adaptation of the estimator is limited by the variance
of the jittering kernel and we observe a relatively long transition period of ≈104 discrete time steps until
the posterior mean settles around the new value.

7. Conclusions

We have introduced a recursive Monte Carlo scheme, consisting of two (nested) layers of particle
filters, for the approximation and tracking of the posterior probability distribution of the unknown
parameters of a state-space Markov system. Unlike existing SMC2 and particle MCMC methods,
the proposed algorithm is purely recursive and can be seen as a natural adaptation of the classic
bootstrap filter to operate on the space of the static system-parameters.

The main theoretical contribution of the paper is the analysis of the errors in the approxima-
tion of integrals of bounded functions w.r.t. the posterior probability measure of the parameters.
Using induction arguments, and placing only mild constraints on the state-space model and the
parameters, we have proved that the Lp norms of the approximation errors for the proposed al-
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gorithm vanish with rate proportional to 1√
N

+ 1√
M

, where N is the number of particles in the

parameter space and N × M is the number of particles in the state space. This is achieved with
a computational cost that grows only linearly with time. In comparison, the computational load
of the SMC2 method increases quadratically with time. The price to pay for this reduction in
computational cost is that in the new scheme we need N → ∞ and M → ∞ in order to make the
error converge towards 0, while the SMC2 algorithm is consistent for fixed M , that is, N → ∞
is sufficient for the errors to vanish, independently of M . As a consequence, if K = NM is the
total number of particles in the state space, then the optimal allocation for the proposed nested

particle filter is N = M =
√

K and the errors converge as K− 1
4 in Lp , while the SMC2 scheme,

with M fixed, converges as K− 1
2 .

The proposed algorithm can be combined with a SMC2 scheme for practical convenience.
For example, one may run a standard SMC2 algorithm on the initial part of the observation
sequence (possibly a few tens or a few hundreds of observations, depending on the problem and
the available computational resources) to take advantage of its faster convergence rate and then
switch to a recursive nested particle filter (Algorithm 3) when the computational cost of batch
processing becomes too high.

We also note that the continuity argument that leads to the derivation the the recursive nested
particle filter, and the theoretical framework for the analysis of the resulting approximations, can
be extended to other similar filtering algorithms. For example, it would be relatively straightfor-
ward to obtain a recursive version of the original IBIS algorithm of [9].

Appendix A: Proof of Lemma 1

We consider first the predictive measure

ξN
t,θ (dx) = 1

N

N∑

n=1

δ
x̄

(n)
t

(dx),

where x̄
(n)
t , n = 1, . . . ,N , are the state particles drawn from the transition kernels τ

x
(n)
t−1

t,θ (dx) �

τt,θ (dx|x(n)
t−1) at the sampling step of the particle filter. Recall that ξt,θ = τt,θφt−1,θ and consider

the triangle inequality
∥∥(

f, ξN
t,θ

)
− (f, ξt,θ )

∥∥
p

=
∥∥(

f, ξN
t,θ

)
− (f, τt,θφt−1,θ )

∥∥
p

≤
∥∥(

f, ξN
t,θ

)
−

(
f, τt,θφ

N
t−1,θ

)∥∥
p

(A.1)

+
∥∥(

f, τt,θφ
N
t−1,θ

)
− (f, τt,θφt−1,θ )

∥∥
p
,

where

(
f, τt,θφ

N
t−1,θ

)
= 1

N

N∑

n=1

∫
f (x)τt,θ

(
dx|x(n)

t−1

)
= 1

N

N∑

n=1

(
f, τ

x
(n)
t−1

t,θ

)
. (A.2)
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In the sequel, we seek upper bounds for the Lp norms in the right hand side of (A.1).

Let us introduce the σ -algebra generated by the random paths x
(n)
0:t and x̄

(n)
1:t , n = 1, . . . ,N ,

denoted Ft = σ(x
(n)
0:t , x̄

(n)
1:t , n = 1, . . . ,N). The conditional expectation of the integral (f, ξN

t,θ )

given Ft−1 is

E
[(

f, ξN
t,θ

)
|Ft−1

]
= 1

N

N∑

n=1

E
[
f

(
x̄

(n)
t

)
|Ft−1

]

= 1

N

N∑

n=1

(
f, τ

x
(n)
t−1

t,θ

)
=

(
f, τt,θφ

N
t−1,θ

)

and we note that the random variables S
(n)
t,θ = f (x̄

(n)
t )− (f, τ

x
(n)
t−1

t,θ ), n = 1, . . . ,N , are independent
and zero-mean conditional on the σ -algebra Ft−1. For even p, the approximation error between
ξN
t,θ and its (conditional) expected value τt,θφ

N
t−1,θ can then be written as

E
[((

f, ξN
t,θ

)
−

(
f, τtφ

N
t−1,θ

))p|Ft−1
]
= E

[(
1

N

N∑

n=1

S
(n)
t,θ

)p∣∣∣Ft−1

]

(A.3)

= 1

Np

N∑

n1=1

· · ·
N∑

np=1

E
[
S

(n1)
t,θ · · ·S(np)

t,θ |Ft−1
]
.

Since the random variables S
(ni )
t,θ are conditionally independent and zero-mean, every term in

the summation of (A.3) involving a moment of order 1 vanishes. It is an exercise in combi-
natorics to show that the number of terms which do not contain any moment of order 1 is a
polynomial function of N with degree p

2 , whose coefficients depend only on p. As a conse-
quence, there exists a constant c̃ independent of N such that the number of non-zero terms in
(A.3) is at most c̃pN

p
2 . Moreover, for each non-zero term we readily calculate the upper bound

E[S(n1)
t,θ · · ·S(np)

t,θ |Ft−1] ≤ 2p‖f ‖p
∞. Therefore, for even p, we arrive at the inequality

E
[((

f, ξN
t,θ

)
−

(
f, τtφ

N
t−1,θ

))p|Ft−1
]
≤ c̃p2p‖f ‖p

∞

N
p
2

(A.4)

and taking unconditional expectations on both sides of (A.4), we readily find that,

∥∥(
f, ξN

t,θ

)
− (f, τtφ

N
t−1,θ )

∥∥
p

≤ c1‖f ‖∞√
N

, (A.5)

where c1 = 2c̃ is a constant independent of N and θ . The same inequality (A.5) holds for any
real p because of the monotonicity of Lp norms (an application of Jensen’s inequality).
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For the second term in the right-hand side of (A.1), we note that (f, τt,θφt−1,θ ) = (f̄θ , φt−1,θ ),
where f̄θ ∈ B(Rdx ) is a bounded5 function defined as

f̄θ (x) =
∫

f
(
x′)τ x

t,θ

(
dx′) =

(
f, τ x

t,θ

)

and, similarly, (f, τt,θφ
N
t−1,θ ) = (f̄θ , φ

N
t−1,θ ). Therefore, assumption (2.15) yields the upper

bound
∥∥(

f, τt,θφ
N
t−1,θ

)
− (f, τt,θφt−1,θ )

∥∥
p

=
∥∥(

f̄θ , φ
N
t−1,θ

)
− (f̄θ , φt−1,θ )

∥∥
p

(A.6)

≤ ct−1‖f ‖∞√
N

+ c̄t−1‖f ‖∞√
M

,

where the constants ct−1, c̄t−1 are independent of N , M and θ . Substituting (A.5) and (A.6) into
(A.1) yields

∥∥(
f, ξN

t,θ

)
− (f, ξt,θ )

∥∥
p

≤ c̃t‖f ‖∞√
N

+
¯̃ct‖f ‖∞√

M
, (A.7)

where c̃t = ct−1 + c1 and ¯̃ct = c̄t−1 are finite constants independent of N , M and θ .
Next, we use inequality (A.7) to calculate a bound on ‖(f,φN

t,θ )− (f,φt,θ )‖p . Let us first note
that, after the computation of the weights, we obtain a random measure of the form

φ̄N
t,θ (dx) =

N∑

n=1

w
(n)
t δ

x̄
(n)
t

(dx), where w
(n)
t =

g
yt

t,θ (x̄
(n)
t )

∑N
k=1 g

yt

t,θ (x̄
(n)
t )

.

As a consequence, integrals w.r.t. the measure φ̄N
t,θ can be written in terms of g

yt

t,θ and ξN
t,θ , namely

(
f, φ̄N

t,θ

)
=

(fg
yt

t,θ , ξ
N
t,θ )

(g
yt

t,θ , ξ
N
t,θ )

. (A.8)

This is natural, though, since from the Bayes theorem we readily derive the same relationship
between φt,θ and ξt,θ ,

(f,φt,θ ) =
(fg

yt

t,θ , ξt,θ )

(g
yt

t,θ , ξt,θ )
. (A.9)

Given (A.8) and (A.9), we can readily apply the inequality (2.1) to obtain

∣∣(f, φ̄N
t,θ

)
− (f,φt,θ )

∣∣ ≤ 1

(g
yt,θ

t,θ , ξt,θ )

(
‖f ‖∞

∣∣(gyt

t,θ , ξt,θ

)
−

(
gt,θ , ξ

N
t,θ

)∣∣

(A.10)
+

∣∣(fg
yt

t,θ , ξt,θ

)
−

(
fgt,θ , ξ

N
t,θ

)∣∣),

5Trivially note that ‖f̄θ‖∞ ≤ ‖f ‖∞, independently of θ .
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where ut (θ) = (g
yt,θ

t,θ , ξt,θ ) > 0 by assumption. From (A.10) and Minkowski’s inequality,

∥∥(
f, φ̄N

t,θ

)
− (f,φt,θ )

∥∥
p

≤ 1

(g
yt,θ

t,θ , ξt,θ )
×

(
‖f ‖∞

∥∥(
g

yt

t,θ , ξt,θ

)
−

(
g

yt

t,θ , ξ
N
t,θ

)∥∥
p

(A.11)
+

∥∥(
fg

yt

t,θ , ξt,θ

)
−

(
fgt,θ , ξ

N
t,θ

)∥∥
p

)

and, since ‖gyt

t,θ‖∞ ≤ ‖gyt
t ‖∞ < ∞ by assumption (in particular, ‖gyt

t ‖∞ is independent of θ ),
the inequalities (A.7) and (A.11) together yield

∥∥(
f, φ̄N

t,θ

)
− (f,φt,θ )

∥∥
p

≤ 2‖f ‖∞‖gyt
t ‖∞c̃t

(g
yt,θ

t,θ , ξt,θ )
× 1√

N
+ 2‖f ‖∞‖gyt

t ‖∞ ¯̃ct

(g
yt,θ

t,θ , ξt,θ )
× 1√

M
, (A.12)

where the finite constants c̃t and ¯̃ct = c̄t−1 are independent of N , M and θ . Indeed, the only factor
that depends on θ in the right-hand side of (A.12) is the integral ut (θ) = (g

yt,θ

t,θ , ξt,θ ). However,
we have assumed that

ut,inf = inf
θ∈Dθ

ut (θ) > 0, (A.13)

hence the inequality (A.12) leads to

∥∥(
f, φ̄N

t,θ

)
− (f,φt,θ )

∥∥
p

≤ c2,t‖f ‖∞√
N

+ c̄2,t‖f ‖∞√
M

(A.14)

where

c2,t = 2‖gyt
t ‖∞c̃t

ut,inf
< ∞ and c̄2,t = 2‖gyt

t ‖∞c̄t−1

ut,inf
< ∞ (A.15)

are constants independent of N , M and θ .
Finally, we only need to verify the resampling step. Specifically, we need to prove that the Lp

norm ‖(f,φN
t,θ ) − (f, φ̄N

t,θ )‖p is bounded as well. Let F̄t = σ(x
(n)
0:t−1, x̄

(n)
1:t ;n = 1, . . . ,N) be the

σ -algebra generated by the random sequences x
(n)
0:t−1 and x̄

(n)
1:t , n = 1, . . . ,N . It is straightforward

to check that, for every n = 1, . . . ,N ,

E
[
f

(
x

(n)
t

)
|F̄t

]
=

(
f, φ̄N

t,θ

)
, (A.16)

hence the random variables S̄
(n)
t,θ = f (x

(n)
t )−(f, φ̄N

t,θ ) are independent and zero-mean conditional

on the σ -algebra F̄t . Therefore, the same combinatorial argument that led to Eq. (A.5) now yields

∥∥(
f,φN

t,θ

)
−

(
f, φ̄N

t,θ

)∥∥
p

≤ c3‖f ‖∞√
N

(A.17)

where the constant c3 is independent of both N and θ (it does not depend on the distribution of
the error variables S̄

(n)
t,θ ). Since

∥∥(
f,φN

t,θ

)
− (f,φt,θ )

∥∥
p

≤
∥∥(

f,φN
t,θ

)
−

(
f, φ̄N

t,θ

)∥∥
p

+
∥∥(

f, φ̄N
t,θ

)
− (f,φt,θ )

∥∥
p
, (A.18)
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substituting Eqs. (A.17) and (A.14) into the inequality (A.18) yields

∥∥(
f,φN

t,θ

)
− (f,φt,θ )

∥∥
p

≤ ct‖f ‖∞√
N

+ c̄t‖f ‖∞√
M

, (A.19)

where ct = c3 + c2,t and c̄t = c̄2,t are finite constants independent of both N , M and θ .
To complete the proof, simply note that c̄t−1 = 0 implies c̄t = c̄2,t = 0 (see (A.15)).

Appendix B: Proof of Lemma 2

We proceed by induction in t . For t = 0, the measure φN
0,θ (dx) = 1

N

∑N
n=1 δ

x
(n)
0

(dx) is con-

structed from an i.i.d. sample of size N from the prior distribution φ0,θ ≡ τ0. Then, it is straight-
forward to prove that

∥∥(
f,φN

0,θ

)
− (f,φ0,θ )

∥∥
p

≤ c0‖f ‖∞√
N

,

where c0 < ∞ is independent of N . Note that, since φ0,θ ≡ τ0 is actually independent of θ , the
constant c0 is independent of θ as well.

For the induction step, we assume that

∥∥(
f,φN

t−1,θ

)
− (f,φt−1,θ )

∥∥
p

≤ ct−1‖f ‖∞√
N

(B.1)

holds true for some constant ct−1 < ∞ independent of N and θ . Given (B.1), Lemma 1 yields

∥∥(
f, ξN

t,θ

)
− (f, ξt,θ )

∥∥
p

≤ c̃t‖f ‖∞√
N

and
∥∥(

f,φN
t,θ

)
− (f,φt,θ )

∥∥
p

≤ ct‖f ‖∞√
N

at time t , where c̃t and ct are finite constants independent of N and θ .

Appendix C: A family of jittering kernels

Proposition 1. Assume that h ∈ B(Dθ ) is Lipschitz, with constant cL‖h‖∞ < ∞, and consider

the class of kernels κθ ′
N = (1 − εN )δθ ′ + εN κ̄θ ′

N , where 0 ≤ εN ≤ 1 and κ̄θ ′
N ∈ P(Dθ ). For any

p ≥ 1, if the kernel κθ ′
N is selected in such a way that

σ 2
κ,N = sup

θ ′∈Dθ

∫ ∥∥θ − θ ′∥∥2
κ̄θ ′
N (dθ) ≤ c̆

ε

p+2
p

N N
p+2

2

(C.1)

is satisfied for some constant c̆ < ∞ independent of N , then the inequality

sup
θ ′∈Dθ

∫ ∣∣h(θ) − h
(
θ ′)∣∣pκθ ′

N (dθ) ≤ c
p
κ ‖h‖p

∞

N
p
2
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holds for a constant c
p
κ = c

p

L(1 + c̆ supθ1,θ2∈Dθ
‖θ1 − θ2‖p) < ∞ independent of N .

Proof. Since κθ ′
N = (1 − εN )δθ ′ + εN κ̄θ ′

N and h is Lipschitz with constant cL‖h‖∞ < ∞, we
readily obtain

∫ ∣∣h(θ) − h
(
θ ′)∣∣pκθ ′

N (dθ) ≤ εNc
p

L‖h‖p
∞

∫ ∥∥θ − θ ′∥∥p
κ̄θ ′
N (dθ). (C.2)

Let

βN = 1

ε
1
p

N

√
N

. (C.3)

We can rewrite (C.2) as

∫ ∣∣h(θ) − h
(
θ ′)∣∣pκθ ′

N (dθ) ≤ εNc
p

L‖h‖p
∞

[∫
Iθ∈Dθ :‖θ−θ ′‖<βN

(θ)
∥∥θ − θ ′∥∥p

κ̄θ ′
N (dθ)

+
∫

Iθ∈Dθ :‖θ−θ ′‖≥βN
(θ)

∥∥θ − θ ′∥∥p
κ̄θ ′
N (dθ)

]
(C.4)

≤ εNc
p

L‖h‖p
∞

[
β

p

N + Ĉp

∫
Iθ∈Dθ :‖θ−θ ′‖≥βN

(θ)κ̄θ ′
N (dθ)

]
,

where Ĉp = supθ1,θ2∈Dθ
‖θ1 − θ2‖p < ∞, since Dθ is compact. Using Chebyshev’s inequality

on the right-hand side of (C.4) yields

∫ ∣∣h(θ) − h
(
θ ′)∣∣pκθ ′

N (dθ) ≤ εNc
p

L‖h‖p
∞

(
β

p

N + Ĉp
σ 2

κ,N

β2
N

)
(C.5)

and substituting (C.1) and (C.3) into (C.5) we arrive at

∫ ∣∣h(θ) − h
(
θ ′)∣∣pκθ ′

N (dθ) ≤
c
p

L‖h‖p
∞(1 + c̆Ĉp)

N
p
2

,

where all the constants are independent of θ ′ and N . �

Corollary 1. Consider the same class of kernels κθ ′
N = (1 − εN )δθ ′ + εN κ̄θ ′

N , where 0 ≤ εN ≤ 1

and κ̄θ ′
N ∈P(Dθ ). For any p ≥ 1, if (C.1) holds for some c̆ < ∞ independent of N then

sup
θ ′∈Dθ

∫ ∥∥θ − θ ′∥∥p
κθ ′
N (dθ) ≤ c

p
κ

N
p
2

where c
p
κ = 1 + c̆ supθ1,θ2∈Dθ

‖θ1 − θ2‖p < ∞ is constant and independent of N .
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Proof. Simply note that
∫ ∥∥θ − θ ′∥∥p

κθ ′
N (dθ) ≤ εN

∫ ∥∥θ − θ ′∥∥p
κ̄θ ′
N (dθ)

and then follow the same argument as in the proof of Proposition 1. �
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processing time series corrupted by outliers. IEEE Trans. Signal Process. 60 4611–4627. MR2960549

http://www.ams.org/mathscinet-getitem?mr=1847785
http://www.ams.org/mathscinet-getitem?mr=1895071
http://www.ams.org/mathscinet-getitem?mr=2044973
http://www.ams.org/mathscinet-getitem?mr=3348115
http://www.ams.org/mathscinet-getitem?mr=1768060
http://www.ams.org/mathscinet-getitem?mr=1847784
http://www.ams.org/mathscinet-getitem?mr=1951601
http://www.ams.org/mathscinet-getitem?mr=1811995
http://www.ams.org/mathscinet-getitem?mr=3383884
http://www.ams.org/mathscinet-getitem?mr=1380850
http://www.ams.org/mathscinet-getitem?mr=3306715
http://www.ams.org/mathscinet-getitem?mr=1847793
http://www.ams.org/mathscinet-getitem?mr=1649198
http://www.ams.org/mathscinet-getitem?mr=2960549


3086 D. Crisan and J. Míguez

[34] Miguez, J., Bugallo, M. and Djuric, P.M. (2005). Novel particle filtering algorithms for fixed parameter
estimation in dynamic systems. In Proceedings of the 4th International Symposium on Image and

Signal Processing and Analysis (ISPA) 46–51. IEEE.
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