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Abstract

Background

Sequencing of the PCR-amplified 16S rRNA gene has become a common approach to

microbial community investigations in the fields of human health and environmental sci-

ences. This approach, however, is difficult when the amount of DNA is too low to be ampli-

fied by standard PCR. Nested PCR can be employed as it can amplify samples with DNA

concentration several-fold lower than standard PCR. However, potential biases with nested

PCRs that could affect measurement of community structure have received little attention.

Results

In this study, we used 17 DNAs extracted from vaginal swabs and 12 DNAs extracted from

stool samples to study the influence of nested PCR amplification of the 16S rRNA gene on

the estimation of microbial community structure using Illumina MiSeq sequencing. Nested

and standard PCRmethods were compared on alpha- and beta-diversity metrics and rela-

tive abundances of bacterial genera. The effects of number of cycles in the first round of

PCR (10 vs. 20) and microbial diversity (relatively low in vagina vs. high in stool) were also

investigated. Vaginal swab samples showed no significant difference in alpha diversity or

community structure between nested PCR and standard PCR (one round of 40 cycles).

Stool samples showed significant differences in alpha diversity (except Shannon’s index)

and relative abundance of 13 genera between nested PCR with 20 cycles in the first round

and standard PCR (P<0.01), but not between nested PCR with 10 cycles in the first round

and standard PCR. Operational taxonomic units (OTUs) that had low relative abundance

(sum of relative abundance <0.167) accounted for most of the distortion (>27% of total

OTUs in stool).

Conclusions

Nested PCR introduced bias in estimated diversity and community structure. The bias was

more significant for communities with relatively higher diversity and when more cycles were
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applied in the first round of PCR. We conclude that nested PCR could be used when stan-

dard PCR does not work. However, rare taxa detected by nested PCR should be validated

by other technologies.

Background

Polymerase chain reaction (PCR) amplification of 16S rRNA genes followed by next generation

sequencing to characterize microbial communities is now the norm in the fields of human

health and environmental sciences. The research on human microbial communities has

focused on material such as feces, oral and vaginal swabs that have relatively large bacterial

populations and few human cells [1,2]. Bacterial communities from body sites such as lung,

esophagus and stomach are more difficult to assess by standard PCR due to sparser bacterial

populations and relatively high abundance of human DNA (e. g. from human tissue biopsies).

Nested PCR is thus necessary for studies on certain human tissue microbiota since it can

amplify the target DNA with concentrations several-fold lower than standard PCR [3–7].

Nested PCR involves two rounds of PCR reactions with the first round targeting a wide DNA

region and the second round targeting a narrower sub-region of the products of the first round

which is used as a template. Barcoded primers have a low efficacy for binding and amplification

when targeted sequences are sparse. In nested PCRs, barcoded primers are only used in the sec-

ond round of PCR when the template is a 100% match and in higher abundance, and amplify

the target with greater efficacy. Therefore, nested PCR works for the samples with sparse tar-

gets while standard PCR does not. The drawback to the nested PCR is that the bias due to pref-

erential amplification may be greater when two successive PCR reactions are applied [8]. To

date, the potential bias of nested PCR combined with next generation sequencing technologies

on the interpretation of microbial diversity and structure has not been rigorously examined.

In this study, we evaluated the bias of nested PCR in estimating microbial diversity and

community structure by comparing it with standard PCR. We investigated the influence of

microbial diversity (relatively low vs. high) and the number of cycles in the first and second

round of nested PCR.

Methods

Sample collection

Vaginal swabs (17 samples) and fecal samples (12 samples) were collected from adults as previ-

ously described [9,10]. The study of vaginal swab samples was approved by the Institutional

Review Board at the University of Maryland Baltimore. The study of fecal samples was

approved by the National Cancer Institute Special Studies Institutional Review Board. All par-

ticipants provided written informed consent.

DNA extraction, PCR amplification and sequencing of 16S rRNA

The DNA from previously published studies was used [9,11]. The designs for nested and stan-

dard PCRs are shown in Table 1 [12]. All PCRs had 40 cycles in total. The nested PCRs had

either 10 or 20 cycles for the first round of amplifications, with 30 or 20 cycles, respectively, for

the second round. These are referred to as Nested_10–30 and Nested_20–20, respectively. For

comparison, each nested PCR had a standard PCR with either 10–30 or 20–20 cycles, thereby

mimicking the nested PCR cycles but using only primer pair 2. These are referred to as
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Standard_10–30 and Standard_20–20, respectively. An additional Standard_40 PCR used 40

cycles with primer pair 2.

For the nested PCRs, primer pair 1 for the first round of amplifications was 515F:

GTGCCAGCMGCCGCGGTAA, 1492R: TACCTTGTTACGACTT, and primer pair 2 for the

second round was tagged 515F (AATGATACGGCGACCACCGAGATCTACAC TATGG

TAATT GT GTGCCAGCMGCCGCGGTAA, tagged 806R CAAGCAGAAGACGGCATACG

AGAT XXXXXXXXXXXX AGTCAGTCAG CC GGACTACHVGGGTWTCTAAT). For stan-

dard PCR, only primer pair 2 was used. The italic parts of primer pair 2 were the Illumina

adapter, primer pad and linker. All PCRs were performed in a reaction mixture (25 μL) con-

taining 1 μL of dissolved DNA (10 ng), 0.5 μl of each primer (10 μM concentration), 12.5 μl 2x

Phusion Mastermix with HF Buffer, 0.75 μl DMSO and water. The amplification program used

was as follows: 98°C for 1 min; number of cycles of 98°C for 15 s, 55°C for 15 s, and 72°C for

30 s; and 72°C for 1 min. For nested PCR and the standard PCRs that mimic nested PCRs, the

first round of PCR products were cleaned up using ExoSAP-IT according to the manufacturer’s

recommendations. The PCR products for sequencing were cleaned up and normalized using

the SequalPrep DNA Normalization Kit (Invitrogen) according to the manufacturer’s recom-

mendations and eluted in 20 μl elution buffer.

Sequencing was performed on an Illumina MiSeq platform using the 250 bp paired end pro-

tocol. The details were described previously [12]. The raw sequence data were deposit in Short

Sequence Archive database at National Center for Biotechnology Information (Accession,

SRP058353).

Analysis of 16S rRNA gene sequence data

We removed low quality reads (reads with average quality less than 20 over 30bp window

based on Phred algorithm; paired reads which have at least one with length less than 75% of its

original length) and chimera reads (by UCHIME), and clustered the remaining reads into spe-

cies-level Operational Taxonomy Units (OTUs) at 97% identity by Usearch method in software

package Quantitative Insights into Microbial Ecology (QIIME 1.8.0) [13]. Reads without 97%

Table 1. The details for nested and standard PCR design and number of successful PCR reactions in
vagina and stool samples.

No. of
successful

PCR
reactions

PCR name PCR design vagina stool

nested PCRs

Nested_10–30 10 cycles by primer pair 1, then use the products for 30 cycles by
primer pair 2

17 6

Nested_20–20 20 cycles by primer pair 1, then use the products for 20 cycles by
primer pair 2

16 12

standard PCRs

Standard_10–
30

10 cycles by primer pair 2, then use the products for 30 cycles by
primer pair 2

17 11

Standard_20–
20

10 cycles by primer pair 2, then use the products for 30 cycles by
primer pair 2

17 12

Standard_40 40 cycles by primer pair 2 12 12

Note, Primer pair 1 is 515F and 1492R; primer pair 2 is the tagged 515F and 806R.

doi:10.1371/journal.pone.0132253.t001
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identical reference in Greengenes database (release gg_13_8, http://qiime.org/home_static/

dataFiles.html) were excluded. OTUs with only one read or in only one sample were excluded.

Of the reads that passed QIIME’s quality filters, 3,054,521 reads from vagina samples (97% of

the filtered reads) and 1,363,608 reads from stool samples (91% of the filtered reads) hit a refer-

ence sequence with at least 97% identity. In order to exclude the effect of extremely rare OTUs,

we also used more strict filtering criteria. The OTUs with less than 20 reads or in less than 10%

of samples were excluded. Of the reads that passed the strict criteria, 3,046,632 reads from vagi-

nal samples and 1,356,860 reads from stool samples hit a reference sequence with at least 97%

identity.

In order to minimize the difference in microbial diversity estimation due to sequencing

effort, a random sample of the same sequence depth was drawn 20 times without replacement

from each sample. Each participant’s alpha diversity measures were based on the mean values

from 20 such random samplings. The minimum sequence depth used for vagina and stool sam-

ples were 16,279 and 12,746 reads per sample respectively, and 16,214 and 12,377 per sample

respectively based on the strict OTU filtering criteria.

Four measures of alpha diversity including number of OTUs, Chao1, Shannon’s Index, and

Phylogenetic distance (PD) whole tree were calculated for both less strict and strict OTU

filtering criteria. The total number of unique OTUs does not take relative abundance of OTUs

into account. Chao1 is bias-corrected for singleton OTUs [14]. Shannon’s index is defined as

(negative) the sum over OTUs of the product of the relative abundance of the OTU times the

natural logarithm of the relative abundance [15]. PD_whole tree reflects number and relative

abundance of OTUs, and phylogenetic divergence among OTUs within an individual [16].

Wilcoxon signed-rank test for paired samples was applied for the difference of alpha diversity

between nested PCRs and their controls [17]. Significance level of 0.05 was applied.

A beta-diversity measure, Weighted UniFrac distance matrix, which measures the pairwise

difference in microbial diversity among samples, was calculated in QIIME [18]. To provide

visualization of the sample distribution patterns, a principal component analysis (PCA) was

applied to transform the UniFrac distance matrices into principal coordinates.

Taxonomy was assigned using RDP classifier 2.2 [19]. The relative abundance of bacterial

genera was calculated in QIIME [13]. Bray-Curtis dissimilarity matrix (a measure of dissimilar-

ity among community states) and hierarchical clustering with average linkage hierarchical clus-

tering were used to determine community similarity. Linear discriminant analysis (LDA) effect

size (LEfSe) method was used to identify genus-level taxa with statistically significant different

relative abundance between paired samples amplified by the two different PCR methods [20].

Results

Difference in alpha diversity between nested and standard PCR controls

Sequencing 16S rRNA partial genes was successful with at least 16,279 reads (16,214 based on

strict OTU filtering criteria) in 79 of 85 (93%) PCRs for the 17 vagina swab samples and with

at least 12,746 reads (12,377 based on strict OTU filtering criteria) in 53 of 60 (83%) PCRs for

the 12 stool samples. The number of successful PCR reactions for each PCR design is listed in

Table 1.

Compared with their matching standard PCRs, both nested PCRs of vagina samples had

on average 3–7% fewer OTUs, 2% lower in Shannon’s index and 2–8% lower in Chao1

and PD_whole tree. The differences by PCR methods were not significant except between

Nested_10–30 and Standard_10–30 in number of OTUs (P = 0.02, Fig 1), and Nested_20_20

and Standard_20_20 in PD_whole tree (p = 0.04). Based on our strict OTU filtering criteria,

the differences by PCR methods were only statistically significant between Nested_10–30 and
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Fig 1. Box plots comparing nested to standard PCRs in number of OTUs and Shannon’s index. Note, *P<0.05, **P<0.01, ***P<0.001, the P values
were calculated by theWilcoxon Matched-Pairs Signed Ranks test.

doi:10.1371/journal.pone.0132253.g001
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Standard_10–30. These two methods differ in Number of OTUs, Chao1 and PD_whole tree

(p<0.003), but not in Shannon’s index (S1 Table).

Likewise, both nested PCRs of stool samples had on average 17 to 24% fewer OTUs, 2–8%

lower in Shannon’s index and 12–21% lower in Chao1 and PD_whole tree compared with their

matching standard PCRs. All differences between Nested_20–20 and standard PCRs were statis-

tically significant (P�0.01) except for Shannon’s index between Nested_20–20 and Standard_40

(shown in Fig 1 for Number of OTUs and Shannon’s index). We found no statistically significant

difference in alpha diversity between Nested_10–30 and the standard PCRs. The results based

on strict OTU criteria are the same as the ones based on less strict OTU criteria (not shown).

Unique sets of OTUs were detected only in the nested PCRs or only in the standard PCRs.

The discordant OTUs between Nested_10–30 and Standard_40 OTUs are listed in S2 Table.

The average counts and sums of relative abundance of these discordant OTUs are shown in

Table 2. On average, 34–51 OTUs were only detected in nested PCRs and 43–58 OTUs were

only detected in the standard PCRs for vagina samples; 141–187 OTUs were only detected by

nested PCR and 223–265 OTUs were only detected by standard PCRs for stool samples. The

majority of the discordant OTUs had low or very low abundance (S2 Table). They comprised

30%-47% of the total number of OTUs in vagina and 27–44% in stool samples, but they only

contributed 0.2–0.3% of total OTU abundance in the vagina microbiota, and slightly more

(0.9–16.7%) in the stool microbiota.

Comparison of beta diversity between nested and standard PCR

Weighted UniFrac-based PCoA plots (Fig 2) revealed a strong pattern of primary clustering of

community structure by subject for the vaginal swabs, but not for the stool samples. Samples

from the same subject clustered together, and within-subject UniFrac distances were generally

smaller than between-subject distances, suggesting the community composition of samples

from the same subject were more similar to each other and consisted of bacterial lineages shar-

ing a common evolutionary history. For the stool samples, however, several nested PCRs were

outliers, far distant from their standard PCR controls (Fig 2 and Fig 3).

Relative abundance of taxa at genus level between nested and standard
PCRs

The heatmap of microbial genus relative abundance (Figs 3 and 4) shows that vaginal samples

were clustered by subjects while stool samples were not. Further analysis in LEfSe indicated

Table 2. Summary of number of OTUs which were detected by only either nested PCRs or standard PCR controls when compared with each other
for the matched samples.

Unique to nested PCRs Unique to standard PCRs

Sample Nested
PCR

Average number of
unique OTUs

Sum of relative
abundance

Standard
PCR

Average number of
unique OTUs

Sum of relative
abundance

Vagina 10–30 39 0.003 10–30 50 0.004

51 0.003 40 43 0.003

20–20 34 0.002 20–20 58 0.003

48 0.003 40 44 0.003

Stool 10–30 141 0.102 10–30 265 0.167

184 0.058 40 223 0.164

20–20 160 0.009 20–20 258 0.038

187 0.012 40 225 0.038

doi:10.1371/journal.pone.0132253.t002
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that no taxon at the genus level was significantly different in relative abundance between nested

and standard PCRs for vaginal samples (data not shown). However, compared to Standard_40

in the stool samples, 7 taxa at genus level had higher relative abundance with Nested_10–30

(comprising 1.79% relative abundance). Furthermore, 11 taxa (comprising 7.80% relative

abundance) had higher relative abundance and 2 (comprising 1.73% relative abundance) had

lower relative abundance with Nested_20–20 than with Standard_40 (Fig 5). Similar distor-

tions (not shown) were also observed between Nested_10–30 and Nested_20–20 compared to

their matching standard PCRs.

Discussion

We evaluated the effect of nested PCR and other factors including cycle number in the first

round of nested PCR and community diversity level on measures of microbial community

structure. We observed biases by nested PCR in the estimation of microbial diversity and struc-

ture both in vaginal and stool samples and the differences were mainly observed between

Nested_20–20 and standard PCRs in stool samples.

Our results indicated that nested PCR introduced bias in measurements of community

structure, particularly for stool samples. This might be due to the discordant OTUs that were

detected only in nested PCR or only in its matching standard PCR. Such discordant OTUs

were rare. They contributed 30–47% to the total number of unique OTUs, but were so rare that

they contributed only a small proportion (0.002–0.003) of the total abundance of the vaginal

microbiota. In the stool samples, which had an average of 631 unique OTUs, discordant OTUs

Fig 2. Principal coordinates analysis (PCoA) of weighted UniFrac distance. Proportion of variance explained by each axis is denoted in the
corresponding axis labels. Each symbol (designated by the combination of color and shape) represents each subject with the open symbols for the nested
PCRs and the closed symbols for the standard PCRs. For example, the blue circles represent subject 1 with open blue ones for two nested PCR results and
closed blue ones for three standard PCR results.

doi:10.1371/journal.pone.0132253.g002
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Fig 3. Clusters of stool samples based on bacterial genus relative abundance. Heatmaps were based on the hierarchical clustering solution (Bray-
Curtis) distance metric and average clustering method. Row represents different sample ID (The number before the period is the subject ID; The text after the
period is the PCRmethod used.). Columns represent the predominant bacterial genera with mean relative abundance of 0.01 or greater. The colors in the
heatmaps represent the relative abundance of each genus, as indicated in the upper left corner of each panel.

doi:10.1371/journal.pone.0132253.g003
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Fig 4. Clusters of vagina samples based on bacterial genus relative abundance.Heatmaps were based on the hierarchical clustering solution (Bray-
Curtis) distance metric and average clustering method. Row represents different sample ID (The number before the period is the subject ID; The text after the
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represented 27–44% of the total number of unique OTUs, and they contributed 0.01–0.17 to

the total abundance in stool. Alternatively, such unique OTUs might be the true members of

the community that could not be consistently amplified due to their rarity or low specificity

with the primers used for PCR reactions. Other sensitive and accurate techniques will be

required to characterize such rare taxa.

Our results showed significant bias of alpha diversity estimation from standard PCRs by

Nested_20–20 but not by Nested _10–30 in stool samples, suggesting that the lower number of

cycles in the first round of nested PCR results in less bias. However, since only 6 stool samples

for Nested_10–30 were amplified, the low bias in Nested_10–30 might merely reflect limited

statistical power. In addition, the total number of cycles might have an effect on the estimation

of microbial diversity and structure, which is not estimated in the study.

In conclusion, our results showed that nested PCR will introduce biases in interpreting

microbial community diversity and structure with Illumina MiSeq-based 16S rRNA gene pro-

files. The bias was more significant for high diverse communities or a high number of cycles in

the first round of PCR. We suggest that nested PCR should only be applied when standard

PCR is unsuccessful, and the number of cycles in the first round of PCR should be as low as

possible. Rare taxa detected by nested PCR should be confirmed by other technologies.

period is the PCRmethod used.). Columns represent the predominant bacterial genera with mean relative abundance of 0.01 or greater. The colors in the
heatmaps represent the relative abundance of each genus, as indicated in the upper left corner of each panel.

doi:10.1371/journal.pone.0132253.g004

Fig 5. Histogram of the LDA scores computed for microbial genera differentially abundant between nested and standard PCRs in stool samples.
The taxa shown in red are the ones with significantly higher abundance by nested PCRs while the taxa shown in green are the ones with significantly higher
abundance by standard PCR. The g or f before the taxon namemeans genus or family.

doi:10.1371/journal.pone.0132253.g005
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S1 Table. Difference between nested and standard PCRs in vaginal samples.

(XLS)

S2 Table. List of discordant OTUs between nested_10–30 and standard PCRs; 2a), List of

discordant OTUs between nested_10–30 and standard_40 for each vagina samples; 2b),

List of discordant OTUs between nested_20–20 and standard_40 for each vagina samples;

2c), List of discordant OTUs between nested_10–30 and standard_40 for each stool sam-

ples; 2d), List of discordant OTUs between nested_20–20 and standard_40 for each stool

samples

(XLS)
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